

Event Shape Update

A. Everett A. Savin

S. Hanlon

I. Skillicorn

- Event Shape Motivation and the Power Correction Method
- Out-of-Plane Momentum
- Event Selection
- Kinematic Checks
- Comparison of two analyses
- NLO Calculations

Approach to Non-Perturbative Calculations

$\textbf{pQCD prediction} \rightarrow \textbf{measured distribution}$

- Correction factors for non-perturbative (soft) QCD effects
- Theory reduces corrections for any infrared safe event shape variable, F:

hadronization corrections

$$\langle F \rangle = \langle F \rangle_{perturbative} + \langle F \rangle_{power correction}$$

$$\left\langle F\right\rangle_{pow} = a_F \frac{16}{3\pi} \frac{\mu_I}{Q} \ln^P \frac{Q}{\mu_I} \left[\overline{\alpha_0}(\mu_I) - \alpha_s(Q) - \frac{\beta_0}{2\pi} (\ln \frac{Q}{\mu_I} + \frac{K}{\beta_0} + 1) \alpha_s^2(Q) \right]$$

Power Correction

- independent of any fragmentation assumptions
- α_0 = "non-perturbative parameter"
 - (Dokshitzer, Webber, Phys. Lett. B 352(1995)451)

Test of Power Correction for Means and Differential Distributions already made preliminary

Energy Flow and Dijets

Instead of inclusive events, we use dijets in the current region of the Breit frame.

Dijets:

- pQCD part of <F> calculation well understood
- Event topology well understood

New Event Shape Variables: K_{out}, Azimuthal Correlation

- Must define an event plane in the Breit frame
- Use Thrust to define the event plane
- Transverse Energy Flow

Out-of-plane Momentum

Energy flow out of event plane defined by proton direction and thrust major axis

- Sensitive to perturbative & non-perturbative contributions
- Dijet event:
 - Perturbative physics takes place in the plane
 - Non-perturbative physics give rise to out-of-plane momentum

$$K_{out} = \sum_{h}^{'} \left| p_{h}^{out} \right|$$

Event Selection

Selection cuts

- $Q^2_{DA} \ge 100 \text{ GeV}^2$
- y_{JB} > 0.04
- y_{el} < 0.95
- Vertex with |z| < 40 cm
- 38 < E-p_z < 65 GeV
- Good positron
 - Sinistra Probability > 0.9
 - E_{e',DA}> 10 GeV

ZUFO selection

- |η_{lab}| < 2.2
- |η_{Breit}| < 3.0
 - good acceptance region
- P_T > 0.5 GeV

Breit frame jet cuts

- At least 2 jets in Breit frame:
 - E_{1,T} > 6 GeV
 - E_{2,T} > 5 GeV
 - y₂ > 0.1

Kinematic Reconstruction

Choose Ariadne to calculate detector corrections

Ariadne is area normalized to the data within the cut boundaries

Hadronization Effect

Shift in peaks illustrates the hadronization effect

> Use power correction to calculate this shift.

K^{PAR} /Q

K/Q – Comparison of Ariadne and Corrected Data

Measure K/Q because powers of In(K/Q) are used in the resummation.

Use ZUFO to calculate the momentum out of the event plane.

Ariadne describes the data well.

??? Should I Combine the Previous 2 Slides to 1 Using This Plot???

Some of the difference due to sensitivity in the Thrust calculation for determining the event plane.

A.E. and I.S. in good agreement.

NLO Calculation

We continue to work while waiting for the theorists to give us the requested curves.

Our NLO calculation matches theorist NLO within 1%. Just waiting for

resummation . . .

Additional NLO

DISENT calculates to lowest order in K/Q

Also use NLOJET++ to calculate perturbative K/Q

 NLOJET can calculate to the next hgher order in K/Q

Summary

Conclusion

- Dijet event shapes sensitive to non-perturbative physics
- Good agreement between first and second analyses, and previous and current measurements.

Plan

- Currently working on systematics.
- Plan to have measurement ready for ICHEP 2004.