Measurement of Event Shapes in Deep Inelastic Scattering with ZEUS at HERA

Adam Everett
Study of Partons

Particle Scattering

• Study charge & magnetic moment distributions
• Scattering via probe exchange
 • Wavelength \(\lambda = \frac{\hbar}{Q} \)

 \(\hbar \) : Plank’s Constant

 \(Q \) : related to momentum of photon

• Special Case : Deep Inelastic Scattering
 • High energy lepton transfers momentum to a nucleon via probe
Scattering on proton is sum of elastic scattering on all of the proton’s constituents (partons)

Point-like Partons

Structure Functions: quantify distribution of partons and their momentum

\[F_2 = \sum_i e_i^2 x f_i(x) \quad F_i \rightarrow F_i(x) \]

Bjorken Scaling: Only \(x \) dependence
\(x \) related to fraction of momentum carried by quark

Parton Distribution Functions (PDF)

- Must be derived from experiment
Gluons: vector colored bosons carry strong force

- Gluons produce quark and gluon pairs
- Quarks gain transverse momentum

- Gluon-driven increase in F_2
 \(\Rightarrow \) Bjorken Scaling Violation:
 \[F_i(x) \rightarrow F_i(x, Q^2) \]
 \(\Rightarrow \) Observation of QCD effects
Deep Inelastic Scattering

Center of Mass Energy of ep system squared:

\[s = (p+k)^2 \sim 4E_p E_e \]

Photon Virtuality (4-momentum transfer squared at electron vertex):

\[q^2 = -Q^2 = (k-k')^2 \]

Fraction of Proton’s Momentum carried by struck quark:

\[x_{\text{Bjorken}} = \frac{Q^2}{2p \cdot q} \]

Fraction of e’s energy transferred to Proton in Proton’s rest frame:

\[y = \frac{p \cdot q}{p \cdot k} \]
Perturbative and Non-Perturbative QCD

Lowest Order
no α_s vertex

Low energy scales \Rightarrow Large distances

High energy scale \Rightarrow Small distances

α_s soft scale

α_s hard scale

Perturbative: Q^2 large
Small α_s (hard scale)
Can expand with α_s
High energy scale \Rightarrow Small distances

Nonperturbative: Q^2 small
Large α_s (soft scale)
Can’t expand in α_s
Low energy scales \Rightarrow Large distances

Leading Order (LO)

QPM

QCD Compton (initial & final)

Boson gluon fusion

$A = A_0 + A_1 \alpha_s + A_2 \alpha_s^2 + \ldots$

Next to Leading Order (NLO)
Event Shapes, A. Everett, U. Wisconsin

From Partons to Hadrons

- Hard scattering: hard scale (short distance) perturbative process
- Parton showers: initial QCD radiation of partons from initial partons
- Hadronization: colorless hadrons produced from colored partons
 soft process (large distance) - not perturbatively calculable
 phenomenological models and experimental input
- Jets: colored partons evolve into ~collinear “spray” of colorless hadrons

We seek to penetrate this fog
• The hard scattering process determines the initial distribution of partons

• Parton Shower + Hadronization determine the final energy flow of the event
 • Event shape is energy flow carried by hadrons

• Universality of the hadronization process tested by comparison of measurements of energy flow dependence in reactions with different initial states
 • ep, e^+e^-

• Power Corrections (see next slide) offer an opportunity to analytically study hadronization

• Use Event Shapes to check the validity of Power Corrections
pQCD prediction \rightarrow phenomenology \rightarrow measured distribution

- **Correction factors for non-perturbative (soft) QCD effects**

Proposed theory*: Use power corrections to correct for non-perturbative effects in infrared and collinear safe event shape variable, F:

$$\langle F \rangle = \langle F \rangle_{\text{perturbative}} + \langle F \rangle_{\text{power correction}}$$

$$\langle F \rangle_{\text{pow}} = a_v \frac{3MA_1(\alpha_s, \bar{\alpha}_0)}{\pi Q}$$

Power correction (PC)

- Independent of any fragmentation assumptions

$$\bar{\alpha}_0 = \text{Universal "non-perturbative parameter"}$$

HERA Description

- 920 GeV p^+
- 27.5 GeV e^- or e^+
- 318 GeV cms
- Equivalent to 50 TeV Fixed Target

Instantaneous luminosity max:
$1.8 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$

