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Abstract

The beta decay spectrum of Cs137 is measured using a magnetic spectrom-
eter and a Geiger counter detector for the electrons. A Kurie plot analysis is
made to extract the beta decay parameters and compare to theory. The internal
conversion line resulting from the decay scheme of Cs137 is also studied.
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Theory

Beta decay refers to the process in which a nucleus spontaneously breaks down by
emitting an electron (a “Beta ray”) and an antineutrino. The process is seen in the
decay of a free neutron to a proton, electron and an antineutrino, releasing 785 keV
with a half life of 10.5 minutes:

n → p + e− + ν̄e

The process is also seen in the decay of nucleii which have too many neutrons to be
stable. The process always increases the atomic number Z of the nucleus due to the
extra proton which is created. The example used in this experiment is:

Cs137 → Ba137 + e− + ν̄e

The neutrino was postulated in 1931 by Pauli to explain how in beta decay the
following could be conserved:

• energy – if no neutrino, then energy disappears.

• linear momentum – the p and e− do not recoil in opposite directions.

• angular momentum – if no neutrino, then 1/2 h̄ of angular momentum disap-
pears.

There are several features which should be noted:

1. The antineutrino is also required to balance the “e-lepton number.” It is possible
to assign such a quantum number to particles; for example:

e− electron e-lepton number = +1
e+ positron = −1
νe e-neutrino = +1
ν̄e e-antineutrino = −1

muon, neutron, proton, γ etc. = 0

The conservation of “e-lepton number” expresses the fact that we have never
observed electrons or e-neutrinos being created or destroyed except in pairs.

Although not needed in this experiment, you should know of a similar µ-lepton
number which is also conserved.
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µ− + muon µ lepton number = +1
µ+ −muon = −1
νµ µ neutrino = +1
ν̄µ µ antineutrino = −1

electron, neutron, proton, γ etc. = 0

For example, the decay of a muon must obey both conservation laws (check
this):

µ− → e− + ν̄e + νµ

2. The neutrino has unusual properties:

(a) It must move at or about the velocity of light because it has a very small
if not exactly zero rest mass.

(b) It has a very small interaction with normal matter. A neutrino can easily
pass through a light-day of lead.

(c) It has a spin of 1
2

(similar to that of an electron rather than the spin 1 of
a photon).

(d) The spin of a neutrino is about the direction of motion. The spin vector
of a neutrino is opposite to its momentum and that of an antineutrino is
parallel to its momentum.

(e) It has zero charge.

3. Some nucleii which are proton-rich spontaneously emit positrons by changing a
proton to a neutron.

p→ n + e+ + νe

This occurs only within a nucleus since a proton has a smaller rest mass than
a neutron and so cannot decay by itself.

4. Energy and momentum must be conserved in the decay. Hence, depending
upon the angles of the ejected particles, various energy values are found for
the electrons. It was this distribution of observed electron energies as well as
the imbalance of spin angular momentum which led to the prediction of the
neutrino as a particle with no mass or charge.

5. Beta Decay is an example of the weak interaction. Remember that all interac-
tions can be classified as either strong, electromagnetic, weak, or gravitational.
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6. An electron can be knocked out of the electron “cloud” of an atom by a photon.
This is the Photo-Electric effect or the Compton Effect (not Beta Decay). If
the photon originates in the nucleus and knocks out an atomic electron, then
that phenomenon is called “Internal Conversion”. In this experiment both beta
decay electrons and internal conversion electrons are detected.

Momentum Spectrometer

We first review some relativistic equations. The relativistic momentum is defined
~p = γmo~v where γ = (1 - v2

c2
)−1/2. Force is equal to the time rate of change of

momentum:

~F =
d~p

dt
=

d

dt
(γmo~v)

= γmo
d~v

dt
+

dγ

dt
mo~v

= γmo
d~v

dt
+

d

dt
(1− ~v.~v

c2
)−1/2mo~v

= γmo
d~v

dt
− 1/2 mo~v(1− ~v.~v

c2
)−3/2(− 2

c2
~v.
d~v

dt
)

= γmo~a + γ3mo~v(
~v.~a

c2
).

where ~a is the acceleration. Check that this agrees with ~F = m~a if v << c.
In this magnetic spectrometer, the force F is caused by the field B:

~F = e(~v × ~B).

