

QCD results from colliders

2007 Aspen Winter Conference Wesley H. Smith *U. Wisconsin - Madison* January 11, 2007

Outline:

Parton Density Functions & Structure Functions Jets & Measurements of α_S Multijets, Inclusive Jets, W + Jets, Dijets Prompt Photons Diffraction

This talk is available on:

http://www.hep.wisc.edu/wsmith/files/exp_qcd_smith_aspen07.pdf

HERA Parton Densities

 $A \cdot S \cdot P \cdot E \cdot N$

ZEUS

WISCONSIN

FUS

Jets at HERA constrain gluon distribution

QCD-COMPTON BGF First fit using HERA incl and jets data

- HERA-I inclusive cross sects
- Inclusive jet cross sects in NC DIS
- Dijet cross sects in photo-production

Data from one Experiment only:

- Syst unc. well understood
- No fixed target unc.
- Valence quarks from high-Q² NC and CC cross sections

Jet data help to constrain the gluon and $\alpha_{\rm s}$:

- Reduction of gluon unc. by ~ factor 2 for 0.01 < x < 0.4
- Precise determination of $\alpha_{\rm s}$

Measurement of F_L at HERA

Martin, Stirling, Thorne

 $F_L = \left(\frac{Q^2}{4\pi^2 \alpha}\right) \sigma_L$ Directly connected to the gluon distribution dominant at low-x Predictions are still very uncertain

$$F_{L} = \frac{\alpha_{S}}{4\pi} x^{2} \int_{x}^{1} \frac{dz}{z^{3}} \left[\frac{16}{3} F_{2} + 8 \sum e_{q}^{2} (1 - \frac{x}{z}) zg \right]$$

- Need to measure cross sections at same x,Q² and different y.
- To change y=Q²/xs, HERA changes s by lowering E_p to 460 GeV
- The price in integrated luminosity is a factor of 4→10 pb⁻¹ requires 3 months

F₁ predictions

Wesley Smith, U. Wisconsin, January 11, 2007

Aspen Winter Conference: Experimental QCD - 5

High p_T jets at the Tevatron

In 2005: CDF published both central cone and k_T jets with 400pb⁻¹ Now: new preliminary results with full rapidity coverage for 1fb⁻¹

Wesley Smith, U. Wisconsin, January 11, 2007

Tevatron Inclusive Jets: cone & k_T

Aspen Winter Conference: Experimental QCD - 11

These measurements will provide additional constraints for the gluon distribution at middle *x*; and give a measurement of α_s

charm contribution to F₂

Wesley Smith, U. Wisconsin, January 11, 2007

WISCONSIN

Beauty contribution to F₂

first measurement of F₂^{bb}

first NNLO calculation

data in agreement with NLO

checks b PDF for LHC:

can Tevatron results be used for LHC?

Are PDFs measured thus far applicable? Does DGLAP QCD evolution work sufficiently to extrapolate?

Need to take care of low-x effects:

- saturation
- multiple interactions

BFKL vs. DGLAP → study at HERA

Evolution & Resummation

• **DGLAP** (**D**okshitzer-**G**ribov-**L**ipatov-**A**Itarelli-**P**arisi) is expected to break down at low *x* and Q² region (LEPTO, DISENT)

- **BFKL** (**B**alitsky-**F**adin-**K**uraev-**L**ipatov) can be applicable at low x (~ARIADNE)
- **CCFM** (Ciafaloni-Catani-Fiorani-Marchesini) describes an evolution in both Q² and x and approches BFKL at low x and DGLAP at high Q²; angular ordering (CASCADE)

ZEUS Forward Jets

Measurement extended to 2<η^{jet}<3.5

- CASCADE *set1* disagrees with all cross sections
- CASCADE *set2* (with non singular terms) is in a good agreement with data in Q² and E_T^{jet} but fails to reproduce the shapes of x_{Bj} and η^{jet}
- CDM (ARIADNE) gives a good description of data in all measured cross sections
- LEPTO underestimates data by a factor of 2

H1 forward jets

Forward JET: $\theta_{jet} < 20^{\circ}$ and $x_{jet} = E_{jet}^{*}/E_{p} > 0.035$

- cross sections peak at $x_{\gamma}^{obs} \approx 0.9$, and are kinematically suppressed at low x_{γ}^{obs} .
- MC predicts peaks partly due to direct (LO definition) but significant resolved PHP contributions.
- MCs without MPIs fail to describe low x_{γ}^{obs} region at low M_{3j} MC requires additional component.
- MC predicts MPIs augment low x_{γ}^{obs} but don't affect high x_{γ}^{obs} are MPIs the missing component?