- 220 bunches
- 96 ns crossing time

$I_p \sim 90 \text{mA} \ p$
$I_e \sim 40 \text{mA} \ e^+$

DESY Hamburg, Germany
Central Tracking Detector

Drift Chamber inside 1.43 T Solenoid
Can resolve up to 500 charged tracks
Average event has ~20-40 charged tracks
Determine interaction vertex of the event
Measure number of charged particles (tracks)
Region of good acceptance: -1.75 < η < 1.75

$\eta = -\ln(\tan(\frac{\theta}{2}))$
Uranium-Scintillator Calorimeter (CAL)

- Alternating uranium and scintillator plates (sandwich calorimeter)
- Compensating - equal signal from hadrons and γ / e^\pm particles of same energy - $e/h = 1$
- Energy resolution $\sigma_e/E_e = 18% / \sqrt{E}$, $\sigma_h/E_h = 35% / \sqrt{E}$, E in GeV
- Covers 99.6% of the solid angle in the lab frame

$\eta = -\ln(\tan(\frac{\theta}{2}))$
10^7 Hz Crossing Rate, 10^5 Hz Background Rate, 10 Hz Physics Rate

First Level
- Dedicated custom hardware
- Pipelined without deadtime
- Global and regional energy sums
- Isolated μ and e^+ recognition
- Track quality information

Second Level
- “Commodity” Transputers
- Calorimeter timing cuts
- $E - p_z$ cuts
- Vertex information
- Simple physics filters

Third Level
- Commodity processor farm
- Full event info available
- Refined Jet and electron finding
- Advanced physics filters
$Q^2 = sxy$

$0.1 < Q^2 < 20000 \text{ GeV}^2$

$10^{-6} < x < 0.9$
Dijet Event
Extraction of α_0 and α_s

Two separate (but related) analyses:

Apply Power Corrections to Event Shape Means vs. Q^2
- Measure $<F>$ and compare to pQCD calculation (NLO) plus power correction (PC)
- Extract α_0 and α_s from fits to means
 - Check consistency to test PC model

Apply Power Corrections to Event Shape Distributions
- Measure F and compare to theoretical calculation plus power correction
- Extract α_0 and α_s from fits to distributions
 - Check consistency to test PC model
Current Hemisphere of the Breit Frame

- **Current Target**

\[2xP + q = 0 \]

Current region of Breit frame
- equiv. to single hemisphere \(e^+e^- \)
- \(e^+e^- \): quarks produced back to back with \(E = \sqrt{s}/2 \)
- DIS: struck quark with \(E = Q/2 \)
- quark’s hadronization products in **current hemisphere**

- Breit frame great for identifying jets of particles
Three classes of event shapes studied in this analysis

• **Axis independent**
 - Analysis done in current region of Breit frame
 - Invariant jet mass: M^2
 - C-Parameter: C

• **Axis dependent**
 - Analysis done in current region of Breit frame
 - Thrust: T_T, T_γ
 - Broadening: B_T, B_γ

• **Multi-jet**
 - Analysis done in full Breit frame
 - Out-of-plane Momentum: K_{out}
 - Jet transition parameter: y_n
Sphericity: describes isotropy of energy flow

- Theoretical issue: *NOT* collinear and infrared safe
 - Unusable in DIS

C-Parameter:

- collinear and infrared safe combination of the sphericity eigenvalues

Invariant Jet Mass

\[
S = \frac{3}{2} (\lambda_2 + \lambda_3)
\]

\[
S^{\alpha\beta} = \frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}
\]

\[
0 \leq S \leq 1
\]

C Parameter

\[
C = \frac{3 \sum_{ij} |\vec{p}_i| |\vec{p}_j| \sin^2(\theta_{ij})}{2 \left(\sum_i |\vec{p}_i|^2 \right)^2}
\]

Jet Mass

\[
M^2 = \frac{\left(\sum_i p_i^\mu \right)^2}{2 \left(\sum_i E_i \right)^2}
\]
Linear collimation of hadronic system along a specified ("thrust") axis

T interpretation depends on choice of axis:

