

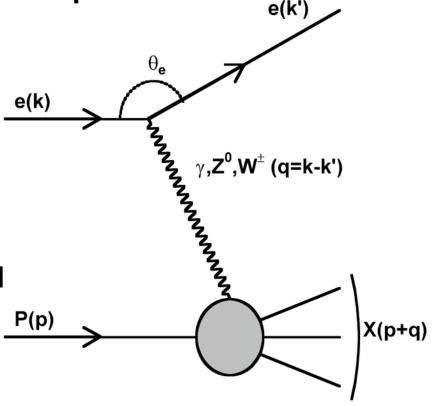
Photoproduction of Events with Rapidity Gaps Between Jets with ZEUS at HERA

Patrick Ryan

University of Wisconsin

PhD Defense May 5, 2006

Outline


- Introduction to QCD
- Rapidity Gaps
 - Photoproduction
 - Diffraction
 - Hard Diffractive Photoproduction
- HERA and ZEUS
- Simulation of photoproduction events
- Reconstruction
- Event Selection
- Comparisons between Data and MC
- Results

Lepton – Proton Collisions

- Center of Mass Energy of ep system squared
 - $s = (p+k)^2 \sim 4E_pE_e$
- Center of Mass Energy of γp system squared
 - $W^2 = (q+p)^2$
- Photon Virtuality
 - $q^2 = -Q^2 = (k-k')^2$
 - Deep Inelastic Scattering (DIS): Q² >> 1
 - Photoproduction: Q² << 1
- Fraction of Proton's Momentum carried by struck quark
 - $x = Q^2/(2p \cdot q)$
- Fraction of e's energy transferred to Proton in Proton's rest frame
 - $y = (p \cdot q)/(p \cdot k)$
- Variables are Related
 - $Q^2 = sxy$

Introduction to QCD

QCD describes the Strong Interaction

- Interaction between partons (quarks and gluons)
- Color is a quantum number of partons
- Strength of interaction: strong coupling constant $lpha_{
 m s}$

Gluon exchange mediates Strong Interaction

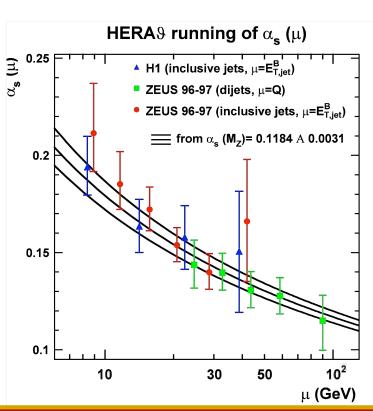
- Gluons can couple to other gluons
- Multiple gluons can be exchanged
- Color flow causes color radiation

Confinement

- Colored quarks and gluons unobservable
- Instead observe colorless combinations of partons called hadrons

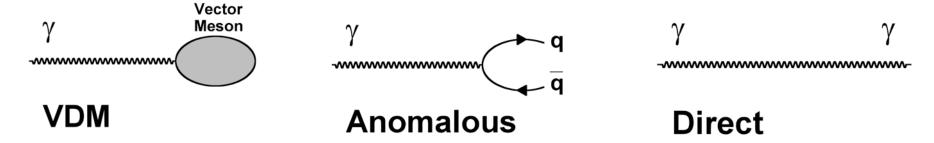
Asymptotic Freedom

- Strength of color charge decreases as parton is approached
- Decrease in α_s at small distances (high energy)

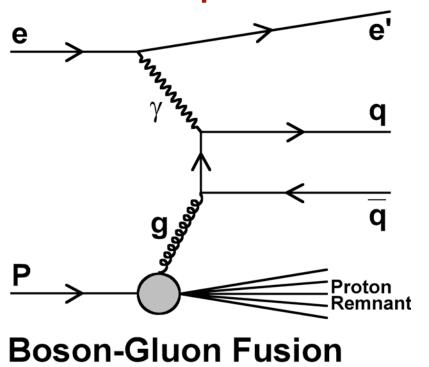

Perturbative QCD

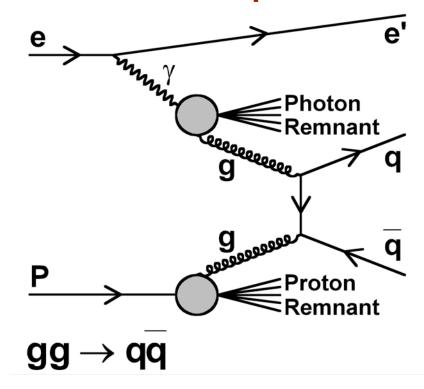
Leading Order (LO)

