

Dijets at HERA: A QCD Story

Douglas Chapin ZEUS Collaboration University of Wisconsin–Madison

OUTLINE

HERA and ZEUS Deep Inelastic Scattering and pQCD Structure functions and the gluon Dijets and pQCD Dijet cross section measurement The Future

The HERA Collider at DESY

√s≈320 GeV equivalent to a 50TeV fixed target beam

Instantaneous luminosity ~1.8x10³¹cm⁻²s⁻¹

FUS Collider Detector 6.4km circumference 920 (820) GeV protons 27.5 GeV electrons or positrons 220 bunches 96ns crossing interval

HERA Delivered Luminosity

- e⁻ in 92–94,98,99: 27pb⁻¹
- e⁺ in 95–97,99–00: 166pb⁻¹
- 820GeV protons through 1997
 920 GeV since 1998
- ZEUS integrated lumi since 1992: ~130pb⁻¹ (70% of delivered)
- Currently undergoing a luminosity upgrade
 - ready Summer 2001
 - expect 1fb⁻¹ by end of 2005
 - 5 times current integrated total

Deep Inelastic Scattering

electron-proton scattering

Can also exchange Z,W[±]

Any lepton – hadron pair e–p (HERA) e–A (SLAC) υ–Fe (CCFR) μ–A (E665,NMC,BCDMS)

$$y = \frac{p \cdot q}{p \cdot k}$$

 $Q^2 = sxy$

Fraction of the electron's energy available in the proton's rest frame

s=center of mass energy squared

DIS kinematic variables

 $Q^2 = -q^2 = -(k-k')^2$ Momentum transfer

$$x = \frac{Q^2}{2p \cdot q}$$

Fraction of the proton's momentum that participates in the hard scatter

HERA Kinematic Range

$$Q^2 = sxy$$

Extended kinematic region available at HERA

Additional ZEUS components provide overlap with fixed target experiments

 $0.45 \text{ GeV}^2 < Q^2 < 20000 \text{ GeV}^2$ $10^{-6} < x < 0.9$

H1 and ZEUS: DESY e–p HERMES: DESY e–A E665: Fermilab μ–A BCDMS: CERN μ–A CCFR: Fermilab v–A SLAC: many experiments e–A NMC: CERN μ–A

The ZEUS Detector at HERA

ZEUS Calorimeter

ZEUS Central Tracking Detector

View along beamline

Drift Chamber inside1.43T solenoid

<u>Vertex Resolution</u> longitudinal (z): 4mm transverse (x–y): 1mm

Micro Vertex Detector to be installed next year

ZEUS Trigger

Beam Gas Background Rejection

Background Reduction: E-p_z

$$E - p_z = \sum_i E_i (1 - \cos \vartheta_i)$$

Sum runs over calorimeter cells

In a given frame, $E-p_z$ is conserved

Unless energy escapes down rear beam pipe, $E-p_z$ after collision will be near $2E_{beam}$ for interesting physics at the nominal interaction point

Deep Inelastic Scattering Event

D.Chapin \ University of Wisconsin

DIS Cross Section

Neutral Current:
$$\frac{d^2 \sigma}{dx dQ^2} = \frac{2 \pi \alpha_{em}}{xQ^4} [Y_+ F_2 \mp Y_- xF_3 - y^2 F_L] \qquad Y_{\pm} = 1 \pm (1-y)^2$$

 F_2 due to photon exchange with spin ½ partons. Related to quark densities f_i $F_2(x) = \sum_i x Q_i^2 f_i(x)$

 F_3 contribution due to Z exchange.

F₁ contribution due to exchange of longitudinally polarized photons.

The Role of the Gluon

HERA discovery! Strong rise of F_2 at low x !

