Preliminary Examination

Measurement of DiJet Cross Sections in Deep Inelastic Scattering at ZEUS

Doug Chapin University of Wisconsin

20 December 1996

HERA

electron proton collider

- 820 GeV protons
- 27 GeV electrons or positrons
- center of mass energy = 300 GeV
 - equivalent to a 51 TeV fixed target
- 220 bunches, 96 ns crossing time
- L = 1.5 x 10³¹ cm⁻²s⁻¹ (1.0 x 10³¹ this year)
- e⁺⁻ current 58mA (40mA) p current 160mA (70mA)

Deep Inelastic Scattering

$$s = (P+k)^2 = 4E_p E_e = (300GeV)^2$$

$$Q^{2} = -q^{2} = -(k - k')^{2} = sxy$$

the scale at which the proton is probed is proportional to 1/Q

$$x_{bj} = \frac{Q^2}{2P \bullet q}$$

fraction of the proton's momentum carried by the struck quark

$$y = \frac{P \bullet q}{P \bullet k}$$

fraction of the electron's energy transferred to the struck quark in the proton's rest frame

DIS Cross Section

The differential cross section for photon exchange is:

$$\frac{d\sigma^2(ep \to eX)}{dxdy} = \frac{4\pi s\alpha_{_{em}}^2}{Q^4} \left[(1 - y + \frac{y^2}{2})F_2(x, Q^2) - \frac{y^2}{2}F_L(x, Q^2) \right]$$

 $\alpha_{_{em}}$ is the electomagnetic coupling constant

The structure function $F_2(x,Q^2)$ gives the interaction between transversely polarized photons and spin 1/2 partons. F_2 depends on the quark distributions of the proton.

The structure function $F_{L}(x,Q^{2})$ gives the interaction due to longitudinally polarized photons that interact with the proton. The partons that interact have transverse momentum.

Scaling Violation

Naive parton model

- No parton parton interactions
- Partons have no transverse momentum
- F₂ is only a function of x
- Bjorken Scaling

But scaling is violated...

Parton-Parton interactions, mediated by the gluons, generate parton transverse momentum.

The stucture functions gain a Q² dependence.

Parton Distribution Functions

$$f_i = f_i(x, Q^2)$$
$$_{i=q,\overline{q},g}$$

average number of partons of type i with momentum fraction between x and dx

The distribution functions are not calculated by theory. They must be determined from experiment.

DiJet Cross Sections in DIS

Extracting Gluon Density From F₂

$$\frac{d\sigma^2(ep \to eX)}{dxdy} = \frac{4\pi s\alpha_{_{em}}^2}{Q^4} \left[(1 - y + \frac{y^2}{2})F_2(x, Q^2) - \frac{y^2}{2}F_L(x, Q^2) \right]$$

$$F_2(x,Q^2) = x \sum_q Q_q^2 f_q(x,Q^2)$$

F_L depends on the gluon density.

- F₂ measurement
 - measure experimentally the differential cross section
 - estimate F_L from QCD

QCD predicts: (Altarelli-Parisi)

$$\frac{\partial F_2(x,Q^2)}{\partial \ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \left[2\sum_q Q_q^2 \int_x^1 \frac{dw}{w} \left(\frac{x}{w}\right) P_{qg}\left(\frac{x}{w}\right) wg(w,Q^2) + \int_x^1 \frac{dw}{w} \left(\frac{x}{w}\right) P_{qq}\left(\frac{x}{w}\right) F_2(w,Q^2) \right]$$

 $\boldsymbol{\alpha}_{_{\!\!\boldsymbol{s}}}$ is the strong coupling constant

related to the probability of g->qq

Dijet Process

Boson Gluon Fusion

$$x = x_{bj} \left(1 + \frac{M_{jj}^2}{Q^2}\right)$$

M_j² is the invariant mass squared of the dijet system

Rate depends directly on the gluon density in the proton.

At what scale is the proton probed in this process?

for
$$M_{jj}^2 >> Q^2$$
, then use p_T of the jets
for $M_{jj}^2 \approx Q^2$, then use Q

DiJet Cross Sections in DIS

Background Process

QCD Compton

For low x this process is dominated by the Boson Gluon Fusion process.

