Event Shape Update

A. Everett
A. Savin

T. Doyle

S. Hanlon

I. Skillicorn

Outline

Progress of Event Shapes in DIS

- Similar to published paper:
- Power Correction Model
- Power Correction to Means
- NEW to current Glasgow and Wisconsin Analyses
- Power Correction to Differential Distributions
- Additional Variables
- Direct Comparison to NLO

Approach to Non-Perturbative Calculations

pQCD prediction \rightarrow measured distribution

- Correction factors for non-perturbative (soft) QCD effects Recent theory reduces corrections for any infrared safe event shape variable, F:

Used to determine the hadronization corrections

$$
\begin{aligned}
& \langle F\rangle=\langle F\rangle_{\text {perurubative }}+\langle F\rangle_{\text {power correction }} \\
& \langle F\rangle_{\text {pow }}=a_{F} \frac{16}{3 \pi} \frac{\mu_{I}}{Q} \ln \frac{Q}{\mu_{I}} \bullet\left[\overline{\alpha_{0}}\left(\mu_{I}\right)-\alpha_{s}(Q)-\frac{\beta_{0}}{2 \pi}\left(\ln \frac{Q}{\mu_{I}}+\frac{K}{\beta_{0}}+1\right) \alpha_{s}^{2}(Q)\right]
\end{aligned}
$$

Power Correction

- independent of any fragmentation assumptions
$\alpha_{0}=$ "non-perturbative parameter"
- (Dokshitzer, Webber, Phys. Lett. B 352(1995)451)

Variables

Old Variables

- C Parameter (infrared safe Sphericity-like variable)
- Jet Mass (axis independent)
- Thrust wrt Photon Axis (longitudinal projection)
- Broadening wrt Photon Axis (transverse projection)
- Thrust wrt Thrust Axis (longitudinal projection)
- Broadening wrt Thrust Axis (transverse projection)

New Variables

- Out-of-Plane Momentum
- Azimuthal Correlation (similar to Energy-EnergyCorrelation in e+e-)

Kinematic Bins

-Analysis conducted in 8

 bins of \mathbf{Q}^{2}-Lowest two \mathbf{Q}^{2} bins are divided into two bins of x
-Two studies:

- Means of each variable in each bin
- Differential distributions of each variable in each bin

Event Selection

Standard DIS Selection Cuts:

- $Q^{2} E L \geq 80(100) \mathrm{GeV}^{2}$
- $y_{J B}>0.04$
- $\mathrm{y}_{\text {el }}<0.95$
- Vertex with $|z|<40 \mathrm{~cm}$
- $38<\mathrm{E}-\mathrm{p}_{\mathrm{z}}<65 \mathrm{GeV}$
- Good positron
- Sinistra Probability > 0.9
- $\mathrm{E}_{\mathrm{e}}>10 \mathrm{GeV}$
- $|\boldsymbol{\eta}|<1.75$ (2.2)
- Temporary cut for good acceptance

Specialized Cuts:

- Analysis done in the Breit Frame
- Current Region Multiplicity ≥ 2
- At least 2 Jets in Breit Frame
- $\mathrm{E}_{1, \mathrm{~T}}>6 \mathrm{GeV}$
- $\mathrm{E}_{2, \mathrm{~T}}>5 \mathrm{GeV}$
- $P_{T, i, \text { Lab }} \geq 2 \mathrm{GeV}$

Agreement for event Thrust $_{\text {T }}$ means between analyses

Agreement for event shape means between '96-'97 and '98-'00

Power Correction

Extract α_{s}, α_{0} :

- Value of fit $\sim \alpha_{s}$, α_{0} according to power correction equation
- Power correction can be calculated for all i.r. safe event shapes
Similar results between two analyses

Comparison With Published Results

- Results are consistent between '96-'97 and '98-'00
- Similar difficulties with variables dependent on \mathbf{Y}^{*} axis

Comparison of Differential Distributions

New:
study the differential distributions

Agreement not based on errors shown

Differential Distributions

Theory:

- NLO can describe data by a simple SHIFT of NLO towards data
- SHIFT can be calculated for all event shapes

Data well described for a limited region

\bullet	'98-'00 Data
\bullet	DISASTER++
Γ	Region of Fit
Γ	Shifted NLO

Differential Distribution SHIFTS
NLO shifts are proportional to a theoretically calculated constant value for each event shape

Reasonable agreement:

- normalized values of the shifts are grouped
- expected q dependence is observed

ZEus Determine $a_{s,}, a_{0}$ using shift values

Attempt to fit each event shape separately

Energy Flow and Dijets

Instead of inclusive events, we use dijets in the current region of the Breit frame

Dijets:

- pQCD part of <F> calculation well understood
- Event topology well understood

New Event Shape Variables: $\mathrm{K}_{\text {out }}$, Azimuthal Correlation

- Must define an event plane in the Breit frame
- Use Thrust to define the event plane
- Transverse Energy Flow

$$
T_{k}=\max _{\hat{n}_{k}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \hat{n}_{k}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}
$$

Progress for new variables.

