

Studies of Dijets Production in ep Interactions at HERA

On behalf of the H1 & ZEUS Collaborations

Studies of Dijets Production in ep Interactions at HERA, L.Li (U. Wisconsin)

EPS2003 Aachen, July 18, 2003

Why Dijet

- ✓ At HERA, partons of the proton probe directly the quark and gluon density of the photon
 - A test of both proton PDFs and photon PDFs
 - Resolution scale of the probe is directly related to the transverse energy of the jets
- As photon's virtuality increases, it will begin to lack the time to develop a complex hadronic structure
 - Dijet events very sensitive to (virtual) photon structures and used to explore low Q² transition region
- ✓ Provide an ideal laboratory for Multijet study
 - Ratio of Trijet/Dijet cross section directly proportional to O(α_s)

Dijet Cross Sections in Photoproduction – H1 Collaboration

 x_{γ} distribution in x_{p} bins

Studies of Dijets Production in ep Interactions at HERA, L.Li (U. Wisconsin)

Dijet Cross Sections in Photoproduction – H1 Collaboration

NLO scale uncertainties dominate! (vary 0.5 < $\mu_{f, r}$ / E_T < 2)

NLO predictions shows agreement with data within uncertainties \rightarrow Useful to future constrain the existing photon PDFs

7EUS

Dijet Cross Sections at low Q² H1 Collaboration

DGLAP CCFM e e y, Q^2 **Direct** فوووووو x_n, k_n $\gamma \gamma \gamma p_n$ alternate approach x_{n-1}, k_{n-1} proton remnant D x_{n-2}, k_{n-2} x_{n-3}, k_{n-3} x_0, k_0 photon π remnant p16666 Resolved goog g proton D remnant

CASCADE MC based on CCFM evolution: K_T unordered gluon emission and no concept of photon structure

Ξ

Dijet Cross Sections at low Q² H1 Collaboration

7FUS

 $\begin{array}{l} 2 \; GeV^2 < Q^2 < 80 \; GeV^2 \\ 0.1 < y < 0.85 \\ E_T^{jet1,2} > \underline{5} \; GeV \\ E_{T,mean} \; (E_T) > 6 \; GeV \\ -2.5 < \eta^{jet1,2} < 0 \end{array}$

Direct or Resolved: LO $Q^2 > E_T^2$: Resolved process not needed $Q^2 < E_T^2$: Direct-only process not enough to describe the data, resolved contribution needed

Ratio \overline{E}_T^2/Q^2 governs the relevance of resolved photon contribution rather than Q^2 itself

Dijet Cross Sections at low Q² H1 Collaboration

• H1 Preliminary

7FUS

- Herwig dir
- Herwig dir+res_T+res_L
- Herwig res_T --- Cascade

With resolved γ_{L}^{*} added, discrepancy at low x_{γ} and low y becomes smaller

HERWIG dir + res γ_{T}^{*} + res γ_{L}^{*} : best agreement with data

CASCADE describes data reasonably but not perfectly

The Q² dependence of dijet production – Zeus Collaboration

ZEUS

Direct or Resolved: NLO DISASATER NLO calculation contains no hadronic photon structure

Renormalization scale $\mu_R^2 = Q^2 + E_T^2$: DISASTER NLO tends to lie below the data

For $x_{\gamma}^{OBS} > 0.75$ data is well described, discrepancy mainly with $x_{\gamma}^{OBS} < 0.75$

The Q² dependence of dijet production – Zeus Collaboration

ZEUS

ZEUS

The Q² dependence of dijet production – Zeus Collaboration

Some experimental and theoretical uncertainties cancel in:

$$\mathbf{R} = \frac{\frac{d\sigma}{dQ^2} (x_{\gamma}^{OBS} < 0.75)}{\frac{d\sigma}{dQ^2} (x_{\gamma}^{OBS} > 0.75)}$$

Data falls with Q^2 , \overline{E}_T^2 : resolved effects suppressed as photon virtuality increases

DISASTER NLO describes data except for low $\overline{E}_T{}^2$ and Q^2 \rightarrow compatible with the idea that resolved photon contribution needed for scale as high as $Q^2 \sim 10 \text{ GeV}^2$

NLO QCD calculations accurately describe dijet production in DIS?

Modified Durham algorithm:

$$k_{Tij}^{2} = 2min\{E_{i}^{2}, E_{j}^{2}\}(1 - \cos\theta_{ij})$$

i, j: any of the two final dijet or remnant jetM: invariant mass of all objects of jet algorithm

$$y_2 = \frac{\min_{i,j,i\neq j} k_{Tij}^2}{M^2}$$

Large jet distances correspond to large y₂

Dijet Electroproduction at Small Jet Separation - H1 Collaboration

7FUS

150 GeV² < Q² 0.1 < y < 0.7 150° < θ_e 10° < θ_{jet} < 140°

Good description of data for $y_2 > 0.001$

RAPGAP describes data over full range →Combination of parton showers and Lund String hadronization accurately models multi-parton emissions

Dijet Electroproduction at Small Jet Separation - H1 Collaboration

ZEUS

Take y₂ > 0.001 sample: 1/3 of the selected DIS events

Two choices of renormalization scale: μ_R =Q and μ_R = $\overline{E}_{T Breit}$ Small difference in NLO predictions

NLO describes $\overline{E}_{T Breit}$ distribution well, including region $\overline{E}_{T Breit} < 5 \text{ GeV}$ RAPGAP also describes data well

Studies of Dijets Production in ep Interactions at HERA, L.Li (U. Wisconsin)

Multijet Production in DIS Zeus Collaboration

- Add a gluon radiation to dijet or split a gluon to $q\overline{q}$
 - \rightarrow Direct test of QCD
- In the ratio $\sigma_{trijet} / \sigma_{dijet} = O(\alpha_s)$, cancellation of some experimental and theoretical uncertainties.
- Measure α_s at a wide range of Q^2

Multijet Production in DIS Zeus Collaboration

R_{3/2}=σ_{trijet}/σ_{dijet}

 $\begin{array}{l} 10 \; GeV^2 < Q^2 < 5000 \; GeV^2 \\ 0.04 < y < 0.6, \; cos\gamma_{had} < 0.7 \\ E_{T\;Breit} > 5 \; GeV, \;\; -1 < \eta_{\;Lab} < 2.5 \\ invariant\;mass\; M_{,L1} > 25 \; GeV \end{array}$

NLOJET describes both dijets & trijets well over 3 orders of magnitude Cross section ratio describes data with substantially decreased uncertainties

Studies of Dijets Production in ep Interactions at HERA, L.Li (U. Wisconsin)

Multijet Production in DIS Zeus Collaboration

Dijet

ZEUS Trijet

ZEUS

 At HERA, precise measurements spanning a large of photon virtualities, including the transition region from photoproduction to the deep inelastic scattering, significantly constrain the parton densities in photon structure

 At high E_T theoretical uncertainties are small while at low Q² and low x_γ theoretical uncertainties dominate, theoretical developments needed