

Event Shape Update

A. Everett A. Savin

T. Doyle S. Hanlon I. Skillicorn

Progress of Event Shapes in DIS

- Similar to published paper:
 - Power Correction Model
 - Power Correction to Means
- NEW to current Glasgow and Wisconsin Analyses
 - Power Correction to Differential Distributions
 - Additional Variables
 - Direct Comparison to NLO

Approach to Non-Perturbative Calculations

pQCD prediction \rightarrow measured distribution

Correction factors for non-perturbative (soft) QCD effects

Recent theory reduces corrections for any infrared safe event shape variable, F:

$$\left\langle F\right\rangle = \left\langle F\right\rangle_{power correction} + \left\langle F\right\rangle_{power correction}$$
$$\left\langle F\right\rangle_{pow} = a_F \frac{16}{3\pi} \frac{\mu_I}{Q} \ln^P \frac{Q}{\mu_I} \bullet \left[\overline{\alpha_0}(\mu_I) - \alpha_s(Q) - \frac{\beta_0}{2\pi} (\ln \frac{Q}{\mu_I} + \frac{K}{\beta_0} + 1)\alpha_s^2(Q)\right]$$

Power Correction

independent of any fragmentation assumptions

$$\alpha_0 =$$
 "non-perturbative parameter"

- (Dokshitzer, Webber, Phys. Lett. B 352(1995)451)

hadronization corrections

Variables

Old Variables

- C Parameter (infrared safe Sphericity-like variable)
- Jet Mass (axis independent)
- Thrust wrt Photon Axis (longitudinal projection)
- Broadening wrt Photon Axis (transverse projection)
- Thrust wrt Thrust Axis (longitudinal projection)
- Broadening wrt Thrust Axis (transverse projection)

New Variables

- Out-of-Plane Momentum
- Azimuthal Correlation (similar to Energy-Energy-Correlation in e+e⁻)

Kinematic Bins

•Analysis conducted in 8 bins of Q²

- •Lowest two Q² bins are divided into two bins of x
- •Two studies:
 - Means of each variable in each bin
 - Differential distributions of each variable in each bin

Event Selection

Standard DIS Selection Cuts:

- $Q^2_{EL} \ge 80$ (100) GeV²
- y_{JB} > 0.04
- y_{el} < 0.95
- Vertex with |z| < 40 cm
- 38 < E-p_Z < 65 GeV
- Good positron
 - Sinistra Probability > 0.9
 - E_e[,]> 10 GeV
- |η|<1.75 (2.2)
 - Temporary cut for good acceptance

Specialized Cuts:

- Analysis done in the Breit Frame
- Current Region Multiplicity ≥ 2
- At least 2 Jets in Breit Frame
 - E_{1,T} > 6 GeV
 - E_{2,T} > 5 GeV
 - $P_{T,i,Lab} \ge 2 \text{ GeV}$

Complementary Analyses -Means

Agreement for event Thrust_T means between analyses

Agreement for event shape means between '96-'97 and '98-'00

Power Correction

Extract α_s , α_0 :

- Value of fit ~ α_s , α_0 according to power correction equation
- Power correction can be calculated for all i.r. safe event shapes

Similar results between two analyses

- Results are consistent between '96-'97 and '98-'00
- Similar difficulties with variables dependent on γ^{*} axis

Comparison of Differential Distributions

5120 < Q² < 10240 and 0.04 < x < 0.4

Differential Distributions

0.2

0.4

Theory:

- NLO can describe data by a simple SHIFT of NLO towards data
- SHIFT can be calculated for all event shapes

Data well described for a limited region

•	'98-'00 Data
•	DISASTER++
Г	Region of Fit
Г	Shifted NLO

Differential Distribution SHIFTS

NLO shifts are proportional to a theoretically calculated constant value for each event shape

Reasonable agreement:

- normalized values of the shifts are grouped
- expected qdependence is observed

Event Shapes, A. Everett, U. Wisconsin

ZEUS Meeting, October 15, 2003 - 12

Attempt to fit each event shape separately

Energy Flow and Dijets

Instead of inclusive events, we use dijets in the current region of the Breit frame

Dijets:

- pQCD part of <F> calculation well understood
- Event topology well understood

New Event Shape Variables: K_{out}, Azimuthal Correlation

- Must define an event plane in the Breit frame
- Use Thrust to define the event plane
- Transverse Energy Flow

Progress for new variables.

New Methods to Study Hadronization

Leading Order MC hadronization correction to correct NLO.

Good agreement between '96-'97 published and current '98-'00 analyses

- Good agreement between Glasgow and Wisconsin analyses
- Differential Distributions are still not very promising

New event shapes are well described by the LO MC

Plans:

- More work on differential distributions
- Power corrections for the new event shapes
- New way of hadronization using LO MC

The following slides form an appendix to explain and define various event shape variables

Describes isotropy of energy flow

 Measure of the summed p²_T wrt.
Sphericity axis

$$S = \frac{3}{2} (\lambda_2 + \lambda_3)$$
$$S^{\alpha\beta} = \frac{\sum_{i} p_i^{\alpha} p_i^{\beta}}{\sum_{i} |\vec{p}_i|^2}$$
$$0 \le S \le 1$$

Aplanarity

Describes energy flow out of Sphericity evt. plane

Measure of p_T out of plane

Axis Independent Variables

Jet Mass

C Parameter

 $M^{2} = \frac{\left(\sum_{i} p^{\nu}\right)^{2}}{\left(2\sum_{i} E\right)^{2}}$

Linear collimation of hadronic system along a specified ("thrust") axis

T interpretation depends on choice of axis:

• Four Thrusts in DIS: T_z, T_M, T_m, T_C

Thrust and Sphericity

Broadening

Broadening of particles in transverse momentum wrt. thrust axis

 \Rightarrow **B**_T, **B**_W

$$B_k = \frac{\sum_i \left| \vec{p}_i \times \vec{n}_T \right|}{\sum_i \left| \vec{p}_i \right|}$$
$$B_T = B_1 + B_2$$
$$B_W = \max\{B_1, B_2\}$$

Out-of-plane Momentum

Energy flow out of event plane defined by proton direction and thrust major axis

$$K_{out} = \sum_{h} \left| p_{h}^{out} \right|$$

Azimuthal Correlation

Momentum weighted function of the azimuthal angle around the photonproton axis in the Breit frame between pairs of hadrons.

$$H(\chi) = \sum_{h,h'} \frac{p_{th} p_{th'}}{Q^2} \delta(\chi - \chi_{hh'})$$
$$\phi_{hh'} = \phi_h - \phi_{h'} - \pi < \phi_{hh'} < \pi$$
$$\chi_{hh'} = \pi - |\phi_{hh'}| \quad 0 \le \chi \le \pi$$

