Preliminary Examination

Shedding Light on the Structure of the Photon

Sean E.K. Mattingly

University of Wisconsin 20 December 95

Zeus in Numbers

Luminosity Monitor

ZEUS Trigger

 \bigcirc 10⁷ Hz input

○ 600 Hz output

- Calorimeter First Level Trigger (no Deadtime)
 - Global and regional energy sums
 - Isolated electron/muon finding
- Track/Muon hits

Second Level Trigger:

 \bigcirc 600 HZ input

 \bigcirc 70 HZ output

- Timing cuts
- $E p_z cuts$
- Spark rejection

Third Level Trigger:

 \bigcirc 70 Hz input

- 14 Hz output (100 KBytes/Event)
 - Physics filters
 - Some timing

Timing of Background vs. Physics

(Forward Cal. Time - Rear Cal. Time) vs. (Rear Cal. Time)

96 ns First Level Trigger Pipeline

Deep Inelastic Scattering

$$Q^{2} = -q^{2} = 2EE'(1 - \cos \Theta_{e})$$

$$x = \frac{Q^{2}}{2(q \cdot k)}$$

$$y = \frac{q \cdot k}{p \cdot k} \qquad y_{e} = 1 - \frac{E'}{E} \cos^{2} \frac{\Theta}{2}$$

$$y_{JB} = y_{cal} = \frac{\sum_{i} (E - p_{z})_{i}}{2E_{e}} \qquad \text{(valid if}$$

$$e^{\pm} \text{down BP}$$

$$Q^{2} = xys$$

$$s = (p+k)^2$$

GeV²

ZEUS covers previously unmeasured range.

10

If the photon lives long enough...

Short-lived γ (high Q² \ll short life) -- virtual

Longer lived γ (low Q²<=> longer life) -- Quasi-real

Photoproduction at Electron Proton Collider

Photoproduction at ZEUS

ZEUS Run 13299 Event 7428 (LAZE)

ZEUS Run 6790 Event 24894 (LAZE)

Photon has Hadronic Structure

In proton (DIS) case:

$$\frac{d\sigma(ep \to eX)}{dxdy} = \frac{4\pi\alpha^2 s}{Q^4} [(1 - y + \frac{y^2}{2})F_2^p(x, Q^2) - \frac{y^2}{2}F_L^p(x, Q^2)]$$

 $F(x,Q^2)$ is a structure function and includes the momentum distribution of the partons.

 $F_2^p(x,Q^2) \approx x\{\frac{4}{9}[u(x) + \bar{u}(x)] + \frac{1}{9}[d(x) + \bar{d}(x) + s(x) + \bar{s}(x)]\}$

In photon (2γ exchange) case:

$$\frac{d\sigma(e\gamma \to eX)}{dxdy} = \frac{4\pi\alpha^2 s}{Q^4} [(1 - y + \frac{y^2}{2})F_2^{\gamma}(x, Q^2) - \frac{y^2}{2}F_L^{\gamma}(x, Q^2)]$$
$$y \to 0$$
$$\frac{d\sigma(e\gamma \to eX)}{dxdy} \sim F_2^{\gamma}(x, Q^2)$$

Why is F₂^γ(x,Q²) Interesting?

• Test of Quark Parton Model (QPM)

- \bigcirc F_2^{γ} should peak toward high x
- Pair Production of Quarks (Direct Photoproduction)

Test of Quantum Chromo-Dynamics (QCD)

- **O** F_2^{γ} should peak toward low x
- Gluon Bremsstrahlung, Quarks Radiating Gluons (Resolved Photoproduction)

Why is $F_2^{\gamma}(x,Q^2)$ Interesting?

F₂^γ scaling violation different than F₂^p violation

- The Quark Parton Model of the proton is expected to fulfill Bjorken scaling.
 - Gluon Bremsstrahlung causes scaling violation in the proton. (QCD)
- The Quark Parton Model of the photon violates Bjorken scaling.

No sum rule for photon

- The momentum of the partons in the proton must sum to the total momentum of the proton.
- The photon may remain a photon, in which case the partons in the photon carry none of the photon's momentum.

– F_2^{γ} is large in the high x region

$\sigma(\gamma * p)[\mu b]$ vs. $W_{\gamma p}^2[GeV^2]$ Plot

Electron Positron Collider as Gamma Gamma Collider

Previous Measurements of $F_2^{\gamma}(x,Q^2)$

Scaling violation seen as well as low and high x peaks.