Next to Leading ∠Order (NLO)


- Expansion in α_s : A = A₀ + $A_1^{\dagger}\alpha_s$ + $A_2\alpha_s^2$ + ...
- Asymptotic Freedom causes running of $\alpha_s(\mu)$
 - Soft Scale small μ: α_s(μ) ~ 1
 - Hard Scale large μ: α_s(μ) < 1
- Perturbative QCD (pQCD)
 - Hard scale → Convergence
- Non-perturbative QCD
 - Soft scale → No convergence
- In practice μ is Q² or E_T
 - See following slides

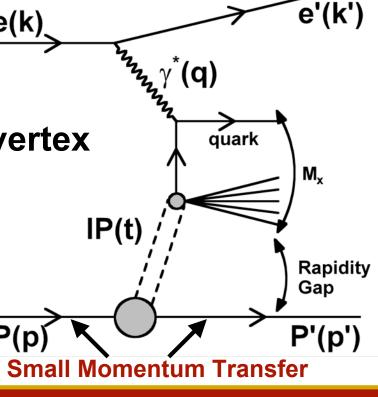
Photoproduction in ep Collisions


- Q² ~ 0 in Photoproduction
 - ep cross section has 1/Q⁴ dependence
 - Majority of ep events are photoproduction
- Time γ has to fluctuate into hadronic object: t ~ E_γ/Q²
 - Vector Dominance Model (VDM)
 - Long time: γ forms bound states of mesons
 - Anomalous
 - Medium time: γ fluctuates into unbound qq pair
 - Direct
 - Short time: γ acts as a point-like object
- Resolved = VDM + Anomalous


Direct & Resolved Photoproduction

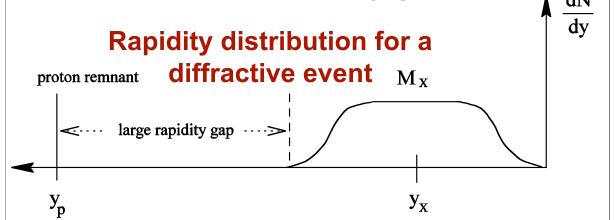
Direct Photoproduction

Resolved Photoproduction


- Direct: γ couples directly to parton in proton
- Resolved: parton from γ couples to parton in proton

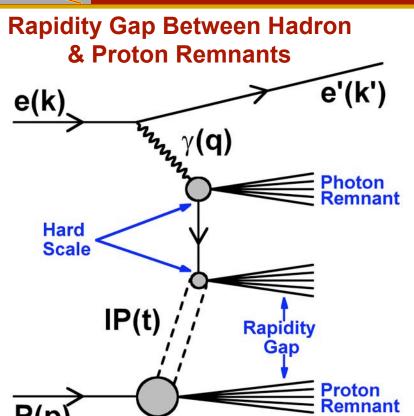
Diffraction in ep Collisions

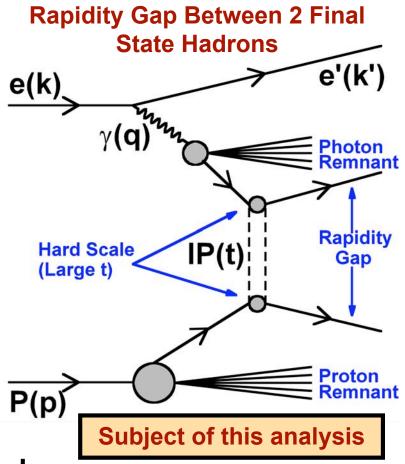
- Two "definitions" of diffraction
 - Final state particles preserve quantum numbers of associated initial state particles
 - Presence of rapidity gap (next slide)
- Exchange object: Pomeron (IP)_{e(k)}
 - Quantum numbers of vacuum
 - Does not radiate color charge
- Small momentum transfer at p vertex
 - Soft diffraction: No hard scale exists
 - Hard diffraction: A hard scale exists
 - Example: Large momentum transfer between Pomeron and quark
 - pQCD is applicable