Getting at the Gluon via Dijets

Leading Order

$$\sigma_{dijet} \approx \sigma_{BGF} + \sigma_{QCDC}$$
$$\approx \hat{\sigma}_g(x)g(x,\mu^2) + \hat{\sigma}_q(x)f_q(x,\mu^2)$$

$$x = x_{bj} (1 + \frac{M_{jj}^2}{Q^2})$$

$$g(x,\mu^2) \approx \frac{\sigma_{dijet}(x) - \hat{\sigma}_q(x) f_q(x,\mu^2)}{\hat{\sigma}_g(x)}$$

 $f_q(x,\mu^2)$ and $g(x,\mu^2)$ are the densities of the quarks and gluons respectively. $f_q(x,\mu^2)$ from other experiments must be used.

 $\hat{\sigma}_{q}$ and $\hat{\sigma}_{g}$ are the partonic cross sections for processes initiated by the quarks and gluons respectively. They must be calculated by theory.

 μ^2 is the scale at which the proton is probed. It is also called the factorization scale.

NLO

$$\hat{\sigma}(x) \to \hat{\sigma}(x,\mu^2)$$

NLO calculations reduce dependency on the factorization scale.

Selecting Scale

DiJet Cross Sections in DIS

Other Concerns

final state recombination

- Jet definitions can be sensitive to the recombination scheme used.
- A large effect on the cross section is possible.

calulated cross section and detector measured cross section comparison

- fragmentation of partons into hadrons
- detector acceptances

Monte Carlo Generators

generate events at parton level

- inputs: parton distributions and scale
- kinematic cuts
- jet finding

Two NLO programs exist: MEPJET and DISENT

They differ in the methods of handling:

- renormalization
- factorization
- final state recombination

Previous Dijet Gluon Results

LO 14 xg(x)12 1993 H1 data $< Q^2 > = 30 \,\mathrm{GeV}^2$ 10 MC used: LEPTO 8 scale used: Q² 6 4 results compatible with previous F₂ 2 measurements 0 L 10 10^{-2} 10 Х **NLO** $7 \text{GeV}^2 < Q^2 < 100 \text{GeV}^2$ preliminary . 4500 = -0.00 $\lambda = -0.30$ 1994 ZEUS data 4000 d₀/dlog x [pb] -0.45 Ĺ $\lambda = -0.60$ 3500 $xg(x,\mu_o^2) \propto x^{\lambda}$ 3000 2500 2000 measure λ 1500 1000 MC used: MEPJET 500 0 scale used: Q² -2.5 -1.5 -2-3 log x

DiJet Cross Sections in DIS

Physics Motivation

proton structure

- 50% of the proton's momentum is carried by gluons
- the F₂ method is an indirect measurement of the gluon density
- the dijet cross section is directly proportional to the gluon density of the proton
- dijet method is sensitive in an extended region of x-Q²

ZEUS

DiJet Cross Sections in DIS

Central Tracking Detector

- 1mm transverse
- 4mm in z

transverse view

DIS DIJET EVENT

DIS DIJET EVENT Q²=100 GeV²

Timing and E-P_z

Analysis Plan

Cone Jet Identification Alogorithm

First finds largest E_t cluster. Then it sums all clusters within

$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 1$$

The resulting combination is called a jet and removed.

Stops when the Et of the summed clusters is less than a specified value.

Lorentz invariant

Good in ZEUS central region, but overefficient in the ZEUS forward region. Proton remnant can be misidentified as a jet.

Currently used in the ZEUS third level trigger

Relatively independent of the MC recombination scheme

Other Jet Identification Algorithms

The two clusters with minimum k, are found.

If k_{\perp} larger than a threshold value then the largest cluster is called a jet and removed.

Otherwise the two clusters are combined, and the process is repeated.

Good in ZEUS forward region.

