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HERA

2

! electron proton collider
" 820 GeV protons

" 27 GeV electrons or positrons

" center of mass energy = 300 GeV

" equivalent to a 51 TeV fixed target

" 220 bunches, 96 ns crossing time

" L = 1.5 x 1031 cm-2s-1 (1.0 x 1031 this year)

" e+- current 58mA (40mA) p current 160mA (70mA)
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Deep Inelastic Scattering
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carried by the struck quark
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transferred to the struck quark in the 
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the scale at which the 
proton is probed is 
proportional to 1/Q
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α
em

 is the electomagnetic coupling constant

DIS Cross Section

The structure function F
2
(x,Q2) gives the interaction 

between transversely polarized photons and spin 1/2 

partons.  F
2
 depends on the quark distributions of the

proton.

The differential cross section for photon exchange is:

The structure function F
L
(x,Q2) gives the 

interaction due to longitudinally polarized photons 

that interact with the proton.  The partons that 

interact have transverse momentum.
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Scaling Violation
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! Naive parton model
" No parton - parton interactions

" Partons have no transverse momentum

" F
2
 is only a function of x

" Bjorken Scaling

P

small x
Parton-Parton interactions, 

mediated by the gluons, 

generate parton transverse 

momentum.

But scaling is violated...

The stucture functions gain a 
Q2 dependence.
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Parton Distribution Functions
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The distribution functions are not calculated by 
theory. They must be determined from experiment.
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xf
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average number of partons 
of type i with momentum 
fraction between x and dx

xf
i
(x) vs x

Q2 = 25 GeV2



DiJet Cross Sections in DIS 

Extracting Gluon Density From F
2
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∫∑ ∫

QCD predicts:      (Altarelli-Parisi)
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related to the probability of g->qq

! F
2
 measurement
" measure experimentally the differential cross 

section

" estimate F
L
 from QCD

F
L
 depends on the 
gluon density.

α
s
 is the strong coupling constant
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Dijet Process
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M
jj
2 is the invariant mass 

squared of the dijet system

Boson Gluon Fusion

q

q

p remnant
(beampipe)

e+

e+

xP

(jet)

(jet)

-Q2

Rate depends directly on the gluon density in the proton.

At what scale is the proton probed in this process?

for M
jj
2 >> Q2, then use p

T
 of the jets

for M
jj
2 ≈ Q2, then use Q
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Kinematic Range
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Background Process

1 0

QCD Compton

e+

p

e+

q

g

remnant 
(beampipe)

jet

jet

For low x this process is dominated by the Boson 
Gluon Fusion process. 
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Getting at the Gluon via Dijets
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Leading Order
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µ2 is the scale at which the proton is probed. It is 
also called the factorization scale.

σ
q
 and σ

g
 are the partonic cross sections for processes 

initiated by the quarks and gluons respectively.  They must 
be calculated by theory.

f
q
(x,µ2) and g(x,µ2) are the densities of the quarks and 

gluons respectively. f
q
(x,µ2) from other experiments must 

be used.

NLO calculations reduce 
dependency on the 
factorization scale.
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Selecting Scale

1 2

!  renormalization scale
" scale at which the running coupling constant α

s
 is 

evaluated

! factorization scale
" scale at which the parton densities are evaluated

α µs r( )2

f xi f( , )µ2

µ µ µf r
2 2 2= =

Q p kt t
2 2 2, , ,???

dijet choices:

µ ξ2 2= Q

µ ξ2 2= pt

µ ξ2 2= kt
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Other Concerns
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e+

q

q
p

remnant

e+

g

! final state recombination

" Jet definitions can be sensitive to the 
recombination scheme used.

" A large effect on the cross section is possible.

! calulated cross section and detector 
measured cross section comparison
" fragmentation of partons into hadrons

" detector acceptances
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Monte Carlo Generators

! generate events at parton level

" inputs: parton distributions and scale

! kinematic cuts

! jet finding

Two NLO programs exist:  MEPJET and DISENT

renormalization

factorization

final state recombination

They differ in the methods of handling:
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Previous Dijet Gluon Results

1 5

LO

dσ
/d

lo
g

 x
 [

p
b

]

log x

NLO

xg x xo( , )µ λ2 ∝

preliminary
7GeV2 < Q2 < 100GeV2

scale used: Q2

MC used: LEPTO

scale used: Q2

0

2

4

6

8

10

12

14

10
-3

10
-2

10
-1

x

�Q��� ��GeV�

x

xg x( )

MC used: MEPJET

1993 H1 data

results compatible 
with previous F

2
 

measurements

1994 ZEUS data

measure λ 



DiJet Cross Sections in DIS 

Physics Motivation
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proton structure

! 50% of the proton�s momentum is 

carried by gluons

! the F
2
 method is an indirect 

measurement of the gluon density

! the dijet cross section is directly 

proportional to the gluon density of 

the proton

! dijet method is sensitive in an 

extended region of x-Q2



ZEUS
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Calorimeter

! depleted uranium and scintillator
" 99.7% solid angle coverage

" electron res: 18%/√E  hadronic res: 35%/√E

BCAL

RCALFCAL

η = -0.75η = 1.1

θ = 0
η = 4.0 η = -3.5

η θ= − ln[tan( )]
2
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Central Tracking Detector

! drift chamber
! 1.43T solenoid
! vertex resolution

" 1mm transverse 

" 4mm in z

1 9

pe

transverse view

side view



DIS DIJET EVENT

e p
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proton remnant



DIS DIJET EVENT Q2=100 GeV2
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Trigger

