Dijets at HERA: A QCD Story

Douglas Chapin
ZEUS Collaboration
University of Wisconsin-Madison

OUTLINE

HERA and ZEUS
Deep Inelastic Scattering and pQCD
Structure functions and the gluon
Dijets and pQCD
Dijet cross section measurement
The Future

HERA Delivered Luminosity

- e^{-}in $92-94,98,99: 27 \mathrm{pb}^{-1}$
- e^{+}in 95-97,99-00: 166pb-1
- 820 GeV protons through 1997

920 GeV since 1998

- ZEUS integrated lumi since 1992:
$\sim 130 \mathrm{pb}^{-1}$ (70\% of delivered)
- Currently undergoing a luminosity upgrade
- ready Summer 2001
- expect $1 \mathrm{fb}^{-1}$ by end of 2005
- 5 times current integrated total

Deep Inelastic Scattering

electron-proton scattering

Can also exchange $\mathrm{Z}, \mathrm{W}^{ \pm}$
Any lepton - hadron pair
$e-p$ (HERA)
e-A (SLAC)
$v-F e(C C F R)$
$\mu-A(E 665, N M C, B C D M S)$

DIS kinematic variables

$$
Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2} \quad \begin{gathered}
\text { Momentum } \\
\text { transfer }
\end{gathered}
$$

Fraction of the proton's momentum that participates in the hard scatter

Fraction of the electron's energy available in the proton's rest frame
$Q^{2}=s x y$
$\mathrm{s}=$ center of mass energy squared

HERA Kinematic Range

$$
Q^{2}=s x y
$$

Extended kinematic region available at HERA

Additional ZEUS components provide overlap with fixed target experiments
$0.45 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<20000 \mathrm{GeV}^{2}$

$$
10^{-6}<x<0.9
$$

H1 and ZEUS: DESY e-p HERMES: DESY e-A
E665: Fermilab $\mu-A$ BCDMS: CERN $\mu-A$ CCFR: Fermilab v-A
SLAC: many experiments e-A
NMC: CERN $\mu-A$

The ZEUS Detector at HERA

ZEUS Calorimeter

ZEUS Central Tracking Detector

View along beamline

Vertex Resolution
longitudinal (z): 4mm
transverse ($\mathrm{x}-\mathrm{y}$): 1 mm

Drift Chamber inside1.43T solenoid

Side view

Micro Vertex Detector to be installed next year

ZEUS Trigger

$\frac{\text { Challenge }}{10 \mathrm{MHz} \text { bunch crossing rate }}$
Extract 10 Hz Physics from 100 kHz background

Beam Gas
 Background Rejection

"Distance" between FCAL and RCAL is $\sim 10 \mathrm{~ns}$

Background Reduction: E-p ${ }_{z}$

$$
E-p_{z}=\sum_{i} E_{i}\left(1-\cos \vartheta_{i}\right)
$$

Sum runs over calorimeter cells

In a given frame, $\mathrm{E}-\mathrm{p}_{\mathrm{z}}$ is conserved

Before: $E-p_{z}=2 E_{\text {beam }}=55 \mathrm{GeV}$
Unless energy escapes down rear beam pipe, $\mathrm{E}-\mathrm{p}_{\mathrm{z}}$ after collision will
be near $2 \mathrm{E}_{\text {beam }}$ for interesting physics at the nominal interaction point

Deep Inelastic Scattering Event

DIS Cross Section

$$
\begin{gathered}
Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2} \\
x=\frac{Q^{2}}{2 p \cdot q} \quad y=\frac{p \cdot q}{p \cdot k} \quad Q^{2}=s x y
\end{gathered}
$$

$\begin{gathered}\text { Neutral Current: } \\ e^{ \pm} p \rightarrow e^{ \pm}+X\end{gathered} \quad \frac{d^{2} \sigma}{d x d Q^{2}}=\frac{2 \pi \alpha_{e m}}{x Q^{4}}\left[Y_{+} F_{2} \mp Y_{-} x F_{3}-y^{2} F_{L}\right] \quad Y_{ \pm}=1 \pm(1-y)^{2}$
F_{2} due to photon exchange with spin $1 / 2$ partons.
Related to quark densities $\mathrm{f}_{\mathrm{i}} \quad F_{2}(x)=\sum_{i} x Q_{i}^{2} f_{i}(x)$
F_{3} contribution due to Z exchange.
F_{L} contribution due to exchange of longitudinally polarized photons.