• PYTHIA MPI model predicts excessive contribution - HERWIG+MPI describes x_{γ}^{obs} very well. Wesley Smith, U. Wisconsin, January 11, 2007 Aspen Winter Conference: Experimental QCD - 21

• again, cross sections peak at $x_{\gamma}^{obs} \approx 0.9$ and low x_{γ}^{obs} kinematically suppressed... BUT...

- ...smaller direct contribution and less suppression even though four-jet HFS more tightly constrained.
- MCs predict that differences at low x_{γ}^{obs} are due to larger missing component/more MPIs... BUT...
- ...high x_{γ}^{obs} region is insensitive to MPIs so not the sole reason for larger resolved contribution.
- resolved processes have more complex colour structure generate multi-jet states more efficiently.
 Wesley Smith, U. Wisconsin, January 11, 2007
 Aspen Winter Conference: Experimental QCD 22

(W→ev) + ≥ 2 jets CDF Run II Preliminary **Cross Section for Restricted W Phase Space** dơ/dM_{ij}[pb/(5GeV/c²)] _____ CDF Data $dL = 320 \text{ pb}^{-1}$ \rightarrow Avoid Model-Dependent Acceptance Corr. W kin: E_T[°]≥20[GeV]; |η[°]|≤1.1 $M_T^W \ge 20[GeV/c^2]; E_T^{\gamma} \ge 30[GeV]$ JetClu R=0.4; η|<2.0; E₇^{jet} ≥ 15[GeV] Jets: 10 hadron level: no UE correction 🕂 LO Alpgen + PYTHIA (W→ev) + ≥ n jets CDF Run II Preliminary Total σ normalized to Data dơ/dE₁[pb/GeV] * CDF Data dL = 320 pb 10-4 10 W kin: $E_T^* \ge 20$ [GeV]; $|\eta^*| \le 1.1$ $M_T^W \ge 20[GeV/c^2]; E_T^{\vee} \ge 30[GeV]$ Jets: JetClu R=0.4; |η|<2.0 10⁻³ hadron level; no UE correction 10⁻¹ LO Alpgen + PYTHIA Total σ normalized to Data 200 300 400 500 Di-jet Invariant Mass M(jet₁-jet₂) [GeV/c²] 100 10⁻² $(W \rightarrow ev) + \ge 2$ iets CDF Run II Preliminary ł₀/d∆ R_{ii}[pb/0.2] 10⁻³ CDF Data dL = 320 pb⁻¹ 3.5 W kin: E[°]₊ ≥ 20[GeV]; |η[°]| ≤ 1.1 $M_T^{W} \ge 20[GeV/c^2]; E_T^{\vee} \ge 30[GeV]$ 10⁻⁴ JetClu R=0.4; |η|<2.0; E^{jet}_T ≥ 15[GeV] Jets: hadron level; no UE correction 2.5 LO Alpgen + PYTHIA 10⁻⁵ Total σ normalized to Data 0 50 100 150 300 350 200 250 Jet Transverse Energy [GeV] 1.5 Shape-Comparison with LO Alpgen+PYTHIA: 0.5

Reasonable Agreement!

3.5

n

0.5

4.5

Di-jet ∆ R(jet,-jet,)

Smaller σ than (W+Jets) but cleaner exp. signature

Z+n Jets

Dijet Azimuthal Decorrelation

10

10

10

DØ

 $p_{T}^{max} > 180 \text{ GeV} (\times 8000)$

130 < p_T^{max} < 180 GeV (×400)

100 < p_T^{max} < 130 GeV (×20

75 < p_T^max < 100 GeV

Compare with theory:

- LO has Limitation $>2\pi/3$ & Divergence towards π
- NLO is very good down to $\pi/2$ • & better towards π

... still: resummation needed

DIS Event Shapes

$$au = 1\!-\!T_\gamma$$
 with $T_\gamma = rac{\sum_h |ec{p}_{z,h}|}{\sum_h |ec{p}_h|}$

Use power corrections to correct for non-perturbative effects in infrared and collinear safe event shape variable, F:

Used to determine the hadronization corrections $\langle F \rangle = \langle F \rangle + \langle F \rangle$

$$\langle \Gamma \rangle = \langle \Gamma \rangle_{perturbative} + \langle \Gamma \rangle_{power correction}$$
$$\langle F \rangle_{pow} = a_V \frac{3MA_1(\alpha_s, \overline{\alpha}_0)}{\pi Q}$$