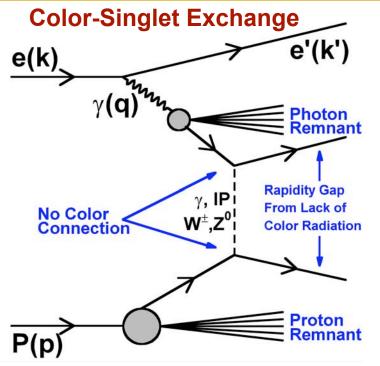
Rapidity & Pseudorapidity

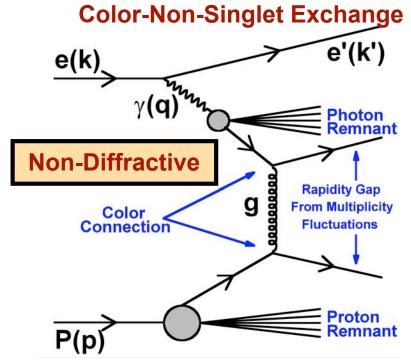
- Rapidity: $y = \frac{1}{2} \ln [(E+p_z) / (E-p_z)]$
 - Boost invariant in longitudinal (z) direction
 - 4-vector written in terms of (p_T, y, φ)
- Pseudorapidity: $\eta = -\ln [\tan(\theta/2)]$
 - Rapidity in the limit that particle mass → 0
 - Related to the azimuthal angle (dependence on θ)
 - 4-vector written in terms of (E_{T.}η,φ)
 - Quantities measured in an experiment
- Inelastic events exhibit a constant rapidity distribution


Diffractive events exhibit a rapidity gap



Hard Diffractive Photoproduction



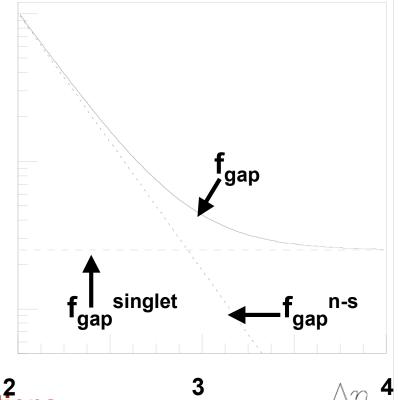

- Study the nature of the Pomeron exchnge
 - Observe Color-Singlet exchange
- Hard Scale allows application of pQCD to diffractive process

Rapidity Gaps between Final State Hadrons

- 2 Sources of Rapidity Gaps between Jets
 - Color-singlet Exchange
 - Lack of color radiation produces gap
 - Example: Pomeron exchange
 - Color-Non-Singet Exchange
 - Fluctuations in particle multiplicity produces gap
 - Non-diffractive

The Gap Fraction f(Δη)

Dijet Events with large Rapidity separation between jets & $E_T^{Gap} < E_T^{Cut}$


$$f(\Delta \eta) = \frac{d\sigma_{gap} / d\Delta \eta}{d\sigma / d\Delta \eta}$$

All Dijet Events with large Rapidity separation between jets

$$\sigma_{gap} = \sigma_{gap}^{\text{singlet}} + \sigma_{gap}^{\text{non-singlet}}$$

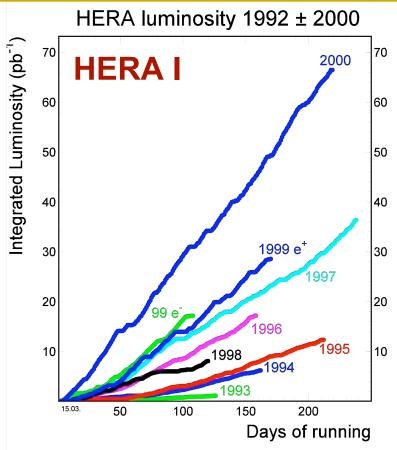
- Color Singlet
 - Gap created by lack of color flow
 - $f(\Delta \eta)$ constant in $\Delta \eta$
- Color Non-Singlet
 - Gap created by multiplicity fluctuations
 - $f(\Delta \eta)$ decreases exponentially with $\Delta \eta$