The Role of the Gluon

HERA discovery!
Strong rise of F_{2} at low x !

Splitting Functions from QCD

Gluon-driven increase of small x quarks is reflected in F_{2}

Scaling Violation and the Gluon

Scaling Violation

- F_{2} has a Q^{2} dependence due to gluon

$$
F_{2}(x) \rightarrow F_{2}\left(x, Q^{2}\right)
$$

-More significant at smaller x
F_{2} scaling violation \rightarrow gluon density -QCD evolution equations (Altarelli-Parisi) predict

$$
g\left(x, Q^{2}\right) \sim d F_{2}\left(x, Q^{2}\right) / d \log Q^{2}
$$

Parton Density Functions

Several different groups make global fits to DIS structure function data

- Parton Density Functions (PDFs)
- CTEQ, MRST,GRV,MBFIT
- needed by Tevatron and LHC

Gluon density extracted indirectly from scaling violation of F_{2}

- $g\left(x, Q^{2}\right) \sim d F_{2}\left(x, Q^{2}\right) / d \log Q^{2}$
- relatively large uncertainty on $g\left(x, Q^{2}\right)$
- A measurement with direct sensitivity to the gluon would be nice...

Dijet Production at HERA

DIS variables still apply

$$
\begin{aligned}
& Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2} \\
& y=\frac{p \cdot q}{p \cdot k} \quad x=\frac{Q^{2}}{2 p \cdot q}
\end{aligned}
$$

But now the momentum fraction of the incident parton (at LO) is

$$
\xi=x\left(1+\frac{M_{i j}^{2}}{Q^{2}}\right) \quad \mathrm{M}_{\mathrm{ij}}=\text { dijet mass }
$$

Dijet Event at ZEUS

Leading Order Monte Carlo Models

Programs

- LEPTO (MEPS+LUND)
- ARIADNE (CDM+LUND)
- HERWIG (MEPS+CLUSTER)

LO models used only for

- detector corrections
- hadronization corrections

NLO Calculations

Programs for DIS

- DISENT (subtraction method)
- DISASTER++ (subtraction method)
- MEPJET (phase space splicing method)
- JETVIP (phase space splicing method)

Issues

NLO Matrix Elements

- Three parton final states
- Large improvement over LO
- Soft/colinear and virtual loop divergences cancel
-Renormalization scale uncertainty (next slide)

-Hadronization effects (discussed later)
- non-perturbative: Partons -> Hadrons
- NLO calculations provide only 3-parton final states

Renormalization Scale

Renormalization scale (μ_{r}): Scale at which the strong coupling constant is evaluated

Factorization scale (μ_{f}): Scale at which the parton densities are evaluated

$\mathrm{d} \sigma / \mathrm{d} \mu_{\mathrm{r}}=0$ only for all-order perturbation Otherwise uncertainty in final cross section
-Uncertainty due to factorization scale is typically small (<5\% for this analysis)
-Uncertainty due to renormalization scale can be large ($>50 \%$) even at NLO

Example: Inclusive DIS Cross Section

Renormalization Scale Choices and Resulting Uncertainty

Choices for renormalization scale

- Typically choose the hardest scale available
- In single jet DIS: $\mu_{\mathrm{r}}^{2}=\mathrm{Q}^{2}$
- In dijet events, jet $E_{T}{ }^{2}$ can be larger than Q^{2}
- $\mu_{\mathrm{r}}^{2}=\mathrm{E}_{\mathrm{T}}^{2} / 4$ also reasonable
- $E_{T}=$ sum of jet $E_{t} s$
- $E_{T}{ }^{2} / 4 \sim$ square of mean dijet E_{T}

