

Charged Particle Multiplicity in DIS Progress Report ZEUS Collaboration Week

M. Rosin, D. Kçira, and A. Savin University of Wisconsin L. Shcheglova Moscow State University, Institute of Nuclear Physics

June 24th, 2004

Outline

- Introduction and motivation
- Data selection & simulation
- Control plots
- Correction methods
- Measurement of <n_{ch}> vs. M_{eff}
- Comparison of analyses
- Systematics
- Checks in the Breit frame
- Summary and plan

Multiplicity e⁺e⁻ and pp

Multiplicity: ep vs. e⁺e⁻ (1)

Multiplicity: ep vs. e⁺e⁻ (2)

The use of M_{eff} as energy scale

$$M_{eff}^{2} = \left(\sum_{i \neq e'} E^{i}\right)^{2} - \left(\sum_{i \neq e'} p_{x}^{i}\right)^{2} - \left(\sum_{i \neq e'} p_{y}^{i}\right)^{2} - \left(\sum_{i \neq e'} p_{z}^{i}\right)^{2}$$

M_{eff}: HFS measured in the detector where the tracking efficiency is maximized

e⁺e⁻, pp, ep, 4 questions

- Differences between ep and e+e- and between Breit and Lab
- Is difference due to:
 - 1. Analysis method?
 - 2. use of frame (Lab, Breit)?
 - 3. quark / gluon distributions?
 - 4. Choice of scale?
- New analysis seeks to answer these questions
- => Analysis description

1996-97 Data sample

Event Selection

- Scattered positron found with E > 12 GeV
- A reconstructed vertex with $|Z_{vtx}| < 50$ cm
- Scattered positron position cut: radius > 25cm
- 40 GeV < E-p_z < 60 GeV
- Diffractive contribution excluded by requiring η_{max} > 3.2

Track Selection

- Tracks associated with primary vertex
- |η| < 1.75
- p_T > 150 MeV

Physics and Kinematic Requirement

- $Q^2_{da} > 25 \text{ GeV}^2$
- y_{el} < 0.95
- y_{JB} > 0.04
- 70 GeV < W < 225 GeV (W² = (q + p)²)

735,007 events after all cuts (38.58 pb⁻¹)

Event simulation

- Ariadne '96-'97 4.08
 - Matrix elements at LO pQCD $O(\alpha_s)$
 - Parton showers: CDM
 - Hadronization: String Model
 - Proton PDF's: CTEQ-4D
- Lepto 6.5.1
 - Including SCI
 - Also generated Lepto without SCI

Kinematic Variables

- 96-97 data compared to ARIADNE and LEPTO for kinematic variables
- Both ARIADNE and LEPTO show good agreement for kinematic variables

Lab analysis: M_{eff} & Tracks

x 10

- LEPTO and ARIADNE comparisons to tracks and M_{eff}
- Tracks better described by **ARIADNE**
- M_{eff} better described by **LEPTO**
- Will compare also with **LEPTO** without SCI

60

Correction to hadron level: bin by bin

Correction to hadron level: bin by bin

Charged Particle Multiplicity

Correction to hadron level: matrix

 $M_{p,o} = \frac{No. of events with p tracks generated when o tracks were observed}{No. events with o tracks observed}$

Matrix Correction Meff Bin 5

The matrix relates the observed to the generated distributions of tracks in each bin of M_{eff} by:

$$P_p = \sum_o M_{p,o} \cdot P_o$$

- Matrix corrects tracks to hadron level
- ρ corrects phase space to hadron level

 $\rho = \frac{Hadrons \ passing \ gen \ level \ cuts}{Hadrons \ passing \ det \ level \ cuts}$

Comparison of bin-by-bin and matrix methods

Correlated & Uncorrelated Systematics

Systematic	Change	% Difference in M _{eff} bins					
		Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	
matrix instead of bin- by-bin		1.3%	0.9%	0.6%	0.9%	1.2%	
LEPTO instead of ARIADNE		< 0.5%	< 0.5%	< 0.5%	< 0.5%	< 0.5%	
Ee'	±1 GeV	< 0.5%	< 0.5%	< 0.5%	< 0.5%	< 0.5%	
Radius Cut	± 1cm	< 0.5%	< 0.5%	< 0.5%	< 0.5%	< 0.5%	
Q ²	± 1.6 GeV ²	< 0.5%	< 0.5%	< 0.5%	< 0.5%	< 0.5%	
У _{ЈВ}	±.0006	< 0.5%	< 0.5%	< 0.5%	< 0.5%	< 0.5%	
Track p _T	03/+.05GeV	< 0.5%	< 0.5%	< 0.5%	< 0.5%	< 0.5%	
Z _{vtx}	± 5 cm	< 0.5%	< 0.5%	< 0.5%	< 0.5%	< 0.5%	
W	± 19 GeV	< 0.5%	< 0.5%	< 0.5%	< 0.5%	< 0.5%	
E - p _z	±5 GeV	< 0.5%	< 0.5%	< 0.5%	< 0.5%	< 0.5%	

CAL energy scale ± 3 %	1.1%	1.2%	1.1%	0.8%	0.5%
------------------------	------	------	------	------	------

Check with 2nd analysis: total, Q² and x bins

New measurement in the LAB

Lab frame: <n_{ch}> vs. M_{eff} in x bins

- Check if ep vs. e+e- and pp difference is due to quark and gluon distributions: study x and Q² dependence
- x range split into similar bins as in previous multiplicity paper.
- weak x dependence in both data and MC observed not sufficient to explain difference
- Q² dependence? => next page

Lab frame: x and Q² bins

- Data described by ARIADNE
- LEPTO above data
- No Q² dependence observed
- Difference not due to quark / gluon distributions in the proton

Breit Frame: Current Region Analysis

• New analysis agrees with previously published ZEUS result in the Current Region of the Breit Frame for scale Q.

Previous ZEUS
publication: Eur. Phys.
J.C 11, 251-270 (1999)

Breit Frame - Change to scale M_{eff}

Summary

Measured mean charged multiplicity in the Lab and Breit frame. Compared to predictions, to other ZEUS data, and e+e-

Difference ep vs. e+e- and pp:

- not due to experimental measurement.
- not due to the choice of frame (Lab Breit).
- not due to quark/gluon distributions.
- is due to choice of scale (Q vs. M_{eff})

Plans for the future

- Finish checks in the Breit frame.
- Run on Lepto without SCI
- Make results preliminary: soon!