 $au_C = 1\!-\!T_C$ - thrust along the axis

maximising T (like in e^+e^-)

 $B=rac{\sum_{h}|ec{p}_{t,h}|}{2\sum_{h}|ec{p}_{h}|}$ – Jet Broadening

$$ho=rac{(\sum_h E_h)^2-(\sum_h ec p_h)^2}{(2\sum_h |ec p_h|)^2}$$
 – Jet inv. mass

$$C=rac{3}{2}rac{\sum_{h,h'}|ec{p}_h||ec{p}_{h'}|\sin^2 heta_{h,h'}}{(\sum_h|ec{p}_h|)^2}$$
 - Collinear &

infrared safe combination of sphericity eigenvalues

Power correction:

Independent of any fragmentation assumptions

Universal "non-perturbative parameter" * – (Dokshitzer, Webber, phys. Lett. B 352(1995)451)

DIS Jets, Event Shapes & α_s

Precise measurement of $\alpha_{s}^{\alpha_{s}(M_{z})}$ Running measured from jets and event shapes in a single experiment New world measurement incl. HERA Jets: $\alpha_{s} = 0.1189 \pm 0.0010$ (hep-ex/0606035)

Wesley Smith, U. Wisconsin, January 11, 2007

data/theory (NLO: JETPHOX): good agreement over 23<p_T<300GeV

- → PDF sensitivity requires:
- Reduced exp. uncertainties dominated by purity uncertainty
- Improved theory (resummation / NNLO)

Di-Photon Cross Section

CDF Collab., Phys. Rev. Lett. 95, 022003, 2005. (207pb-1)

- Pseudorapidity < 0.9
- Photon p_T> 13 & 14 GeV

Di-Photon Cross Section

Aspen Winter Conference: Experimental QCD - 35

Color Non-Singlet and Singlet Exchange in Photoproduction

Evidence for Color Singlet

Wesley Smith, U. Wisconsin, January 11, 2007

Diffractive DIS & Factorization

 $\sigma^{D}(\gamma^{*}p \to Xp) = \sum f_{i}^{D}(x,Q^{2},x_{IP},t) \cdot \sigma^{\gamma^{*}i}(x,Q^{2})$ parton i

 $\sigma^{\gamma^{*_i}}$ - universal hard scattering cross section (same as in inclusive DIS) f_i^D - Diffractive Parton Distribution Function \rightarrow obey DGLAP, universal for diffractive *ep* DIS (inclusive, Dijets, Charm)

□ Extract DPDFs from QCD fit to inclusive diffractive DIS

□ Test DPDFs in diffractive Final States (Boson Gluon Fusion)

Wesley Smith, U. Wisconsin, January 11, 2007

Wesley Smith, U. Wisconsin, January 11, 2007

Aspen Winter Conference: Experimental QCD - 39

Inclusive DPDFs at high z

Gluon DPDF → from positive scaling violations → larger uncertainty

 At high momentum fraction QCD evolution is driven by quark radiation
 no sensitivity to gluon DPDF

Wesley Smith, U. Wisconsin, January 11, 2007

Aspen Winter Conference: Experimental QCD - 41

Inclusive Diffraction at CDF

Aspen Winter Conference: Experimental QCD - 43

Jet data constrains gluon & PDFs at high-x & α_{s}

- Final HERA PDFs should improve by 50% from inclusive measurements, jets, cross-sections, NNLO fits, etc.
- Improved measurements of heavy flavor PDFs
- **QCD** evolution has been studied at lower **x**
 - Region over which DGLAP works is extended, but may need BFKL
 - Better understanding of extrapolation of PDFs to the LHC
- Multijets measure higher order pQCD processes
 - Need theoretical calculations to higher order

Multiple Parton Interactions are important

NLO QCD describes new jet data & prompt γ well.

Diffractive DIS factorizes into DPDF + hard scatter σ

Consistent with NLO QCD

Many thanks are due to the following for suggestions, comments & material used:

Michele Arneodo, Olaf Behnke, Gregorio Bernardi, Duncan Brown, Brendon Casey, Mary Convery, Massimo Corradi, Sridhara Dasu, Elisabetta Gallo, Max Klein,Regis Lefevre, Vivian O'Dell, Frank Petriello, Sascha Savin