Expectation for Behavior of Gap Fraction (J. D. Bjorken, V. Del Duca, W.-K. Tung)

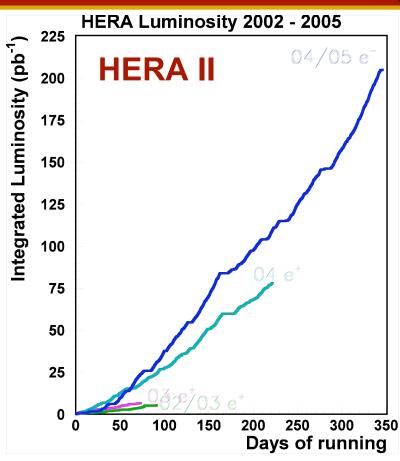


HERA

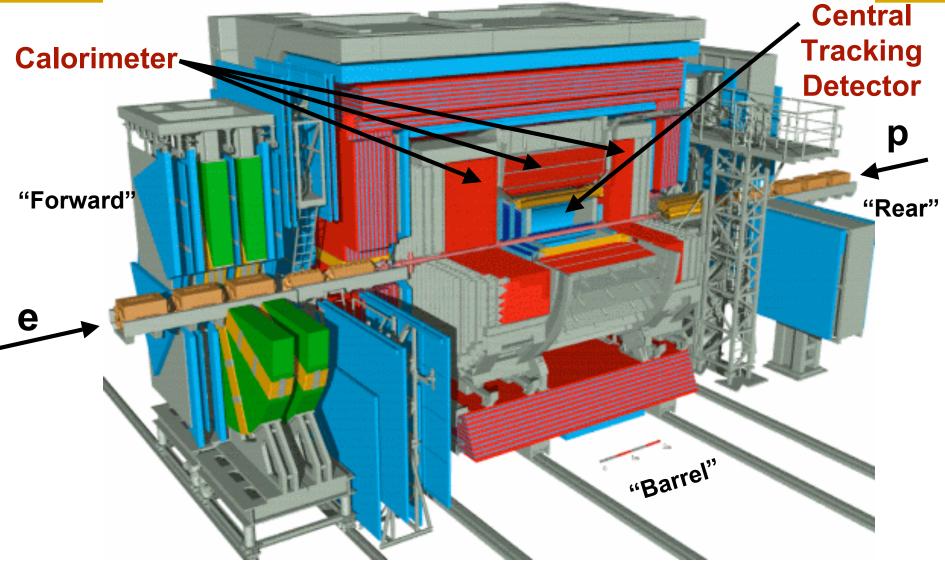
DESY Hamburg, Germany


Beam Energy

- 820 GeV Protons (1992-97)
- 920 GeV Protons (After 1998)
- 27.5 GeV e+ or e-
- CM Energy: ~300/320 GeV
 - Equivalent to 50 TeV Fixed Target experiment
- 96 ns crossing time
- 220 bunches
 - Not all filled
- Currents:
 - ~90 mA Protons
 - ~40 mA Leptons
- Instantaneous Lumi
 - ~4x10³¹ cm⁻² s⁻¹