- Four Thrusts in DIS: T_γ, T_M, T_m, T_T

\[
T = \max_{\hat{n}_k} \frac{\sum_i |\vec{p}_i \cdot \hat{n}|}{\sum_i |\vec{p}_i|}
\]

\[
\frac{1}{2} \leq T_T \leq 1
\]

\[
0 \leq T_\gamma \leq 1
\]
Thrust and Sphericity

Collimated Planar Isotropic

$T_T=1$ Increase $T_T=3/4$ Increase $T_T=1/2$

$S=0$ Increase $S=1/2$ Increase $S=1$
Broadening of particles in transverse momentum wrt. thrust axis

\[B = \frac{\sum_i |\vec{p}_i \times \vec{n}|}{\sum_i |\vec{p}_i|} \]

\[0 \leq B \leq \frac{1}{2} \]
In ep: k_T is transverse momentum with respect to beamline

- **Algorithm**
 - For every object i and every pair of objects i, j compute
 - $d_i = E_{T,i}^2$ (distance to beamline in momentum space)
 - $d_{ij} = \min\{E_{T,i}^2, E_{T,j}^2\} [D_h^2 + D_f^2]$ (distance between objects)
 - Calculate $\min\{d_i, d_{ij}\}$ for all objects
 - If (d_{ij}/R^2) is the smallest, combine objects i and j into a new object
 - R is radius in $\eta - \phi$ space
 - If d_i is the smallest, then object i is a jet

- **Advantages:**
 - k_T distributions can be predicted by QCD

Jet Rate

$$y_n \equiv \min\{d_i, d_j, d_{ij}\}$$
Event Shapes With Jets: K_{out}

Energy flow out of event plane defined by proton direction and thrust major axis

- Sensitive to perturbative & non-perturbative contributions
- Dijet event:
 - LO dijet pQCD calculation gives $K_{out} = 0$
 - First contribution to K_{out} is from non-perturbative part or from NLO dijet pQCD calculation
Event generators use algorithms based on QCD and phenomenological models to simulate DIS events:

- Hard subprocess: pQCD
- Parton Cascade
- Hadronization
- Detector Simulation
 - correct for detector effects: finite efficiency, resolutions & acceptances

Parton Cascades
- LO Matrix Element + Parton Showers (MEPS)
- Color Dipole Model (CDM)

Hadronization Models
- String Fragmentation (Lund)
- Cluster Model

PDFs

Parton Level → **Hadron Level**

NLO calculations stop here: μ_R
Monte Carlo models: parton cascades and hadronization

Models for parton cascades:

Parton Shower Model:
- cascade of partons with decreasing virtuality continuing until a cut-off

Color Dipole Model:
- Gluons are emitted from the color field between quark-antiquark pairs, supplemented with BGF processes.

Hadronization models:

Lund String Model:
- color "string" stretched between q and q moving apart,
- string breaks to form 2 color singlet strings, and so on until only on-mass-shell hadrons.

Cluster Fragmentation Model:
- color-singlet clusters of neighboring partons formed
- Clusters decay into hadrons
Used well studied NC DIS sample of events taken in 1998-00 ~ 82.2 pb\(^{-1}\)

Luminosity upgrade in 2003/2004: HERA II

- 5x increase in Luminosity

ZEUS Luminosities (pb\(^{-1}\))

<table>
<thead>
<tr>
<th>Year</th>
<th>HERA</th>
<th>ZEUS on-tape</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>e(^-): 93-94, 98-99</td>
<td>27.37</td>
<td>18.77</td>
<td>32.01</td>
</tr>
<tr>
<td>e(^+): 94-97, 99-00</td>
<td>165.87</td>
<td>124.54</td>
<td>147.55</td>
</tr>
</tbody>
</table>
Inclusive Event Selection

ZEUS 98-00 (82.2 pb\(^{-1}\))

General DIS cuts
- \(Q^2_{DA} \geq 80 \ (100) \ \text{GeV}^2\)
- \(y_{JB} > 0.04\)
- \(y_{el} < 0.9\)
- Vertex with \(|z| < 40 \ \text{cm}\)
- \(38 < E-p_Z < 60 \ \text{GeV}\)
- Good positron
 - electron probability > 0.9
 - \(E_e > 10 \ \text{GeV}\)

Additional Requirements

Global Shapes
- \(|\eta_{lab}| < 1.75\)
- \(p_t > 0.15 \ \text{GeV}\)
 - Use the full tracking acceptance
- Current region multiplicity > 1
- \(E_C/Q > 0.25\)

