

Charged Particle Multiplicity in DIS

ZEUS Collaboration Meeting

M. Rosin, D. Kçira, A. Savin, and L. Shcheglova University of Wisconsin March 4, 2004

Outline

- Universal dependence of mean charged multiplicity, <n_{ch}>, on effective energy going into particle production, W_{had}, for e⁺e⁻, pp, and ep.
- Introduction of M_{eff} and motivation for its use as an energy scale
- Data selection & simulation
- Resolutions and systematics
- Measurements of <n_{ch}> vs. effective mass
- Comparison to second analysis
- Trigger studies
- Summary and plan

Early experimental evidence for universality

- The current region in the Breit frame is analogous to a single hemisphere of e+e- annihilation; Q for ep reactions corresponds to W_{had} for e+e- reactions
- Mean charged multiplicity, <n_{ch}> , vs. Q shows logarithmic dependence for both e+e- and ep on the effective energy going into hadronization
- Universal dependence of <n_{ch}> observed in e+e- and ep reactions in Breit frame.
- Now move to lab frame; see the effects of target region

the Breit ZEUS 1993 o a single

Motivation for the use of M_{eff} as energy scale

Similarity of particle production at e+e- and ep colliders

•Similarity of W_{had} dependence on <n_{ch}> has been observed

•A common W_{had} dependence on <n_{ch}> implies the production of secondary particles is similar in the different interactions

•Study the dependence of $< n_{ch} > of$ the observed part of the produced HFS on it's total invariant mass, M_{eff}

W_{had}: HFS measured in full phase space $M_{eff}^2 = (\sum_{i\neq d'} E^i)^2 - (\sum_{i\neq d'} p_x^i)^2 - (\sum_{i\neq d'} p_y^i)^2 - (\sum_{i\neq d'} p_z^i)^2$

M_{eff}: HFS measured in the detector where the tracking efficiency is maximized

1996-97 Data sample

Event Selection

- Scattered positron found with E > 12 GeV
- A reconstructed vertex with $|Z_{vtx}| < 50$ cm
- scattered positron position cut: |x| > 15 cm or |y| > 15cm (in RCAL) "Box cut"
- 40 GeV < E-p_z < 60 GeV
- Diffractive contribution excluded by requiring η_{max} > 3.2

Track Selection

- Tracks associated with primary vertex
- |η| < 1.75
- p_T > 150 MeV

Physics and Kinematic Requirement

- Q²_{da} > 25 GeV²
- y_{el} < 0.95
- y_{JB} > 0.04
- 70 GeV < W < 225 GeV (W² = (q + p)²)

705,381 events after all cuts (38 pb⁻¹)

Event simulation

- Ariadne '97 6v2.4 (Simulates both '96 and '97 data; no changes in detector)
 - Matrix elements at LO pQCD $O(\alpha_s)$
 - Parton showers: CDM
 - Hadronization: String Model
 - Proton PDF's: CTEQ-4D

Validation of analysis method

Resolutions of kinematic variables

- Resolutions well
 behaved
- Use standard deviations for excursions in systematic studies

Correlated & Uncorrelated Systematics

Systematic	Change	% Difference in M _{eff} bins				
		Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
Ee'	±1 GeV	< 0.5%	< 0.5%	< 0.5%	0.8 %	1.2%
Box Cut	±1cm	< 0.5%	< 0.5%	< 0.5%	0.67%	0.62%
Q ²	± 2.25 GeV ²	3.35%	2.08%	2.17%	2.08%	0.91%
У _{ЈВ}	± .008	< 0.5%	< 0.5%	< 0.5%	< 0.5%	< 0.5%
У _е	± .05	< 0.5%	< 0.5%	< 0.5%	< 0.5%	< 0.5%
Z _{vtx}	± 15 cm	< 0.5%	< 0.5%	< 0.5%	0.53%	0.75%
W (upper)	± 15 GeV	< 0.5%	< 0.5%	< 0.5%	< 0.5%	2.0%
W (lower)	±7 Gev	< 0.5%	< 0.5%	< 0.5%	< 0.5%	< 0.5%
E - p _z	±2 GeV	< 0.5%	< 0.5%	< 0.5%	0.62%	< 0.5%

CAL energy	± 3 %	1.1%	1.4%	1.3%	< 0.5%	< 0.5%
scale						

Charged Particle Multiplicity, Michele Rosin U. Wisconsin

ZEUS Collaboration Meeting March, 2004 9

1995 ZEUS measurement in lab frame

- Compare <n_{ch}> vs. M_{eff} dependence in e⁺e⁻, pp, and ep (ZEUS).
- <n_{ch} > proportional to log M_{eff}
- <n_{ch}> 15% above corresponding e⁺e⁻
- Suggestion: difference due to ep color dynamics at the prehadronization stage.

<n_{ch}> vs. M_{eff} : '96-'97 vs. '95

 This analysis compared [~]⁴³ ¹⁶ • 96/97 Analysis to 1995 study 95 Analysis Data corrected to cal energy scale uncertainty hadron level 14 Full error bars: statistical & systematic¹² uncertainties aded in 10 quadrature Inner error bars: statistical uncertainties Reasonable agreement[®] with 1995 ZEUS preliminary result 4 5 7 8 9 10 20 30 40 50 60 М_{eff}

Comparison to 2nd analysis

Trigger studies by L. Shcheglova

Group	Run Range	#Runs	Non-prescaled DIS01	DIS03
1	21186-21631	445	Yes, 12x6	14x14
2	21634-22447	795	-	14x14
3	22451-22462	11	Yes, 12x6	r >25
3	22673-25336	427	Yes, 12x6	r >25
4	22466-22662	196	-	r >25
4	25344-27899	2500	-	r >25

Lydia has investigated the possibility to go to lower Q².

Because of changing prescales for DIS01 and changing radius for DIS03, must use a weighting scheme

Created a mixed sample of DIS01 & DIS03 to get agreement with MC

The weighting scheme is described in detail here:

http://amzeus.desy.de/~sumstine/trigger_study/weighting_foils.ps

Results of reweighting

Good agreement between data and MC down to $Q^2 = 15$ or 10 GeV^2

Currently $Q^2 > 25$, but lowering Q^2 cut can increase the kinematic lever arm

Summary

- The dependence of $<\!n_{ch}\!>$ on the $\,M_{eff}$ of the produced system for ep generated events is the same for restricted eta regions
- Systematic errors are small, dominated by CAL energy scale
- Trigger study shows possibility of going to lower Q²
- Agreement between 1st and 2nd analyses less than 1%
- $< n_{ch} > vs. M_{eff}$ agrees with 1995 ZEUS preliminary results

Plan

- Increase statistics of ARIADNE MC.
- Study systematic effect of using different MC (LEPTO)
- Look at Breit frame for consistency check
- Study diffractive events; combine ARIADNE & RAPGAP