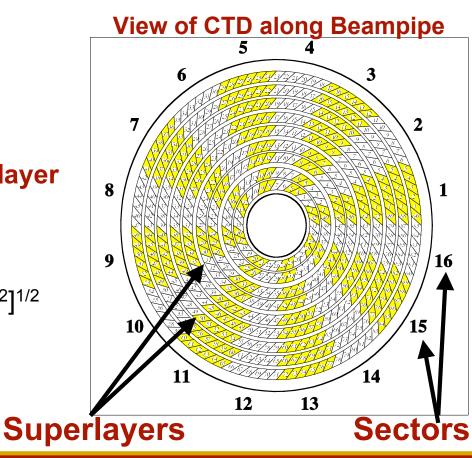

HERA I and II Luminosity

e⁻: 27 pb⁻¹ e⁺: 166 pb⁻¹


HERA II: 2002 – 2007

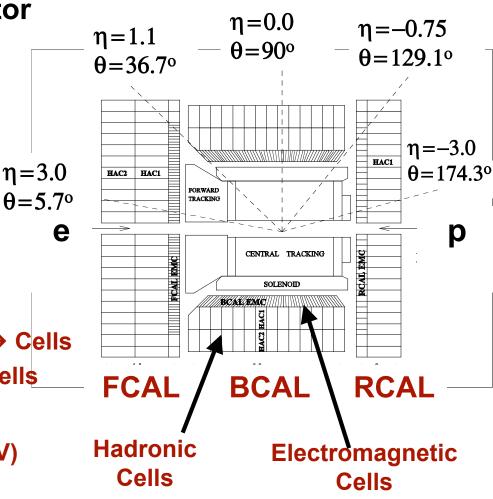
- 5x lumi and polarization
- e⁻: 205 pb⁻¹ e⁺: 90 pb⁻¹

ZEUS Detector



Central Tracking Detector

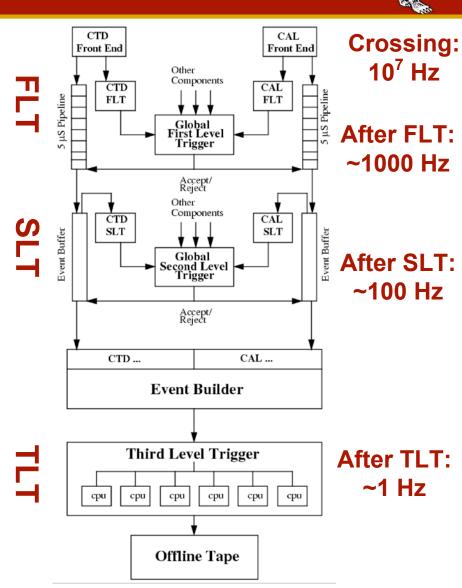
- Cylindrical Drift Chamber in 1.43 T magnetic field
- Covers $15^{\circ} < \theta < 164^{\circ} (-1.96 < \eta < 2.04)$
- Organization
 - 16 azimuthal sectors
 - 9 concentric superlayers
 - 8 radial layers in a superlayer
 - Between 32-96 cells in a superlayer
- Resolutions
 - Track transverse momentum
 - $\sigma/p_T = [(0.005p_T)^2 + (0.0016)^2]^{1/2}$
 - Vertex Position
 - x and y: accurate to 1 mm
 - z: accurate to 4 mm



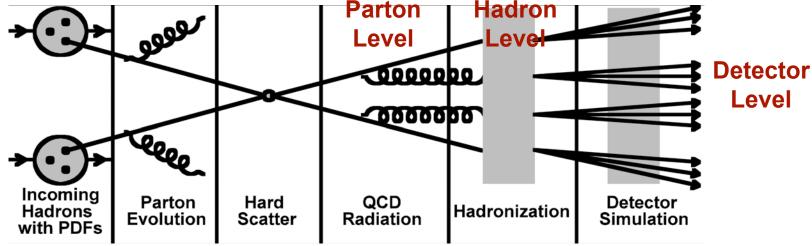
Uranium Calorimeter

 Composed of plastic scintillator and depleted uranium

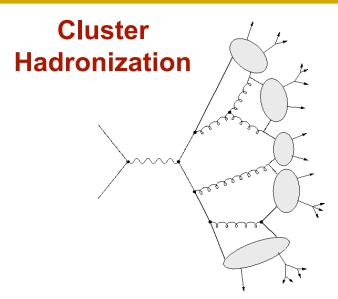
- Compensating
 - Equal response to electrons and hadrons of same energy $\eta = 3.0$
- Sampling
 - Most energy absorbed by U
- Segmented
 - 3 Regions: FCAL, BCAL, RCAL
 - Regions → Modules → Towers → Cells
 - Hadronic and Electromagnetic Cells
- Resolution (from test beam)
 - Electromagnetic: $\sigma = 0.18/\sqrt{E(GeV)}$
 - Hadronic: $\sigma = 0.35/\sqrt{E(GeV)}$