Splitting Functions from QCD

Gluon–driven increase of small x quarks is reflected in F_2

Scaling Violation and the Gluon

Scaling Violation
•F₂ has a Q² dependence due to gluon

$$F_2(x) \rightarrow F_2(x,Q^2)$$

•More significant at smaller x

F₂ scaling violation -> gluon density •QCD evolution equations (Altarelli-Parisi) predict $g(x,Q^2) \sim dF_2(x,Q^2)/dlogQ^2$

Parton Density Functions

Dijet Production at HERA

DIS variables still apply

 $y = \frac{p \cdot q}{p \cdot k} \quad x = \frac{Q^2}{2p \cdot q}$

But now the momentum fraction of the incident parton (at LO) is

$$\xi = x(1 + \frac{M_{jj}^2}{Q^2})$$
 M_{jj} =dijet mass

Dijet Event at ZEUS

Leading Order Monte Carlo Models

Programs

- <u>LEPTO</u> (MEPS+LUND)
- ARIADNE (CDM+LUND)
- HERWIG (MEPS+CLUSTER)

- LO models used only for
 - detector corrections
 - hadronization corrections

NLO Calculations

Programs for DIS

- **<u>DISENT</u>** (subtraction method)
- DISASTER++ (subtraction method)
- <u>MEPJET</u> (phase space splicing method)
- JETVIP (phase space splicing method)

<u>Issues</u>

Renormalization scale uncertainty (next slide)Hadronization effects (discussed later)

- non-perturbative: Partons -> Hadrons
- NLO calculations provide only 3-parton final states

Renormalization Scale

<u>Renormalization scale</u> (μ_r) : Scale at which the strong coupling constant is evaluated

Factorization scale (μ_{f}): Scale at

which the parton densities are evaluated

 $d\sigma/d\mu_r=0$ only for all–order perturbation Otherwise uncertainty in final cross section

- •Uncertainty due to factorization scale is typically small (<5% for this analysis)
- •Uncertainty due to renormalization scale can be large (>50%) even at NLO

Example: Inclusive DIS Cross Section

Renormalization Scale Choices and Resulting Uncertainty

Choices for renormalization scale

- Typically choose the hardest scale available
- In single jet DIS: $\mu_r^2 = Q^2$
- In dijet events, jet $E_{\tau}^{\ 2}$ can be larger than Q^2
 - $\mu_r^2 = E_T^2/4$ also reasonable
 - E_T =sum of jet E_ts
 - $E_T^2/4$ ~ square of mean dijet E_T

Estimate of renormalization scale uncertainty

 vary μ_r by factor of 2 (conventional)

Dijets -> Gluon Density

D.Chapin \ University of Wisconsin

Previous ZEUS Dijet Results

ZEUS 1994 Dijet Preliminary Result

- •Lower Q² region 7<Q²<100
 - maximum sensitivity to gluon
- Compared dijet cross section with NLO pQCD calculations
 - Normalization difference of ~40%
 - Shape of distributions accurately described

Result inspired new set of goals

- •Measure cross section over large Q² range
- •Understand normalization discrepancy with NLO calculations
- •Quantify measurement and theoretical uncertainties

Analysis: Data Selection

HERA 1996 and 1997 running period

• 820 GeV protons -- 27.5 GeV positrons

ZEUS data sample

integrated luminosity: 38.4 pb⁻¹

Cross Section Definition

10 < Q² < 10000 GeV²

- acceptance understood above 10 GeV²
- statistics limited above 10000 GeV²
- y > 0.04 and E_e > 10 GeV
 - detector efficiency and background reduction

Jets defined by inclusive–mode k_{τ} –algorithm run in Breit Frame (next slides)

- Lab Frame: Jet $E_{T} > 5$ GeV, $|\eta| < 2.0$
 - well understood acceptance region
- Breit Frame: Jet $E_{T,1} > 8$ GeV and Jet $E_{T,2} > 5$ GeV
 - asymmetric cut: controlled region of NLO calculations (explained later)

Jet Algorithms

Cone algorithms

- conceptually simple
- theoretical/implementation issues
 - seed requirements
 - infrared unsafe at NNLO

Maximize E_{τ} within a cone of radius R

Inclusive-mode k_r-algorithm (KTCLUS)