The acceleration may be found from the two equations above:

e(~v × ~B) = γmo~a + γ3mo~v (
~v.~a

c2
).

This is a vector equation. Let ~a = a⊥ + a‖ where a⊥ is perpendicular to ~v and a‖ to
~v.

The components parallel to v are:

0 = γmoa‖ + γ3mov (
va‖
c2

)

= γ3moa‖, hence a‖ = 0.
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The components perpendicular to v are:

e(~v × ~B) = γmoa⊥,

hence a⊥ = ( evB
γm0

)
In this spectrometer, the field B is perpendicular to v. The acceleration causes a

circular orbit of radius r:

a =
v2

r
.

Hence,

v2

r
=

evB

γmo

γmov = Ber

p = Ber.

In this experiment, the field direction is chosen so that negative charges have a
trajectory leading to the detector. The source emits electrons with various angles and
various momenta.
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1. Variation of Angle. Consider several electrons emitted with the same momenta
but at slightly different angles. Each particle will follow a circular path with a
slightly different center point.

c b a

center of c�

center of b�
center of a�

focus

c b a

Note that the particles will pass through a focus point one diameter away from
the source. Of course, if the angles are very large then the particle will pass
near the focus. You may like to show that the particle will miss the focus by a
distance ε.

ε ' r sin2 θ

where θ is the angle shown.

θ

baffle

ε�
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Because sin2 θ changes slowly near θ = 0, ε is very small. A baffle with a slit is
used to restrict the detected particles to those with θ small. In this spectrometer
the restriction is:

θ < 1/4 radian (14.3◦)

sin2 θ < 0.0612

2. Variation of Momenta.

source�

detector
�

The particles of different momenta will pass through different focus points. By
using a small source and a small detector only those in a small range from p to
p+ dp will be accepted.

The two effects above limit the resolution which is defined by:

R =
∆p

p

=
1

2r

[
s+ w + r(∆θ2 + ∆θψ2)

]
,

where:

7



• s and w are the source and detector widths respectively.

• ∆θ = d/2r is the horizontal acceptance angle where d is the baffle opening.

• ψ = h/2πr is the vertical angle subtended between the source and detector,
h being the source height.

The fractional transmission of the spectrometer is given to be f = ∆θψ
4π
.

Beta Decay of Cs137

The figure shows that two different decays are possible. 92% of the electrons from
Cs137 are associated with a transition having an Emax of 514 keV and 8% with an
Emax of 1176 keV. Some of the 662 keV Gammas are internally converted.

Cs
137  

(Lifetime 30 years) Z=55

β
-
, 514 keV (92%)

β
-
, 1176 keV (8%)

Ba137 (Metastable)
662 keV

Ba137 Z=56

γ  � (Partially Converted)

Intensity

It is possible to calculate the probability that an emitted electron has a momentum
between p and p + dp. This probability is proportional to dp (if dp is small enough)
and is a function of p. Therefore, we label this probability: I(p)dp.

The theory for Beta Decay was developed by Enrico Fermi in 1934. This theory
assumes that the neutrino has zero mass and predicts:

I(p)dp = CF (Z, p) (Emax − E)2 p2 dp

where:

• I(p)dp is the probability of a momentum between p and p + dp

• C is a constant for a particular beta decay transition.

• F (Z, p), the “Coulomb factor”, takes account of the effect of the nuclear elec-
trostatic field. It may be found in tables in the references and for energetic
betas F ≈ 1.
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• Z is the atomic number of the nucleus.

• Emax is the maximum energy of the spectrum considered, i.e. the total kinetic
energy of the beta plus that of the neutrino.

• E is the kinetic energy of the beta particle which has momentum p. Since the
energies involved are of the order of the rest energy m0c

2, the correct expression
to use is:

E = (m2
0c

4 + p2c2)1/2 −m0c
2

where m0 is the rest mass of the electron and c is the velocity of light.

A convenient way of plotting experimental results for comparison with the Fermi
theory was suggested by Kurie in 1936 and is called a Kurie plot.

