Three-jet Production in Neutral Current Deep Inelastic Scattering with ZEUS Detector at HERA

Preliminary Examination

Liang Li University of Wisconsin Nov 27,2001

HERA

- 820/920 GeV proton
- 27.5 GeV electrons or positrons
- 300/318 GeV center of mass energy
- 220 bunches96 ns crossing time
- Instantaneous luminosity
 1.8 x 10³¹ cm⁻²s⁻¹
- Currents:
 ~90mA protons
 ~40mA positrons

HERA Luminosity

. 820 GeV protons through 1997 920 GeV since 1998 . ZEUS integrated luminosity since 1992: ~185 pb⁻¹ . Expect 1fb⁻¹ by end of 2005

HERA Kinematic Range

Extended kinematic region not accessible by fixed target experiments, with some overlap.

H1 and ZEUS: DESY e-p
HERMES: DESY e-A
E665: Fermilab μ-A
BCDMS: CERN μ-A
CCFR: Fermilab ν-A
SLAC: many experiments e-A
NMC: CERN μ-A

Deep Inelastic Scattering

electron-proton scattering

DIS kinematic variables

$$Q^2 = -q^2 = -(k-k')^2$$
 transfer

 $x = \frac{Q^2}{2p \cdot q}$

Fraction of the proton's momentum that participates in the hard scatter

Can also exchange Z,W[±]

Any lepton – hadron pair e–p (HERA) e–A (SLAC) υ–Fe (CCFR) μ–A (E665,NMC,BCDMS)

$$y = \frac{p \cdot q}{p \cdot k}$$

Fraction of the electron's energy available in the proton's rest frame

 $Q^2 = sxy$

 $W^2 = (p + q)^2$

s=center of mass energy squared

W=invariant mass of the final hadronic system

e⁺p DIS Event at HERA

DIS Cross Section

 $\frac{d^2\sigma(e^+p)}{dxdQ^2}(x,Q^2) = \frac{2\pi\alpha^2}{xQ^4} \Big[\Big(1 + (1-y)^2\Big) F_2(x,Q^2) - y^2 F_L(x,Q^2) - (1 - (1-y)^2) x F_3(x,Q^2) \Big]$

 $F_2(x,Q^2)$: Interaction between transversely polarized photons & spin 1/2 partons ; Charge weighted sum of the quark distributions

 $F_L(x,Q^2)$: Interaction between longitudinally polarized photons & the partons with transverse momentum.

 $F_3(x,Q^2)$: Parity-violating structure function from Z^0 exchange.

Naïve Quark Parton Model

- · Partons are point-like objects
- No interaction between the partons
- \cdot Structure function independent of Q^2

Bjorken Scaling (x) dependence:

 $F_2(x,Q^2) = \sum_{q} e_q^2(Q^2) \cdot (xq(x,Q^2) + x\overline{q}(x,Q^2))$

 $F_2(x,Q^2) \rightarrow F_2(x), F_L=0$

QCD

Physics picture: presence of gluons

Parton Parton interactions, mediated by gluons

Generate parton transverse momentum Non zero F_L

The structure functions gain a Q² dependence Scaling Violation

Scaling Violation

Scaling Violation
 F₂ has a Q² dependence due to gluon

$$F_2(x) \to F_2(x,Q^2)$$

•More significant at smaller x

- F₂ scaling violation -> gluon density
- •QCD evolution equations (Altarelli–Parisi) predict

 $g(x,Q^2) \sim dF_2(x,Q^2)/dlogQ^2$

Parton Distribution Functions

Several different groups make global fits to DIS structure function data

- Parton Density Functions (PDFs)
 - CTEQ, MRST, GRV, MBFIT
 - needed by Tevatron and LHC
- Gluon density extracted indirectly from scaling violation of F₂
 - $g(x,Q^2) \sim dF_2(x,Q^2)/d\log Q^2$
 - relatively large uncertainty on g(x,Q²)
 - A measurement with direct sensitivity to the gluon would be nice...

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equations describe evolution of parton densities to higher Q^2 — QCD prediction

$$\frac{dq_i(x,Q^2)}{d\ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dy}{y} \left[q_i(y,Q^2) P_{qq}\left(\frac{x}{y}\right) + g(q,Q^2) P_{qg}\left(\frac{x}{y}\right) \right]$$
$$\frac{dg(x,Q^2)}{d\ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dy}{y} \left[\sum_i q_i(y,Q^2) P_{gq}\left(\frac{x}{y}\right) + g(q,Q^2) P_{gg}\left(\frac{x}{y}\right) \right]$$

 α_s is the strong coupling constant.

Single Jet Dijet Trijet

Why Trijet?

- Adding a gluon radiation to dijet
 - \rightarrow A direct test of QCD.
- Recent important advance in understanding QCD in dijets makes it an ideal laboratory for studying added gluon radiation.
- Measure α_s at a wide range of Q^2
- In the the ratio of $R_{3/2} = \sigma_{trijet} / \sigma_{dijet} = O(\alpha_s)$, there is a cancellation of some experimental and theoretical uncertainties

Jet Algorithms

Cone algorithms

- conceptually simple
- theoretical/implementation issues
 - seed requirements
 - infrared unsafe at NNLO

Maximize E_{τ} within a cone of radius R

Inclusive-mode k_-algorithm (KTCLUS)

- No known theoretical or implementation issues
 - infrared safe
 - seeding not necessary
- Smaller hadronization corrections in some regions

$$d_{ij} = R_{T,i}^{2}$$

$$d_{ij} = min\{E_{T,i}^{2}, E_{T,j}^{2}\}(\Delta \eta^{2} + \Delta \phi^{2})/R^{2}$$

$$i$$

$$j$$
Combine i and j if d_{ij} is smallest of {d_{i}, d_{ij}}

Breit Frame

Single jet event in Breit Frame

q + 2xp = 0

In single jet events, struck quark rebounds with equal and opposite momentum, the resulting jet has zero E_T (transverse energy)

In multi-jet events, the outgoing jets are balanced in ${\rm E}_{\rm T}$

The proton and exchanged photon collide on a common axis, with the z-direction chosen to be the proton direction.