- No known theoretical or implementation issues
 - infrared safe
 - seeding not necessary
- Smaller hadronization corrections in some regions

$$d_{i} = E_{T,i}^{2}$$

$$d_{i,j} = min\{E_{T,i}^{2}, E_{T,j}^{2}\}(\Delta \eta^{2} + \Delta \phi^{2})/R^{2}$$
i
Combine i and j if d_{ij} is
smallest of {d_i,d_{ij}}

Breit Frame

Breit Frame axis is γ -proton axis Exchanged γ 4-mom has only a z-component Experimentally: constructed from measured 4-mom of scattered positron

Comparison with LO Models

 $\label{eq:linear} \begin{array}{l} \mbox{Inclusive Dijet Cross Section} \\ 10 < Q^2 < 10000 \ GeV^2 \\ y > 0.04, \ E_e > 10 \ GeV \\ \mbox{asymmetric jet } E_{\tau} \ cut: \ 5Gev, \ 8GeV \\ -2.0 < \ jet \ \eta < 2.0 \end{array}$

•Data corrected for detector effects to hadron level

LO MC models fail to describe normalization

- Attempts to model higher order effects inadequate
 - parton showers and CDM
- Large renormalization scale dependence

Comparing with NLO Calculations

- NLO calculations MEPJET and DISENT behave unphysically near the symmetric cut
 - Reduced phase space for 3-parton final states that cancel negative-weight 2-parton final states
 - Asymmetric jet cut of $E_{T,1}$ >8GeV, $E_{T,2}$ >5GeV avoids sensitive region
- Large difference due to choice of renormalizatoin scale
- 40% normalization difference between NLO and ZEUS 1994 results understood!

Hadronization Effects

- •NLO calculations do not include hadronization models
- •Use LO MC models to estimate non-perturbative hadronization effects
- •Apply corrections from LO MC model esitmates to NLO calculations
 - Ariadne used by default
- •Hadronization corrections vary between 10% and 30%
- •Estimates from Ariande and Lepto LO models vary typically by 5%, and no more than 10%
 - additional theoretical uncertainty

Inclusive Dijet Cross Section vs Q²

NLO Comparison

Success for pQCD!

Within NLO scale uncertainty estimate, NLO calculations reproduce measured cross section to within 10%

- over three orders of magnitude in Q²
- over 2 orders of magnitude in value

For Q²<~200 measurement uncertainties less than renormalization scale uncertainty

 Need improved theoretical calculations with reduced renormalization scale dependence

Inclusive Dijet Cross Section vs $\boldsymbol{\xi}$

NLO Comparison

NLO calculation shows dependence on input parton densities

• MBFIT has larger gluon

All NLO calculations are consistent with the data

- within all uncertainties
- regardless of input parton densities

Gluon densities in current PDFs

 consistent with the data and pQCD calculations

 $\xi = x(1 +$

Inclusive Dijet Cross Section vs ξ and Q²

NLO Comparison

Gluon density sensitivity of NLO calculation seen for Q²<~200GeV²

NLO calculations converge at higher Q²

- quark densities well constrained
- smaller renormalization scale uncertainty

For Q²<~200 renormalization scale uncertainty larger than measurement uncertainty

Future improved pQCD calculations will enable use of the dijet cross section measurement for Q²<~200

- used in global fits
- or used to extract gluon density directly

Conclusions on Dijet Cross Section and pQCD

Inclusive dijet cross section measured for 10<Q²<10000 GeV² and asymmetric jet E_{τ} cuts of 5 and 8 GeV

NLO pQCD reproduces the dijet cross section within 10% over three orders of magnitude in Q² and over 2 orders of magnitude in value. Triumph for pQCD!

Universality of gluon density: Gluon extracted from scaling violation of F_2 can be used to describe the dijet cross section.

NLO calculations exhibit large renormalization scale dependence for $Q^2 < 200 \text{GeV}^2$; exactly where sensitivity to gluon density is largest.

 Extraction of gluon density using dijet cross section possible with future improved calculations