

Investigation of QCD Evolution through Jets with the ZEUS Detector at HERA

Preliminary Examination

Tom Danielson University of Wisconsin 13 December 2004

Outline

- Framework for QCD
 - Deep Inelastic Scattering and proton structure
 - Quark-parton model
 - Color charge and QCD
 - QCD Evolutions (DGLAP and BFKL)
- Methods for investigation
 - HERA accelerator
 - ZEUS detector
 - Jets and jet finding
 - Multiple jets
- Present Status
 - H1 and ZEUS Multijet results
 - Comparison between data and leading order Monte Carlo
- Conclusions and future plans

Classification of Particles

- Hadrons: particles that interact strongly
 - Bound states of structure-less particles (quarks)
- Quark-parton model
 - Quark properties: mass, electric charge, spin
 - Quarks treated as point-like, noninteracting

Quarks spin = 1/2			
Flavor	Approx. Mass GeV/c ²	Electric charge	
U up	0.003	2/3	
d down	0.006	-1/3	
C charm	1.3	2/3	
S strange	0.1	-1/3	
t top	175	2/3	
b bottom	4.3	-1/3	

Parton Studies

Main objective: Study structure of particles

- Scattering via probe exchange
 - Photon \rightarrow Electric charge
 - W, Z Bosons \rightarrow Weak charge

• Wavelength
$$\lambda = \frac{\hbar}{Q}$$
 Q: related to momentum of probe

- Special case: Deep Inelastic Scattering (DIS)
 - High energy lepton transfers momentum to nucleon via probe

DIS Kinematics

 $Q^2 = sxy$

Squared ep CM Energy

Fraction of proton momentum carried by struck parton

Inelasticity

Only 2 independent quantities

Express cross section in terms of DIS kinematics and proton structure

$$\frac{d^2 \sigma(e^- p)}{dx_{Bj} dQ^2} (x_{Bj}, Q^2) = \frac{2\pi \alpha_E^2}{x_{Bj} Q^4} \Big[Y_+ F_2(x_{Bj}, Q^2) - y^2 F_L(x_{Bj}, Q^2) - Y_- x_{Bj} F_3(x_{Bj}, Q^2) \Big]$$
$$Y_{\pm} = 1 \pm (1 - y)^2$$

- F_2 , F_L , $F_3 \rightarrow$ proton structure functions
 - $F_2 \rightarrow$ interaction between transversely polarized photon and partons
 - $F_{L} \rightarrow$ interaction between longitudinally polarized photon and partons
 - $x_{Bj}F_3 \rightarrow$ parity violating term from weak interaction

- Proton contains only valence quarks
 - Partons considered point-like particles
 - Structure functions describing individual particles' momenta distribution depend only on x_{Bj}
 - No Q² dependence (Bjorken scaling):

$$F_i(x_{Bj}, Q^2) \to F_i(x_{Bj}) \qquad F_2 = \sum_i e_i^2 x_{Bj} f_i(x_{Bj})$$

- $f_i(x) \rightarrow$ Parton density functions (PDF's)
 - Must be experimentally determined

Problems with Quark-Parton Model

- Statistics for Fermion Δ⁺⁺
 - Δ^{++} comprised of 3 *u* quarks
 - Violation of Exclusion principle under QPM
- Sum rule for F_2 If QPM correct: $\int_{0}^{1} F_2(x_{Bj}) dx_{Bj} = 1$
 - Value of integral shown to be ~0.5 by experiment
 - Quarks carry roughly half proton momentum
- Single quarks never observed
- Quantum Chromodynamics: gluons with color quantum number
 - Δ^{++} quark composition: $u_R u_B u_G$
 - Mediator of strong force \rightarrow gluon •
 - Gluons carry roughly half proton momentum
 - Observed particles "colorless" → color conservation
 - Isolated quarks not observed → Confinement

Splitting functions give probability quark or gluon to split into parton pair

Leading Order quark and gluon splitting diagrams shown

pQCD–perturbative series summed over terms in expansion of α_s

Methods of summation: next slide

QCD evolution: $f(x_0, Q_0^2) \rightarrow f(x, Q^2)$ **Done by summing over diagrams DGLAP: Sum over diagrams contributing** *In*(Q²) **terms**

$$\frac{\partial g(x,Q^2)}{\partial \ln(Q^2)} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dz}{z} [P_{gg}(\frac{x}{z})g(z,Q^2) + P_{gq}(\frac{x}{z})q(z,Q^2)]$$