Leading Order MC hadronization correction to correct NLO.

Summary

Good agreement between '96-'97 published and current '98-'00 analyses
Good agreement between Glasgow and Wisconsin analyses
Differential Distributions are still not very promising
New event shapes are well described by the LO MC

Plans:

- More work on differential distributions
- Power corrections for the new event shapes
- New way of hadronization using LO MC

The following slides form an appendix to explain and define various event shape variables

Sphericity

Describes isotropy of energy flow

- Measure of the summed p^{2} wrt. Sphericity axis

$$
\begin{aligned}
& S=\frac{3}{2}\left(\lambda_{2}+\lambda_{3}\right) \\
& S^{\alpha \beta}=\frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i}\left|\vec{p}_{i}\right|^{2}} \\
& 0 \leq S \leq 1
\end{aligned}
$$

Aplanarity

Describes energy flow out of Sphericity evt. plane

- Measure of p_{T} out of plane

$$
A=\frac{3}{2} \lambda_{3} \quad 0 \leq A \leq \frac{1}{2}
$$

$S=A=0$

$S=3 / 4 A=0$

$S=1 A=1 / 2$

Eus Axis Independent Variables

Jet Mass

C Parameter

$$
M^{2}=\frac{\left(\sum_{i} p^{v}\right)^{2}}{\left(2 \sum_{i} E\right)^{2}}
$$

$$
C=\frac{3 \sum_{i j} \vec{p}_{i} \vec{p}_{j} \sin ^{2}\left(\theta_{i j}\right)}{2 \sum_{i j} \vec{p}_{i} \vec{p}_{j}}
$$

Thrust in DIS

Linear collimation of hadronic system along a specified ("thrust") axis

T interpretation depends on choice of axis:

- Four Thrusts in DIS: $\mathrm{T}_{\mathrm{Z}}, \mathrm{T}_{\mathrm{M}}, \mathrm{T}_{\mathrm{m}}, \mathrm{T}_{\mathrm{C}}$

$$
\begin{aligned}
& T_{k}=\max _{n_{k}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \hat{n}_{k}\right|}{\sum_{i}\left|\vec{p}_{i}\right|} \\
& \hat{n}_{M} \cdot \hat{z}=0 \quad \hat{n}_{m} \cdot \hat{\mathrm{z}}=0 \\
& k=C, M, m \\
& \frac{1}{2} \leq T \leq 1
\end{aligned}
$$

$\mathrm{T}=1 \mathrm{~S}=0$

$T=3 / 4 S=1 / 2$

$S=1 T=1 / 2$

Broadening

Broadening of particles in transverse momentum wrt. thrust axis

$\Rightarrow \mathrm{B}_{\mathrm{T}}, \mathrm{B}_{\mathrm{w}}$

$$
\begin{aligned}
& B_{k}=\frac{\sum_{i}\left|\vec{p}_{i} \times \vec{n}_{T}\right|}{\sum_{i}\left|\vec{p}_{i}\right|} \\
& B_{T}=B_{1}+B_{2} \\
& B_{W}=\max \left\{B_{1}, B_{2}\right\}
\end{aligned}
$$

Out-of-plane Momentum

Energy flow out of

 event plane defined by proton direction and thrust major axis$$
K_{\text {out }}=\sum_{h}^{\prime}\left|p_{h}^{\text {out }}\right|
$$

Azimuthal Correlation

Momentum weighted function of the azimuthal angle around the photonproton axis in the Breit frame between pairs of hadrons.

$$
\begin{gathered}
H(\chi)=\sum_{h, h^{\prime}} \frac{p_{t h} p_{k^{\prime}}}{Q^{2}} \delta\left(\chi-\chi_{h h^{\prime}}\right) \\
\phi_{h h^{\prime}}=\phi_{h^{\prime}}-\phi_{h^{\prime}}-\pi<\phi_{h h^{\prime}}<\pi \\
\chi_{h h^{\prime}}=\pi-\left|\phi_{h h^{\prime}}\right| \quad 0 \leq \pi \leq \pi
\end{gathered}
$$