Relatively independent of the MC recombination scheme

JADE

k₊

Similar to k, except the relevant quantity is

 $M = 2EE_{\min}(1 - \cos\theta)$ energy weighted combination

large recombination scheme dependence

Jet Properties

DiJet Cross Sections in DIS

Electron Identification

electron signature is

- energy deposit in electromagnetic calorimeter cells
- energy contained in a few calorimeter cells
- electromagnetic / hadronic energy ratio

ZEUS uses several finders

- use electron signature
- primary finder is > 95% efficient for electron energy > 10 GeV
- improvements can be made using additional components-- Small Rear Tracking Detector and the RCAL Presampler
- Calorimeter First Level Trigger is 99% efficient for isolated electrons above 5 GeV (RCAL)

Variable Reconstruction -Electron Method

$$y = 1 - \frac{E'_e}{2E_e} (1 - \cos\theta)$$

 θ = positron scattering angle

E_e' = scattered positron energy

$$Q^2 = 2E'_e E_e(1 + \cos\theta)$$

$$x_{bj} = \frac{E'_e(1 + \cos\theta)}{2yE_p}$$

$$x = x_{bj}(1 + \frac{M_{jj}^2}{Q^2}) \qquad \qquad M_{jj}^2 = 2E_{jet1}E_{jet2}(1 - \cos\theta_{jets})$$

best x resolution at low Q²

sensitive to miscalibrations

General Dijet Cuts

positron found with E > 10 GeV
 good efficiency
x _{bi} , Q ² and y determined from electron
method
 best resolution
E-P, > 35 GeV
 selects DIS events
● y > 0.04
 uncertainty is large for small values of y
vertex cut -40cm < z < 40cm
 removes beamgas
7 GeV ² < Q ² < 100 GeV ²
 BGF dominant below 100GeV²
 above 7GeV² positron fully contained in RCAL
two jets found by cone algorithm
◆ E _t > 3.0 GeV
 -3.0 < η < 2.5

Measurement Uncertainties

Conclusions

measure deep inelastic scattering dijet cross section using 1996 ZEUS data sample

- improved statistics and resolution
- ◆ 1994: 3.2 pb⁻¹
- ◆ 1995: 6.3 pb⁻¹
- ◆ 1996: 10.8 pb⁻¹

determination of the gluon density of the proton

- dijet method: complementary measurement to the F₂ method
- dijet cross section has direct dependence on gluon density
- extended kinematic range

First Level Trigger

DiJet Cross Sections in DIS

$$rapdity = \frac{1}{2} \ln \left[\frac{E + p_{||}}{E - p_{||}} \right]$$

psuedorapidity =
$$\eta = \frac{1}{2} \ln \left[\frac{|p| + p_{||}}{|p| - p_{||}} \right] = -\ln(\tan \frac{\theta}{2})$$

Lorentz boost along the beam direction

$$\eta' = \eta + f(v)$$

$\Delta\eta$ is unaffected

MEPJET Plots

DiJet Cross Sections in DIS

DiJet Cross Sections in DIS

wesley kinematic range

DiJet Cross Sections in DIS

Double Angle Method

$$\cos \gamma = \frac{(\sum p_x)^2 + (\sum p_y)^2 - (\sum (E - P_z))^2}{(\sum p_x)^2 + (\sum p_y)^2 + (\sum (E - P_z))^2}$$

characterizes the momentum flow of the hadronic system

$$x_{DA} = \frac{E_e}{E_p} \frac{\sin \gamma + \sin \theta + \sin(\gamma + \theta)}{\sin \gamma + \sin \theta - \sin(\gamma + \theta)}$$

 $Q_{DA}^{2} = \frac{4E_{e}^{2}\sin\gamma(1+\cos\theta)}{\sin\gamma+\sin\theta+\sin(\gamma+\theta)}$

E_e = 27GeV E_p = 820 GeV θ = positron

scattering angle

$$y_{DA} = \frac{Q_{DA}^2}{sx_{DA}}$$

$$x = x_{DA} \left(1 - \frac{M_{jj}^2}{Q^2}\right)$$

Depends only on energy ratios so it is less sensitive to energy scale uncertainties.

better mean resolution over the entire x-Q² plane define mjj here

junk

 $\frac{\partial f_i(x,Q^2)}{\partial \ln Q^2} = \frac{\alpha_s(Q^2)}{8\pi^2} \sum_{j=s}^{1} \int_{x}^{dw} P_{ij}\left(\frac{x}{w}\right) f_j(w,Q^2)$