Splitting Functions

Widely used

BFKL: Sum over diagrams contributing $ln(1/x_{Bj})$ terms

BFKL-DGLAP Applicability

BFKL and DGLAP apply in different kinematic regions

- DGLAP: high Q², x_{Bj}
 - Approximations do not include *In*(1/*x*_{Bj})
- BFKL: low Q², x_{Bj}

Aim to study the ranges of validity

Parton Energy and k_T Ordering

- •DGLAP: ordering in both k_T and x
 - $\begin{aligned} x_n < x_{n-1} < \ldots < x_2 < x_1 \\ k_{t,n} > k_{t,n-1} > k_{t,n-2} > \ldots > k_{t,2} > k_{t,1} \end{aligned}$
- •BFKL: Strong ordering in x, but not ordered in k_T

$$x_n << x_{n-1} << \dots << x_2 << x$$

Differences

- Expect more partons with higher k_t in forward region with BFKL than with DGLAP
- DGLAP: Scattered partons correlated in Energy, azimuthal and polar angles
- BFKL: Scattered partons not necessarily strongly correlated

- Colored partons produced in hard scatter \rightarrow "Parton level"
- Colorless hadrons form through hadronization \rightarrow "Hadron level"
- Collimated "spray" of particles \rightarrow Jets
- Particle showers observed as energy deposits in detectors \rightarrow "Detector level"

Multijets in DIS study, Tom Danielson, U. Wisconsin

HERA Collider at DESY

920 GeV protons 27.5 GeV e⁻ or e⁺ 318 GeV CMS Energy

 Equivalent to ~50 TeV fixed target

220 Bunches

Not all filled

Beam Currents

- Proton: 140 mA
- Electron: 58 mA

Instantaneous Luminosity

• 1.8 x 10³¹cm⁻²s⁻¹

$$L = \frac{R_{tot} - (I_{tot}/I_{unp})R_{unp}}{\sigma_{BH}}$$

DESY Hamburg, Germany

HERA Luminosity

Year	HERA	ZEUS on-tape	Physics
e ⁻ : 93-94, 98-99	27.37	18.77	32.01
e ⁺ : 94-97, 99-00	165.87	124.54	147.55

ZEUS Detector

ZEUS Calorimeter

 $\eta = -\ln[\tan(\theta/2)]$

- Alternating layers of depleted uranium and scintillator
- Energy resolutions in test beam
 - Electromagnetic: 18% / \sqrt{E}
 - Hadronic: 35% / \sqrt{E}
- 99.7% solid angle coverage (-3.5 < η< 4.0)

- longitudinal (z): 4mm
- transverse (x-y): 1mm

ZEUS Trigger

10 MHz crossing rate, 100 kHz Background rate, 10Hz physics rate

First level: Use data subset: 10 MHz \rightarrow 500 Hz

- Dedicated custom hardware
- Pipelined without deadtime
- Global and regional energy sums
- Isolated μ and e⁺ recognition
- Track and vertex information

Second level: Use all data: 500 Hz \rightarrow 100 Hz

- Calorimeter timing cuts
- E p_z < 55 GeV
 - Energy, momentum conservation
- Vertex information
- Simple physics filters
- Commodity transputers

Third level: Use full reconstruction information: 100 Hz \rightarrow < 10 Hz

- Processor farm
- Full event information
- Refined jet and electron finding
- Complete tracking algorithms
- Advanced physics filters