Define y:

y2 =
I(p)

Cp2F (Z, p)
,

then y = Emax − E.

A plot of y against (x = E) will give a straight line with negative slope which
intercepts the x axis at Emax.

The x Axis of the Kurie Plot

An expression for the energy as a function of the magnetic field is needed. By means
of the previous calibration of the field, the energy may be expressed as a function of
the current.

• The rest energy is E0 = m0c
2.

• The total energy is ET =
√
E2

0 + p2c2 (also ET = γm0c
2).

• The kinetic energy is E = ET − E0

E = ET − E0

=
√
E2

0 + p2c2 − E0

=
√
E2

0 + (Berc)2 − E0.
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• If the energies are expressed in electron volt units:

E =
√
E2

0 + (Brc)2 − E0

where E0 = 511003.4± 1.4 eV.

From each magnet current I we can obtain B in Tesla(webers/meter2) and then by
using r and c (in mks units) we obtain the kinetic energy E for the x axis.

The y Axis of the Kurie Plot

If the counting rate is A, the range of momentum dp, I the intensity, and ∆p/p the
momentum acceptance of the spectrometer, then:

dA = I(p) dp

A ≈ I(p)p(∆p/p).

The y axis variable for the plot is:

y =

√√√√ I(p)

CF (Z, p) p2

=

√
A

CF (z, p)p3(∆p/p)

=

√
A

CF (z, p)B3e3r3(∆p/p)
.

The momentum acceptance (∆p/p) is a geometrical factor and so is a constant for a
particular spectrometer. Also CF (z, p) ' 1.

We need not worry about the value of the constants because we want the intercept
on the x axis and so will use:

y =

√
A

B3
.

Equipment

Spectrometer

The Atomic Laboratories Beta Ray Spectrometer deflects an electron through an
angle of 180◦ between two points (source and detector) spaced a distance 2r apart (r
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is nominally 1.5 in). The 180◦ point on the trajectory is called the “first-order focus”,
because electrons emitted with small angular deviations from the central trajectory
tend to be focussed at 180◦.

The principle of the instrument is discussed in the theory section. The dimensions
are:

source width s ' 1
8

in
detector width w = 1

16
in

radius r = 1.5 in
gap in baffle d = 0.75 in
source height h ' 1

8
in

From these parameters, the momentum acceptance ∆p/p may be calculated:

∆p/p = 0.10 (10%).

The fractional transmission which determines the counting rate is:

f = 1.05× 10−3.

In order to use the spectrometer with weak sources, which do not require special
safety rules, it was necessary to accept a relatively poor resolution so that the trans-
mission would not be too low. Obviously a stronger source would allow us to improve
the resolution by decreasing s, w and d.

Source

Students should not normally remove the source which is on the upper plug of the
spectrometer. The Cs137 source (approximately 10 µCi) is mounted on a thin alu-
minized mylar film, which in turn is mounted on a small brass ring. The ring and
the source are removable and are held in place by an internal spring clip. Simply
grasp the ring firmly and pull it away after the source holder has been removed from
the Beta Ray Spectrometer. (Cenco sells an optional Sodium-22 source on the same
size ring and this ring in turn can be mounted on the same source holder merely by
pushing it in over the spring clips.) During insertion or removal of the source, care
has to be taken not to touch the source itself which is in the center of the mylar film.
It is unprotected and will scrape off at the least touch. If it were protected, it would
absorb so many beta rays that the experiment could not be conducted properly.

CAUTION: WHEN INSERTING OR REMOVING THE CESIUM, SODIUM, OR
ANY OTHER RADIOACTIVE SOURCE, GLOVES SHOULD BE WORN AND
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HANDS SHOULD BE WASHED BOTH BEFORE AND AFTER THE OPERA-
TION. IT IS QUITE POSSIBLE THAT THE SOURCE, IF TOUCHED DIRECTLY,
WILL COME OFF ON THE HAND. GREAT CARE SHOULD BE EXERCISED TO
SEE THAT STUDENTS OR UNQUALIFIED PERSONNEL ARE NOT ALLOWED
TO TOUCH THESE SOURCES DIRECTLY.

Baffle

This is mounted inside the center plug. Students should not remove the baffle since
it can easily be damaged. It is a horizontal plate (1/16 in thick) with a rectangular
hole.