Estimate of renormalization scale uncertainty

- vary μ_{r} by factor of 2 (conventional)

NLO Calculation of Inclusive Dijet Cross Section

- mean jet $\mathrm{E}_{\mathrm{T}}>6.5 \mathrm{GeV}$
- $Q^{2}>10 \mathrm{GeV}^{2}$

Uncertainty due to renormalization scale can be large

- at least 40\%

Dijets -> Gluon Density

BGF process dominates at
low Q^{2}

BGF contribution directly proportional to the gluon density

$$
\sigma^{2+1} \sim \hat{\sigma}_{B G F} \cdot g\left(x, Q^{2}\right)
$$

in proton
Opportunity for a direct extraction of the gluon density. dens

Use matrix elements \longleftarrow from pQCD Probe gluon

$$
\xi=x\left(1+\frac{M_{j j}^{2}}{Q^{2}}\right)
$$

Momentum fraction of incident parton

At high Q^{2} sensitive to high x quarks

Previous ZEUS Dijet Results

LO calculation fails to describe shape and normalization of the data

ZEUS 1994 Dijet Preliminary Result
-Lower Q ${ }^{2}$ region 7<Q ${ }^{2}<100$

- maximum sensitivity to gluon
-Compared dijet cross section with NLO pQCD calculations
- Normalization difference of $\sim 40 \%$
- Shape of distributions accurately described

Analysis: Data Selection

HERA 1996 and 1997 running period

- 820 GeV protons -- 27.5 GeV positrons ZEUS data sample
- integrated luminosity: $38.4 \mathrm{pb}^{-1}$

Cross Section Definition
$10<\mathrm{Q}^{2}<10000 \mathrm{GeV}^{2}$

- acceptance understood above $10 \mathrm{GeV}^{2}$
- statistics limited above $10000 \mathrm{GeV}^{2}$

$y>0.04$ and $E_{e}>10 \mathrm{GeV}$
- detector efficiency and background reduction

Jets defined by inclusive-mode k_{T}-algorithm run in Breit Frame (next slides)

- Lab Frame: Jet $\mathrm{E}_{\mathrm{T}}>5 \mathrm{GeV},|\eta|<2.0$
- well understood acceptance region
- Breit Frame: Jet $\mathrm{E}_{\mathrm{T}, 1}>8 \mathrm{GeV}$ and Jet $\mathrm{E}_{\mathrm{T}, 2}>5 \mathrm{GeV}$
- asymmetric cut: controlled region of NLO calculations (explained later)

Jet Algorithms

Cone algorithms

- conceptually simple
- theoretical/implementation issues
- seed requirements
- infrared unsafe at NNLO

Maximize E_{T} within a cone of radius R

Inclusive-mode k_{T}-algorithm (KTCLUS)

- No known theoretical or implementation issues
- infrared safe
- seeding not necessary
- Smaller hadronization corrections in some regions

$$
\underbrace{d_{\mathrm{i}}=E_{T, i}^{2}}_{\substack{\text { Combine } \mathrm{i} \text { and } \mathrm{j} \text { if } \mathrm{d}_{\mathrm{i} j} \text { is } \\ \text { smallest of }\left\{\mathrm{d}_{\mathrm{i}}, \mathrm{~d}_{\mathrm{ij}}\right\}}}
$$

Breit Frame

Breit Frame axis is γ-proton axis
Exchanged $\gamma 4$-mom has only a z-component
Experimentally: constructed from measured 4-mom of scattered positron

Example: single jet DIS (Quark Parton Model event)

- Struck quark rebounds with equal and opposite momentum
- "Brick Wall" Frame
- Jet has no E_{T}

QPM event in
Breit Frame

Example: Dijet in DIS (QCDC or BGF)

- Jets have balanced E_{T} in breit frame

Comparison with LO Models

$\bar{E}_{T}=\frac{\text { jet } E_{T, I}^{B R E}+\text { jet } E_{T, 2}^{B R E}}{2}$