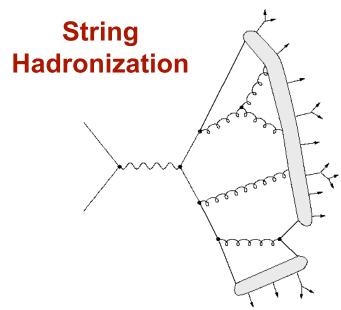


ZEUS Trigger


- First Level (4.4 μs)
 - Dedicated custom hardware
 - Pipelined without deadtime
 - Global & regional energy sums
 - Isolated e and μ recognition
 - Track quality information
- Second Level (6 ms)
 - Commodity transputers
 - Calorimeter timing cuts
 - Cuts on E-p_z and E_T
 - Vertex and tracking information
 - Simple physics filters
- Third Level (0.3 s)
 - Commodity processor farm
 - Full event info available
 - Refined jet and lepton finding
 - Advanced physics filters

Modeling Events with Monte Carlo



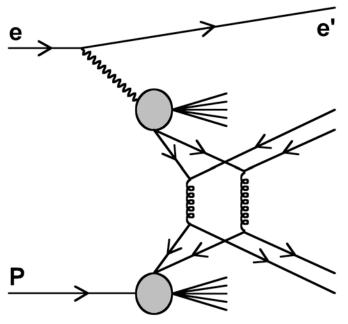

- Incoming Hadrons: Soft terms absorbed into PDFs at (x₀,Q₀²)
- Parton Evolution: Extrapolate from (x_0, Q_0^2) to large range of (x, Q^2)
- Hard Scatter: Calculated exactly to fixed order
- QCD Radiation: Initial and final state radiation
 - Simulated by perturbative methods
 - MEPS method (Matrix Element + Parton Shower)
- Hadronization: Quakrs & gluons → colorless hadrons
 - Simulated by non-perturbative methods (see following slide)
- Detector Simulation: Uses GEANT package

Hadronization Models

Cluster Hadronization

- Color-singlet clusters formed from quark anti-quark pairs
- Cluster fragmented into 2 hadrons
- If too light to fragment, taken as lightest single hadron of flavor

String Hadronization (Lund String Model)


- Quark anti-quark pairs connected by 1-dimensional string
- Potential energy of string increases as quark and anti-quark move apart
- Quark and anti-quark combine with quark and anti-quark from vacuum fluctuation
- Divisions until only on-shell hadrons remain with quarks connected by small string

Multi-Parton Interactions (MPI)

- All scattering not associated with hard scatter
- Contributes to Underlying Event
 - All hadronic activity in addition to that produced by hard scatter
- Calculated using phenomenological models
 - Does not contribute to direct interactions
- Increases energy of final state e

Simulation of γp Events PYTHIA

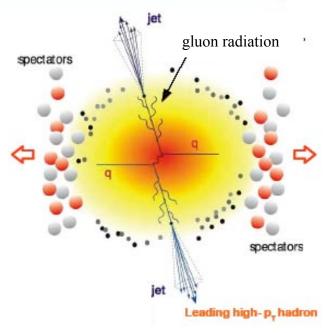
- Accurate hadronization model
 - Many input parameters
- Adjustable p_T^{Min1} and p_T^{Min2}
 - p_T^{Min1} : Minimum p_T of hardest interaction
 - p_TMin2: Minimum p_T of MPIs
- QCD Radiation: MEPS
- Hadronization: String Model
- MPIs in resolved MC
- Color-singlet exchange in PYTHIA
 - No Pomeron exchange model in PYTHIA
 - Use high-t γ exchange for qq scattering in LO resolved process
 - Reproduce topology of rapidity gap events
 - Not a source of events with rapidity gaps in hard diffractive γp

Simulation of γp Events HERWIG

- Simple universal hadronization model
 - Few input parameters
- Adjustable p_T^{Min1} (but not p_T^{Min2})
- QCD Radiation: MEPS
- Hadronization: Cluster Model
- JIMMY package used to simulate MPIs
 - MPIs in resolved and color-singlet MC
- Color-singlet exchange in HERWIG
 - BFKL pomeron as exchange object
 - Resummation of leading log diagrams in 1/x

Reconstruction

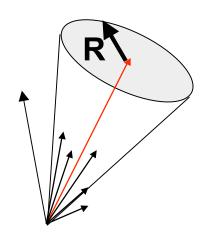
- Tracks: Use only information from CTD
- Vertex: Use CTD tracks fit to 5-parameter Helix model
- Calorimeter
 - Use cell position, magnitude of PMT pulse, time of PMT pulse
 - Island formation: Cells merged based on location and size of energy deposits
- e⁻/e⁺: SINISTRA95 Neural Network electron finder
- Energy Flow Objects (EFOs)
 - Combine track and calorimeter information for hadrons
 - CTD has better angular resolution than CAL
 - CTD has better energy resolution at low energy than CAL