ZEUS DIS Event

Four measured quantities: E_{H} , γ_{H} , E_{e} , θ_{e} Three reconstruction methods used: Double angle, Electron method, Jaquet-Blondel Methods have different γ_H resolutions over different kinematic regions $Q^2 = sxy$ Variable **Double angle method Electron method Jaquet-Blondel** (E_H, γ_H) $(\mathsf{E}'_{e}, \theta_{e})$ $(\gamma_{\rm H}, \theta_{\rm e})$ Q^2 $4E_e^2\sin\gamma_H(1+\cos\theta_e)$ $p_{t,H}^{2}$ $2E_{e}E_{e}(1+\cos\theta_{e})$ $1 - y_{\underline{JB}}$ $\sin \gamma_{H} + \sin \theta_{e} - \sin (\gamma_{H} + \theta_{e})$ Q_{JB}^2 $E'_{e} \frac{1 + \cos \theta_{e}}{2y_{el}E_{p}}$ Q_{DA}^2 Χ sy_{DA} Sy JB $4E_e^2 \frac{(1+\cos\theta_e)\sin\gamma_H}{\sin\gamma_H + \sin\theta_e - \sin(\gamma_H + \theta_e)}$ $-\frac{E_{e}}{(1-\cos\theta_{e})}$ $\sum_{H} (E_H - p_{z,H})$ У 2E

Multijets in DIS study, Tom Danielson, U. Wisconsin

Preliminary Examination, 13 December 2004 - 22

ZEUS Data Reconstruction

- Use reconstruction methods that minimize resolution and systematic errors in different kinematic regions
 - Double Angle (DA) method
 - Resolution worse than electron method at low x_{Bj} , Q^2
 - Resolution comparable to electron method at higher x_{Bj} , Q²
 - Electron (EL) method
 - Good resolution in general
 - Underestimates slightly at higher x_{Bj} , Q²

Single Jets and Dijets

Leading order: one hard scattered parton

- Single jet event
- Leading order diagrams O(α⁰_s)

Dijets

- Leading-Order diagrams O(α¹_s)
- Direct coupling to gluon

Multiple Jets

Trijet:

- Radiated gluons from dijets
 - Correction to leading-order dijet
- Leading Order: $O(\alpha_s^2)$
- Advantages of using multiple jets
 - Account for corrections beyond leading order dijet
 - Further in pQCD perturbation series

Maximize \mathbf{E}_{T} of hadrons in cone of fixed size

- Construct seeds from energy deposits in cells
- Move cone until stable position found
- Decide whether to merge overlapping cones
- Issues
 - Overlapping
 - Seed Energy threshold
 - Infrared unsafe $\sigma \rightarrow \infty$ as seed threshold \rightarrow 0

For the jet: $E_T = \sum_{i} E_{T,i}$

 $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

k_t: In *ep* transverse momentum with respect to beam line For every object *i* and every pair of objects *i*, *j* calculate

- $d_i = (E_{T,i})^2 \rightarrow$ Distance to beam line in momentum space
- $d_{ij} = min\{E^2_{T,i}, E^2_{T,j}\}[(\Delta \eta)^2 + (\Delta \phi)^2] \rightarrow Distance between objects$
- Combine all d_i, d_{ij} into set

Calculate min $\{d_i, d_{ij}\}$ for each object and pair of objects

- If minimum of set corresponds to $d_i \rightarrow \text{Object}$ for d_i taken as jet
- If minimum of set corresponds to $d_{ii} \rightarrow$ Combine objects *i* and *j*

Advantages

- No seed required and no overlapping jets
- Suitable for beyond-NLO pQCD calculations

Beam line

Dijet Event at ZEUS

Breit Frame

 $\mathbf{q} + 2x\mathbf{p} = 0$

Single jet event

- Struck quark rebounds with equal and opposite momentum
- Zero transverse energy (E_T)

Dijet event

Jets balanced in E_T

Requiring minimum jet E_{T, Breit} selects multijet events

"Brick wall" frame similar to $ee \rightarrow q\overline{q}$

Leading Order Monte Carlo

Simulate events to leading order (O(α_s) for dijets)

- Leading Order Matrix elements
- Parton showering
- Hadronization

ARIADNE v4.08

- Color Dipole Model (CDM)
 - Gluons emitted from color field between quark-antiquark pairs
 - Supplemented with boson-gluon fusion processes
 - Gluons not necessarily k_t ordered (BFKLlike)

LEPTO v6.5.1

- Matrix Element + Parton Shower (MEPS)
 - Parton cascade: approximate higher orders in LO calc
 - Decreasing virtuality (q²) as cascade progresses
 - Radiated gluons k_t-ordered (DGLAPbased)