Detector

This is mounted on the lower plug. It is an end-window Geiger counter. You may
dismount it to inspect it but you should be very careful. The Tube has a mica end
window with a thickness of only 1.4 - 2.0 mg/cm2 and is quite fragile. It should not
be touched and the tube should be capped when not in use. The tube should not be
used above 700 volts.

Probe Port

A Hall probe may be inserted near the baffle by removing the baffle plug. The
magnetic field must be measured with no vacuum in the system. The field should be
unchanged when the chamber is evacuated.

Vacuum

The electrons are far more energetic (up to 660 keV) and so do not need as good a
vacuum as electronic vacuum tubes (0.1 to 0.3 keV) and television tubes (up to 21
keV). The system will operate with a pressure as high as 1 mm of Mercury (1 Torr)
but better results are obtained if the pressure is kept less than 100 microns (10−1

Torr). The normal vacuum pump on the apparatus will maintain 10 to 20 microns
(10−2 to 2 ×10−2 Torr). A thermocouple gauge is used to measure the pressure.

Detector High Voltage

A positive regulated supply set to about +500 V is connected to the Geiger counter via
a RC decoupling network. The pulse output from the Geiger counter is capacitively

12



decoupled from the Geiger counter HV and is connected from the decoupling network
box to the preamplifier input.

Preamplifier

ORTEC Model 435A. Should be set for NEG input pulses and UNIPOLAR output
pulses. The gain should be set to drive the ORTEC scaler. A setting of coarse gain
= 16 should be about right.

Scalar

ORTEC Model 484. The Scaler records single counts directly, provided that the input
pulses (positive) are above the threshold setting. You will have to time the runs. A
clock is provided on the bench.

Magnet

This is a simple electromagnet which has 2 coils connected in series. The current is
supplied by a variable regulated voltage source (0 to 50 VDC) and is monitored by a
series ammeter.

Procedure

1. Read the theory and equipment sections.

2. Pump down the spectrometer. The pressure should be less than 100 microns
after a minute. Check that no radioactive sources (from adjacent experiments)
are nearby.

3. Predict the direction of the magnetic field to bend electrons from the source to
the detector and connect the power leads accordingly. Set the current to about
0.25 amp.

4. Calibrate the Hall Probe by using the internal calibration adjustment. (see
Instructor) Insert the Hall probe into the probe port and plot the field B in
Tesla against the current I. Take care not to strain the probe—clamp it in
position—don’t let it hang by its delicate probe. Remember to rotate the probe
to find the maximum reading and also to allow for magnet hysteresis by always
increasing I towards its measured value. (1 Tesla = 10,000 Gauss)

13



5. Set the current to about 0.25 Amp and measure the counting rate for various
high voltages from 400 volts up to 700 volts (but not beyond). This data should
show a plateau. Select a high voltage at the center of the plateau and use it for
all following measurements.

6. Measure the counting rate A(I) for various currents from 0 up to 0.90 Amps.
Remember that the standard deviation expected on N counts is

√
N .

7. Plot the counting rates A(I) against the current I.

8. Identify the critical regions of Emax and the conversion line. Take additional
measurements in these regions in order to define them more accurately.

9. Measure the counting rate at 0.9 amps carefully, regard it as a background and
subtract it from the other rates.

10. Assume the Hall Probe is linear, c = 2.9979×108 m/sec and use the given value
of r. Calculate pc/e = Brc for each current I.

11. Calculate the energy (in keV) of the internal conversion peak from the observed
momentum p by using the value of Brc for the peak and the electron rest mass
E0 = 511003 eV. Then calculate:

E =
√
E2

0 + (Brc)2 − E0.

How does your result compare with the accepted value?

12. Calculate the x axis and y axis points of the Kurie plot for each current I.

13. Tabulate I, A, B, Brc, the x value, and the y value.

14. Make the Kurie plot. Draw a straight line on the part expected to be linear
and determine Emax of the Beta Decay. Compare your result with the accepted
value.

15. You may want to make another Kurie plot for the data at energies greater than
internal conversion peak. This plot should give an Emax of 1176 keV.
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