ZEUS Data Set and Monte Carlo

Accumulated Data

- 1993: 550 nb⁻¹ (~4.5 Million Events on Tape)
- 1994: 3300 nb⁻¹ (~10 Million Events on Tape)
- 1995: 6400 nb⁻¹ (~15 Million Events on Tape)

Monte Carlo

- HERWIG
 - Uses Lowest Order Diagrams
 - Fragmentation done by cluster algorithm
 - Exact matrix elements used for photon-lepton vertex

O PYTHIA

- UsesLowest Order Diagrams
- Fragmentation done by LUND string model
- Weizsaecker-Williams approximation for photon-lepton vertex

ZEUS Photoproduction Cuts

2 Jets as found by cone algorithm

- $E_T^{jet} > 5$ GeV (compensate for energy loss in dead material)
- \bigcirc -1.125 < h^{jet} < 1.875 (keep edge of jet in detector)

Remove beam gas events

- At least 2 tracks pointing to vertex
- \bigcirc Vertex position along beam axis -48 cm < z < 36 cm
- Fewer than 5 tracks not pointing to vertex
- $y_{JB} > 0.2$ (if lots of stuff in Forward Cal, E-p_z will be small)

Reject charged current events

O Missing $p_T / E_T^{0.5} < 2 \text{ GeV}^{0.5}$

Reject DIS

- Identify Electrons (Energy Distribution in Cal)
 - Reject event if $y_e < 0.7$ (Electrons that are not scattered beam electrons tend to have high y_e)
 - Very effective against DIS events with $Q^2 > 4 \text{ GeV}^2$

 \bigcirc y_{JB} < 0.7 (If electron in Rear Cal, E-p_z will be high)

Hard processes observed in both Direct and Resolved photoproduction.

Poor reproduction of Resolved, while Direct is described more accurately.

Previous Result for Virtual Photons

74 Events

Decrease of \mathbf{F}_{eff} with increasing \mathbf{P}^2 seen

Virtual γ sturcture at ZEUS

How does F_2^{γ} change with P^2 ?

Expect partonic content (i.e. resolved) of photon to decrease with increasing P².

- Each "fluctuation step" takes time and life time of γ decreases as P² increases.
 - expect gluons to be suppressed faster than quarks

Prediction by Drees and Godbole:

 Expect Direct/Resolved fraction to increase as P² increases.

Theoretical Prediction

Tag Real and Virtual Photons at ZEUS

Use Beam Pipe Calorimeter and Luminosity monitor. (BPC and LUMI)

Measure
$$\frac{D}{R}$$
 in BPC (0.12<0.55 GeV²)
and in LUMI (P²<0.02 GeV²,
median P²=10⁻⁵ GeV²)

The Beam Pipe Calorimeter (BPC)

Beam Pipe Calorimeter Measures Position

BPC Resolution

Tungsten with Scintilator layers

• Total 24X₀ \rightarrow 24 layers • <u>1994</u> $\frac{\Delta E}{E} = \frac{30\%}{\sqrt{E}} \quad \text{(in GeV)}$ $\Delta x = 2mm$ $17mrad \le \Theta \le 35mrad$ $0.1GeV^2 \le Q^2 \le 0.55GeV^2$ $\Delta Q^2 = 3 - 6\%$

Zeus 95 Data Plot

$\sigma(\gamma * p)[\mu b]$ vs. $W_{\gamma p}^2[GeV^2]$ Plot

BPC fills in important unexplored territory.

Luminosity Monitor

Lead/Scintilator sandwich

 \bigcirc 24 X₀ total

$$\frac{\Delta E}{E} = \frac{16 - 18\%}{\sqrt{E}} \quad \text{(in GeV)}$$

$$0.2E_e \le E'_e \le 0.9E_e$$

$$\Delta x = 3mm$$

$$0 \le Q^2 \le 0.02GeV^2 \quad (median = 10^{-5}GeV^2)$$

$$\Delta Q^2 = \sim 10^{-4} \rightarrow \sim 10^{-2}GeV^2$$

Preliminary Results from ZEUS

BPC (0.1<P²<0.55 GeV²)

> LUMI (P²~0 GeV²)

Enhancement of Resolved in LUMI (lower virtuality) observed.

36

P² Evolution of Direct to Resolved Ratio

Ratio decreases with P² but errors to large to constrain theory.

Outlook

Expect to be able to make firm statement about P² evolution of photon structure.