! First level
" dedicated hardware
" no deadtime
" global and regional energy sums
" isolated electron and muon recognition
" tracking information

! Second level
" timing cuts

" e-p
z

" simple physics filters
" electron finding
" additional tracking information

! Third level
" full event information available
" advanced physics filters
" jet and electron finding

2 2

107

FLT

400 Hz

SLT

40 Hz

TLT

14 Hz

mass storage

100kBytes/event

105 Hz background rate
10 Hz physics rate

crossings/sec
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Timing and E-Pz

2 3

Initially:
EP - Epz + Ee -(-Eez) = 2Ee

E P Ez
cells

− = −∑ ( cos )1 θ

calorimeter timing 
resolution < 1ns

z

FCAL RCAL

tf=0ns tr=0ns

z

FCAL RCAL

tf=0ns tr=-10ns

measured value is 
conserved if no energy 
lost down rear beam pipe

pe+

θ

t
f
-t

r
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Analysis Plan

! apply cuts to detector data to select 
sample of dijet events
" 1996: 10.8 pb-1 integrated luminosity

" a sample of 50k events are expected after cuts

! measure cross section from data
" bin events in x

" make corrections due to detector acceptances

! generate Monte Carlo event samples 
and apply equivalent cuts 

! compare MC with data

2 4
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Cone Jet Identification 
Alogorithm
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First finds largest E
t
 cluster.  Then it sums all 

clusters within

R = + =( ) ( )∆ ∆η φ2 2 1

Good in ZEUS central region, but overefficient in 
the ZEUS forward region.  Proton remnant can
be misidentified as a jet.

Lorentz invariant

Relatively independent of the MC recombination scheme

The resulting combination is called a jet and removed.

Stops when the Et of the summed clusters is less than a
specified value.

Currently used in the ZEUS third level trigger
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k Et⊥ = −2 12
,min ( cos )θ

The two clusters with minimum k⊥ are found.

Other Jet Identification 
Algorithms

First finds largest Et cluster

θ

E
t

E
t,min

vertex

Relatively independent of the MC recombination scheme

If k⊥  larger than a threshold value then the 
largest cluster is called a jet and removed.

Otherwise the two clusters are combined, and the 
process is repeated.

k
t

JADE
Similar to k

t
, except the relevant quantity is 

M EE= −2 1min ( cos )θ energy weighted combination

large recombination scheme dependence

Good in ZEUS forward region.
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Jet Properties

2 7

jet E
t

M
jj

Transverse Energy (GeV)

Energy (GeV)

jet E
t
 > 3GeV

2.5 < η < -3.0

cone algorithm
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Electron Identification

! electron signature is

" energy deposit in electromagnetic calorimeter cells

" energy contained in a few calorimeter cells

" electromagnetic / hadronic energy ratio

! ZEUS uses several finders

" use electron signature

" primary finder  is > 95% efficient for electron     
energy > 10 GeV

! improvements can be made using 
additional components-- Small Rear 
Tracking Detector and the RCAL 
Presampler

! Calorimeter First Level Trigger is 99% 
efficient for isolated electrons above  
5 GeV (RCAL)

2 8
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Variable Reconstruction - 
Electron Method
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General Dijet Cuts

! positron found with E > 10 GeV
" good efficiency

! x
bj
, Q2 and y determined from electron 

method
" best resolution

! E-P
z
 > 35 GeV

" selects DIS events

! y > 0.04
" uncertainty is large for small values of y

! vertex cut -40cm < z < 40cm
" removes beamgas

! 7 GeV2 < Q2 < 100 GeV2

" BGF dominant below 100GeV2

" above 7GeV2 positron fully contained in RCAL

! two jets found by cone algorithm
" E

t
 > 3.0 GeV

" -3.0 < η < 2.5

3 0
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Measurement Uncertainties

3 1

! event misidentification
" photoproduction events (scattered positron goes 

down rear beampipe)

" a particle in a jet may mimic a scattered 
positron

" observed E-Pz is not conserved

" ~ 1% effect

! y,x
bj
,Q2, and x resolution

" improvement over 1994 analysis

" SRTD and RCAL presampler

! jet energy resolution
" cross section uncertainty is very sensitive to  

energy scale uncertainty

" improvements using tracking information possible
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Conclusions

3 2

! measure deep inelastic scattering dijet 
cross section using 1996 ZEUS data 
sample
" improved statistics and resolution

" 1994: 3.2 pb-1

" 1995: 6.3 pb-1

" 1996: 10.8 pb-1

! determination of the gluon density of 
the proton
" dijet method: complementary measurement to the 

F
2
 method

" dijet cross section has direct dependence on gluon 
density

" extended kinematic range
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Luminosity Monitor

3 3

uses the known hard Bremsstrahlung 
(ep->epγ) cross section

tags the electron and photon in 
separate Pb/scintillator detectors

resolution=18%/√E ⊕1%

luminosity uncertainty < 2%

Luminosity = particles per second per 
unit area.

Number of events = integrated luminosity X 
cross section
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First Level Trigger
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Data

Data

 Local
Trigger

Global
Trigger

2.5 s

4.4s

FEC TSC
Cable

TEC
TAC

CAL
Processor

Decision logic

Resolve ambiguity

OR 64 subtriggers

Cancel Fast Clear
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Pseudorapidity
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MEPJET Plots
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jose range

Altarelli-Parisi
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wesley kinematic range

3 8



DiJet Cross Sections in DIS 

Double Angle Method
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Depends only on energy ratios so it is less 
sensitive to energy scale uncertainties.

better mean resolution over the entire x-Q2 plane
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flow of the hadronic system
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