Jets

- Colored partons produced in collision
 - Parton showers → Many more colored partons
 - Hadronization → Colorless hadrons
- Jet
 - Colorless collimated "spray" of hadrons
 - Experimental signature of quarks & gluons
 - Experimentally observed as energy clusters
 - Jets properties give hadron-level info

Jet Algorithms

- Collinear Safe
 - 1 particle of energy E same as N particles whose sum of energy is E
 - Independent of detector granularity
- Infrared Safe
 - Insensitive to infinitely soft partons
 - Measured energy not affected by very low energy particles

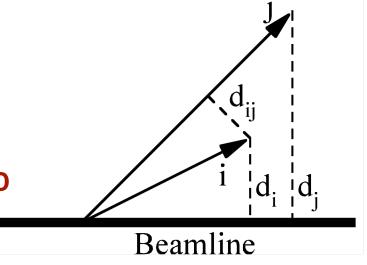


Cone Jet Algorithm

- Historically used in pp experiments
- Maximize E_T in cone or radius R
- Procedure
 - High E_T objects selected as seeds (cone centers)
 - All objects within R combined to form Jet Candidate
 - Combination repeated with jet candidate as center of cone
 - Repeats until
 - Center of cone same as center of jet candidate
 - Maximum number of iterations reached
- Advantages
 - Seeds minimize CPU time
 - Conceptually simple
- Disadvantages
 - Not infrared safe
 - No standardized treatment of overlapping jets

$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

k_T Cluster Jet Algorithm


Historically used in e⁺e⁻ experiments

Procedure

- For every object i and pair of objects i,j compute
 - $d_i^2 = E_{T,i}^2$ (distance to beamline in momentum space)
 - $d_{i,j}^2 = min\{E_{T,i}^2, E_{T,j}^2\}[\Delta \eta^2 + \Delta \phi^2]^{1/2}$ (distance between objects)
- Calculate min{d_i², d_{i,i}²} for all objects
 - If d_{i,i} is the smallest, combine objects *i* and *j* into a new object
 - If d_i² is the smallest, object *i* is a jet

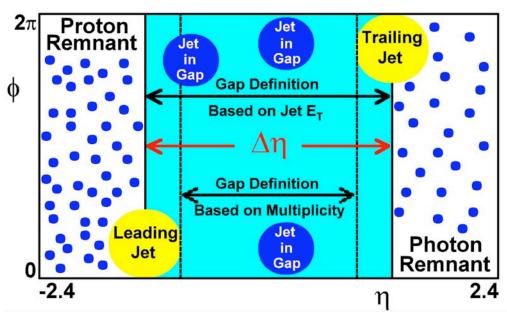
Advantages

- Collinear and infrared safe
- No problems with overlapping jets
- Distributions can be predicted by QCD

Kinematic Variables

Variable	Electron Method	Jacquet-Blondel Method
У	$1 - \frac{E_e'}{2E_e} (1 - \cos \theta_e)$	$\frac{\sum_{i} (E_i - p_{z,i})}{2E_e}$
Q^2	$2E_{e}E_{e}^{'}(1+\cos\theta_{e})$	$\frac{(\sum_{i} p_{z,i})^{2} + (\sum_{i} p_{y,i})^{2}}{1 - y_{JB}}$

- Jet $E_T = [p_x^2 + p_y^2]^{1/2}$
- Jet $\eta = -\ln (\tan \theta/2)$ where $\theta = \tan^{-1}(E_T/p_z)$
- x_{γ} : Fraction of γ momentum involved in collision
 - Direct γp: x_γ ~ 1
 - Resolved $\gamma p: x_{\gamma} < 1$


$$\sum E_T e^{-\eta}$$

$$x_{\gamma}^{OBS} = \frac{\sum_{jets}^{N} -1}{2yE_{e}}$$

Rapidity Gap Topology

- Distance between leading and trailing jet centers: Δη
- E_T^{Gap}: Total E_T of jets between leading and trailing jet centers
- Gap Event has small energy in Gap: E_T^{Gap} < E_T^{Cut}
- Gap definition based on E_T better than that based on multiplicity
 - Collinear and infrared safe
 - Gap spans between centers of leading & trailing jets (increased statistics)