Both use Lund String Model to simulate hadronization

Next-to-Leading-Order (NLO) Calculations

- Programs for DIS
- DISENT
- MEPJET
- DISASTER++
- NLOJET

Inclusion of single gluon emission in dijet final state

- Only terms of up to $O(\alpha_s^2)$ included for dijet calculations
 - Exact calculation: does not include approx. for higher orders

NLO calculations include

- One-loop corrections for virtual particles
- Correction for 3rd parton in final state (soft/collinear gluon emissions)

Corrections do not include

- Parton showering
- Hadronization
- Corrections taken from Leading Order MC

Uncertainties

- Renormalization scale: scale for evaluating α_s
 - Indicates size of contributions from higher order diagrams.
- Factorization scale: scale at which parton densities are evaluated

Present ZEUS Multijet Results

ZEUS inclusive dijet and trijet measurements well understood and modeled

- Multijet cross sections vs. NLO calculations
 - Dijet: UW PhD student
 D. Chapin (2001)
 - Trijet: UW PhD student L. Li, defends Jan 12, 2005
- DGLAP NLO dijet and trijet calculations describe data well in general
- Examine if agreement extends to "BFKL" kinematic regions

ZEUS Inclusive Jets

- Start with event cross section where at least one jet required
 - Former UW PhD student S. Lammers, graduated 2004
- Low x_{Bj} disagreement between data and DISENT
- Examine low x_{Bj} contribution from multijet events

Hadronization correction factor taken from Ariadne

- Examine jet ϕ and E_T at low x_{Bj} and low Q^2
 - *x_{Bj}* < 10⁻²
 - Q² < 150 GeV²
 - DGLAP: Jet E_T and angles strongly correlated
 - "Back to back" in ϕ
 - k_t ordering of scattered partons: jets with highest ${\rm E_T}$ should have similar η
 - BFKL: Jet E_T and angles not strongly correlated
 - More jets with high E_{T} expected in forward region than with DGLAP

H1 Inclusive Dijet Events

1996-1997 H1 data: Jet E_T > 7 GeV

$$S = \frac{N_{Dijet} (\Delta \phi < 120^{\circ})}{N_{Dijet}}$$

- Compare to DGLAP for NLO O(α_s^2) and NLO O(α_s^3)
 - $O(\alpha_s^2)$: Data not described
 - O(α_s³): Agreement at high x_{Bj}
 Still excess at low Q² and x_{Bj}
- Excess events with small ϕ separation of highest E_T jets

DESY-03-160 October 2003

Data: 1998-2000 electron and positron: 82.2 pb⁻¹

Remove background		
z vertex < 50 cm	Eliminate beam gas events	
40 < E – p _z < 60 GeV	Eliminate cosmic, beam gas events	
Select DIS		
10 < Q ² _{DA} < 5000 GeV ²		
Improve precision		
y _{jb} > 0.04	Requires minimum hadron energy	
y _{el} < 0.6	Electron energy > 10 GeV	
cos(γ _h) < 0.7	Breit Frame jet finding	
$(E - p_z)_e < 54 \text{ GeV}$	Electron E, p conservation	
η _{max} > 2.5	Eliminate diffractive events	

Inclusive dijets			
E ^{1,2} _{T,Breit} > 5 GeV	Well-resolved jets		
-1 < η _{Lab} < 2.5	Jet η in well-understood region		
Mass dijet system > 25 GeV	NLO calculations		
Above plus BFKL Dijets: Low x, Q ²			
Q ² _{DA} < 150 GeV ²			
10 ⁻⁴ < x _{DA} < 10 ⁻²			

Dijet Data vs. LEPTO MC

Dijet Data vs. ARIADNE MC

QCD evolution studies with ZEUS at HERA

- Good understanding of inclusive multijet events at ZEUS
- DGLAP NLO discrepancy with event cross sections with at least one jet, jet azimuthal separation at low x_{Bj} , Q^2
- Reasonable agreement between ZEUS 98-00
 inclusive dijet sample and LEPTO
- Disagreement between ZEUS 98-00 inclusive dijet sample and ARIADNE needs investigation

- - See if H1 result consistent with higher statistics and other models
 - H1 luminosity 21 pb⁻¹ from 96/97
 - ZEUS 98-00: 82.2 pb-1
- Examine kinematics and variables that enhance differences between BFKL and DGLAP.
 - Focus on jet pseudorapidities