Inclusive Dijet Cross Section $10<Q^{2}<10000 \mathrm{GeV}^{2}$ $y>0.04, E_{e}>10 \mathrm{GeV}$ asymmetric jet E_{T} cut: $5 \mathrm{Gev}, 8 \mathrm{GeV}$

$$
-2.0<\text { jet } \eta<2.0
$$

-Data corrected for detector effects to hadron level

LO MC models fail to describe normalization

- Attempts to model higher order effects inadequate
- parton showers and CDM
- Large renormalization scale dependence

Comparing with NLO Calculations

- NLO calculations MEPJET and DISENT behave unphysically near the symmetric cut
- Reduced phase space for 3-parton final states that cancel negative-weight 2-parton final states
- Asymmetric jet cut of $\mathrm{E}_{\mathrm{T}, 1}>8 \mathrm{GeV}, \mathrm{E}_{\mathrm{T}, 2}>5 \mathrm{GeV}$ avoids sensitive region
- Large difference due to choice of renormalizatoin scale
- 40% normalization difference between NLO and ZEUS 1994 results understood!

Hadronization Effects

- NLO calculations do not include hadronization models - Use LO MC models to estimate non-perturbative hadronization effects
-Apply corrections from LO MC model esitmates to NLO calculations
- Ariadne used by default
-Hadronization corrections vary between 10\% and 30\%
-Estimates from Ariande and Lepto LO models vary typically by 5%, and no more than 10%
- additional theoretical uncertainty

Inclusive Dijet Cross Section vs $\mathbf{Q}^{\mathbf{2}}$

Asymmetric jet cut: $5,8 \mathrm{GeV} ; \mathrm{E}_{\mathrm{e}}>10, \mathrm{y}>0.04$

NLO Comparison

Success for pQCD!
Within NLO scale uncertainty estimate, NLO calculations reproduce measured cross section to within 10\%

- over three orders of magnitude in Q ${ }^{2}$
- over 2 orders of magnitude in value

For $Q^{2}<\sim 200$ measurement uncertainties less than renormalization scale uncertainty

- Need improved theoretical calculations with reduced renormalization scale dependence

Inclusive Dijet Cross Section vs ξ

Asymmetric jet cut: $5,8 \mathrm{GeV} ; \mathrm{E}_{\mathrm{e}}>10, \mathrm{y}>0.04$

NLO Comparison

NLO calculation shows dependence on input parton densities

- MBFIT has larger gluon

All NLO calculations are consistent with the data

- within all uncertainties
- regardless of input parton densities

Gluon densities in current PDFs

- consistent with the data and pQCD calculations
$\xi=x\left(1+\frac{M_{j i}^{2}}{Q^{2}}\right)$

Inclusive Dijet Cross Section vs ξ and \mathbf{Q}^{2}

NLO Comparison

Gluon density sensitivity of NLO calculation seen for $Q^{2}<\sim 200 \mathrm{GeV}^{2}$

NLO calculations converge at higher Q ${ }^{2}$

- quark densities well constrained
- smaller renormalization scale uncertainty

For $Q^{2}<\sim 200$ renormalization scale uncertainty larger than measurement uncertainty

Future improved pQCD calculations will enable use of the dijet cross section measurement for $Q^{2}<\sim 200$

- used in global fits
- or used to extract gluon density directly

Conclusions on Dijet Cross Section and pQCD

Inclusive dijet cross section measured for $10<Q^{2}<10000 \mathrm{GeV}^{2}$ and asymmetric jet E_{T} cuts of 5 and 8 GeV

NLO pQCD reproduces the dijet cross section within 10% over three orders of magnitude in Q^{2} and over 2 orders of magnitude in value. Triumph for pQCD!

Universality of gluon density: Gluon extracted from scaling violation of F_{2} can be used to describe the dijet cross section.

NLO calculations exhibit large renormalization scale dependence for $\mathrm{Q}^{2}<\sim 200 \mathrm{GeV}^{2}$; exactly where sensitivity to gluon density is largest.

- Extraction of gluon density using dijet cross section possible with future improved calculations