Leading Order MC

Next Leading Order MC

Programs for DIS

- <u>DISENT</u> (subtraction method)
- DISASTER++ (subtraction method)
- MEPJET (phase space splicing method)
- JETVIP (phase space splicing method)

NLO Matrix Elements

- Four parton final states
- Large improvement over LO
- Soft/colinear and

virtual loop divergences cancel

e⁺ e⁺ ZZQ² factorizaton scale p

NLO calculations do not include hadronization models

MC Scales

Factorization scale

 $f_q(x,\mu_f^2)$, scale μ_f at which the parton densities are evaluated and where the hadronization begins

Renormalization scale

 $\alpha_s(\mu^2_r)$, scale μ_r at which the constant α_s is evaluated

- NLO reduces renormalization scale dependence with respect to LO MC
- Renormalization scale uncertainty is the largest contribution to NLO theoretical uncertainty

ZEUS Detector

Central Tracking Detector

View along beamline

Drift Chamber inside1.43T solenoid

Vertex Resolution longitudinal (z): 4mm transverse (x-y): 1mm

US groups, including Wisconsin are responsible for barrel calorimeter

ZEUS Trigger

10 MHz bunch crossing rate Extract 10Hz Physics from 100kHz background

Background Rejection: Timing

On Time

20

 $\mathsf{T}_{\mathsf{FCAL}}$

"Distance" between FCAL and RCAL is ~10ns

Background Rejection: E-P_z

$$E - p_z = \sum_i E_i (1 - \cos \theta_i)$$

Sum runs over calorimeter cells

In a given frame, E-p_z is conserved

Unless energy escapes down rear beam pipe, $E-p_z$ after collision will be near $2E_{beam}$ for NC DIS

Event Reconstruction

- Track finding and the event vertex
 - Require good track.
 - Use good track to find event vertex
- Electron finding
 - Find electrons by looking for isolated EM energy deposits in Calorimeter cells.
 - The ZEUS primary electron finder is > 95% efficient for electron energy > 10 GeV.

Kinematic Reconstruction

Ε',,θ

Two Kinematic Variables: x Q²

Four Measured Quantities: $E_e' \theta_e E_h \gamma_h$

Electron Method

Use scattered electron energy, electron angle Good resolution in x and Q², best at low Q² Sensitive to miscalibrations (energy scale uncertainties)

Double Angle Method Use electron angle and hadronic jet angle Depends only on ratios of energies Better mean resolution in x and Q² Weakly affected by miscalibrations

Jacquet-Blondel Method

Use hadronic energy and hadronic jet angle Gives an accurate determination of y for small values of y

Data Offline Cuts

• Detector Acceptance and Efficiency

 $y_{JB} > 0.04$ positron found with E > 10 GeV vertex cut: -50cm < z < 50cm positron position cut: |X| > 14 cm or |Y| > 14 cm

Signal Selection

38 GeV < E-P_z < 65 GeV A well found track with p > 5 GeV & DCA < 15 cm y_{EL} < 0.95

Physics and Kinematic Requirement 100 GeV² < Q² < 10000 GeV² Three jets found using KTCLUS algorithm

 $\begin{aligned} &|\eta| < 2.0 \\ &E_{T}^{LAB} > 5 \text{ GeV} \end{aligned}$ Asymmetric cut, MC calculation requirement $E_{T_{1}}^{BRT} > 8 \text{ GeV}, E_{T_{2}}^{BRT} > 5 \text{ GeV}, E_{T_{3}}^{BRT} > 5 \text{ GeV} \end{aligned}$

First Comparison of Data and MC DIS Trijets at ZEUS

Data:

- HERA 1996-1997 running period
- ZEUS data sample: integrated luminosity 38.4pb⁻¹
- 510 DIS trijets passed offline cuts in a sample of 39576 DIS events

MC:

- Use leading order MC program Ariadne
- 568 DIS trijets selected from MC
- No Adjustment, run with default ZEUS settings

DIS Trijets — A First Look

0.1

0.05

0

-4

-3.5

-3

-2.5

-2

-1.5

-0.5

0

 X_{da}

Reconstructed Q², y, x by Double Angle method

Use Ariadne for all MC

OK agreement between data and MC

Reconstructed Q², y, x by Electron method

DIS jet E_T in the Lab Frame

DIS jet E_T in the Breit Frame

DIS jet η in the Lab Frame

DIS jet η in the Lab Frame

Conclusions and Expectations

- First look at DIS Trijets at ZEUS, reasonable agreement
- Ariadne used as it is, a good starting point
- Need to calculate cross sections and compare in detail with other QCD calculations and different MC programs
- Add new data (99-00) to have more statistics
- Explore systematic uncertainties