K\(_{out}\)
- \(|\eta_{lab}| < 2.2\)
- \(p_t > 0.15 \ \text{GeV}\)
- \(\eta_{Breit} < 3\)
 - Select current region
- At least 2 jets in the Breit Frame
- \(y_2 > 0.1\)

y\(_2\)
- At least 1 particle in Breit frame
- \(p_t > 0.15 \ \text{GeV}\)
Apply Power Corrections to Event Shape Means vs. Q^2

- Measure $<F>$ and compare to pQCD calculation (NLO) plus power correction (PC)
 - NLO calculated with DISENT (Seymour and Catani) and DISASTER++ (Graudenz)

- Extract α_0 and α_S from fits to means
 - Check consistency to test PC model
• Analysis conducted in 8 bins of Q^2
• Lowest two Q^2 bins are divided into two bins of x

Two studies:
• Means of each variable in each bin
• Differential distributions of each variable in each bin

NOTE: multiple x bins at low Q^2
Add Power Correction to NLO in order to agree with data

2-parameter NLO + PC fit
- Simultaneous fit for α_s and α_0
- Each shape fit separately

Fits use Hessian method for statistical and systematic errors
- Complete error matrix with error correlations

NLO calculation using DISASTER++
T_γ illustrates PC limitations: x

Negative Power Correction
Studies systematic effect of cuts and analysis method on the event shape measurement

\[\delta_{<F>} = \frac{<F>_{\text{systematic}} - <F>_{\text{central}}}{<F>_{\text{central}}} \]

Largest systematic uncertainties:

- Corrected particle energies (1-2%)
- Loosen the particle cuts (2-10%)
- Correct data with HERWIG (LEPTO) (2-10%)

Other systematic uncertainties smaller than the statistical uncertainties.
Extracted free parameters for each shape

- **Fitted α_s values consistent**
 - (excluding B_T, T_γ)

- **Fitted α_0 consistent to ~10%**
 - (excluding T_γ)

Theory errors dominate, except for γ axis shapes
Apply Power Corrections to Event Shape Distributions

- **Fit theory prediction to measured F**
 - Resummation of next-to-leading log (NLL) corrections for small F
 - Because perturbative radiation is suppressed
 - Match NLL to fixed-order results that are valid at large F
 - **Six choices for matching method:**
 - M, M_2, $\log R$, M_{mod}, $M_{2\text{mod}}$, $\log R_{\text{mod}}$
 - Fit sub-range where calculation is expected to be correct
 - Means were fitted to full range
 - Resummation, Matching, and PC calculated with DISRESUM

- **Extract α_0 and α_S from fits to distributions**
 - Check consistency to test PC technique
Fit of ZEUS 98-00 differential distribution to NLO+NLL+PC

- NLO Calculated with DISPATCH
- Resummation is applied with DISRESUM
- Bins for which theoretical calculations are expected to be questionable are omitted from fit

Fit over this range gives a good χ^2/dof
Fit to T_γ, B_γ Differential Distributions

Fit of ZEUS 98-00 differential distribution to NLO+NLL+PC

- NLO Calculated with DISPATCH
- Resummation is applied with DISRESUM
- Bins for which theoretical calculations are expected to be questionable are omitted from fit

Fit over this range gives a good χ^2/dof
Extracted free parameters for each shape

- Fitted α_s values consistent
- Fitted α_0 consistent
 - (excluding C)

M2mod matching
Event Shapes: y_2

- Distributions and means measured in bins of (x,Q^2)

Compared to NLO (without PC) calculated by DISENT

- Theoretical mechanism for applying Power Correction not yet available

Conclusion: hadronization for y_2 is very small
New event shape variable: K_{out}
- Distribution and means measured in bins of (x,Q^2)

Compared to ARIADNE (LO): parton and hadron level
- Theoretical mechanism for applying Power Correction not yet available

Conclusion:
- Hadron level describes data well
- Hadronization effects are significant for K_{out}
Precise measurement of event shapes in DIS has been done

- **Means**
 - α_0 and α_s still do not give a self-consistent results for all shapes

- **Differential distributions**
 - α_0 are consistent within 10% (exclude C) in range 0.4-0.5
 - α_s are in good agreement with the world average

- y_2 and K_{out} await theoretical input

PC technique

- Generally successful
- Suggests importance of higher-order processes
Universality of Power Corrections

- Higher energies
- Different kinematic regions
- Test validity in pp collisions