

Multijet in Neutral Current Deep Inelastic Scattering

ZEUS Collaboration Meeting June 24, 2004

Liang Li University of Wisconsin Nils Krumnack Hamburg University

1998-2000 data, 82.2 pb⁻¹

DIS Events

• Corrected $E_e > 10 \text{ GeV}$, |Zvertex| < 50 cm, $40 < \text{E-P}_z < 60 \text{ GeV}$

Trigger Selection

• Combination of HPP14, DIS03 and DIS01

Kinematic Range

• $10 < Q^2 < 5000 \text{ GeV}^2$, $Y_{EL} < 0.6$, $Y_{JB} > 0.04$, $\cos \gamma_{had} < 0.7$

Jet Reconstruction

- Longitudinally invariant KT algorithm on ZUFOs in Breit frame
- At least 2 jets found in Breit frame
- $E_T^{BRT} > 5 \text{ GeV}, -1 < \eta^{LAB} < 2.5$
- Invariant mass M_{2,3jet} >25 GeV

Compare Data vs. NLOJET: CTEQ6 PDF

ZEUS

ZEUS

Good description of both dijets and trijets over 3 orders of magnitude in Q² for both PDFs

Trijet to Dijet Cross Section Ratio $R_{3/2}$: CTEQ4 with Different α_s value

ZEUS

 $R_{3/2} = \sigma_{trijet} / \sigma_{dijet}$

- As expected, predictions within one PDF are sensitive to α_s
- Potential to extract α_s

Parametrisation of R_{3/2} with the value of α_s(M_z) ZEUS

Procedures:

- Run NLOJET with several α_s values and fit through a linear function for each Q² bin
- Use this function to associate $R_{3/2}$ measurements with $\alpha_s(M_z)$
- Extract α_s for each Q^2 bin and a combined value with a χ^2 -fit.

Multijet Study, L.Li (U. Wisconsin), N.Krumnack (Hamburg U.)

Multijet Study, L.Li (U. Wisconsin), N.Krumnack (Hamburg U.)

Systematic Uncertainties

Experimental (maximal change)

- Jet pseudo-rapidity cut: 1%
- Use of different LO MC model: 2%
- Jet transverse energy and invariant mass cuts: 2%
- The absolute energy scale of the CAL: 2.5%
- Other sources which have negligible effects
 - Un-reweighted MC
 - Z_{Vertex} cuts
 - Y_{JB} cut
 - E-P_z cut
 - $\cos \gamma_{had}$ cut

Theoretical (maximal change)

- Hadronisation correction factors: 2%
- Terms beyond NLO: 5%
- Uncertainties in the proton PDFs: to be included

 $> \Delta \alpha_{\rm S}({\rm M}_{\rm Z}) = ^{+0.0028}_{-0.0046}$

Other α_s measurements

- **Errors competitive**
 - **PDF uncertainty not** yet included
- But see comparison with different PDF next page

Extraction of α_s with MRST99 PDF

Multijet Study, L.Li (U. Wisconsin), N.Krumnack (Hamburg U.)

FUS

ZEUS Collaboration Meeting, June 24, 2004

Compare CTEQ4M vs. CTEQ6

Good agreement Small difference observed at low Q² which can be explained by the difference between CTEQ4 and CTEQ6 PDF (confirmed by CTEQ group)

- Extracted $\alpha_{\rm s}$ value in good agreement with world average
- PDF uncertainty study underway
- Paper draft