Monte Carlo Tuning

PYTHIA and HERWIG parameters modified

- Tuning based on JetWeb parameters (Global fit to collider data)
- Tuned p_T^{Min} to ZEUS E_T^{GAP} distributions

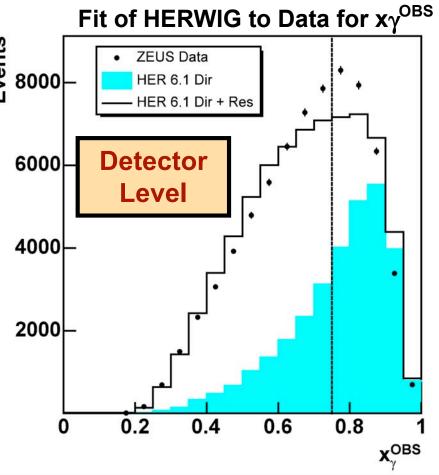
Tuned PYTHIA 6.1

- Proton PDF: CTEQ 5L (Set 46)
- Photon PDF: SaS-G 2D
- p_T^{Min1} = 1.9 GeV p_T^{Min2} = 1.7 GeV (default 2.0 GeV, 1.5 GeV)

Tuned HERWIG 6.1

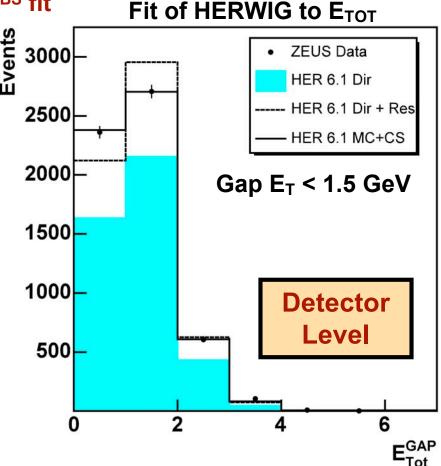
- Proton PDF: CTEQ 5L (Set 46)
- Photon PDF SaS-G 2D
- Square of factor to reduce proton radius: 3.0 (default 1.0)
- Probability of Soft Underlying Event: 0.03 (default 1.0)
- p_TMin1 = 2.7 GeV (default 1.8 GeV)

p_T^{Min 1}: p_T of hardest interaction


p_T^{Min 2}: p_T of all secondary interactions

Acceptance Correction Direct + Resolved MC

- Correct data for acceptance: Detector → Hadron level
- Dir & Res relative amounts fit to Data
 - x_{γ}^{OBS} distribution
- PYTHIA Detector Level
 - 28% Direct
 - 72% Resolved
- HERWIG Detector Level
 - 44% Direct
 - 56% Resolved
- Non-Color-Singlet (NCS)
 - Direct and Resolved only



Acceptance Correction Direct + Resolved + Color Singlet

- Correct data for acceptance: Detector → Hadron level
- NCS & CS relative amounts fit to Data
 - Dir and Res fractions fixed from x_γ^{OBS} fit
 - E_{TOT} for E_T^{GAP} < 1.5 GeV
- For Inclusive Sample
 - PYTHIA Detector Level
 - 96% NCS (Direct + Resolved)
 - 4% CS
 - HERWIG Detector Level
 - 94% NCS (Direct + Resolved)
 - 6% CS
- Compare to other methods
 - Fit to Num Jets for E_TGAP < 1.5 GeV
 - Hadron level E_TGAP
 - Similar results

Rapidity Gap Event Selection

ZEUS 1996-97 Data (38 pb⁻¹)

Trigger Selection:

FLT, SLT, and TLT requirements to select dijet photoproduction events

Clean Photoproduction Sample:

Reject events having Electron with $E_e > 5$ GeV AND $y_e < 0.85$

$$\Sigma p_T / \Sigma \sqrt{E_T} < 2 \text{ GeV}^{1/2}$$

$$|z_{vtx}| < 40$$
 cm

$$0.2 < y_{JB} < 0.85$$

Dijets with Large Rapidity Separation:

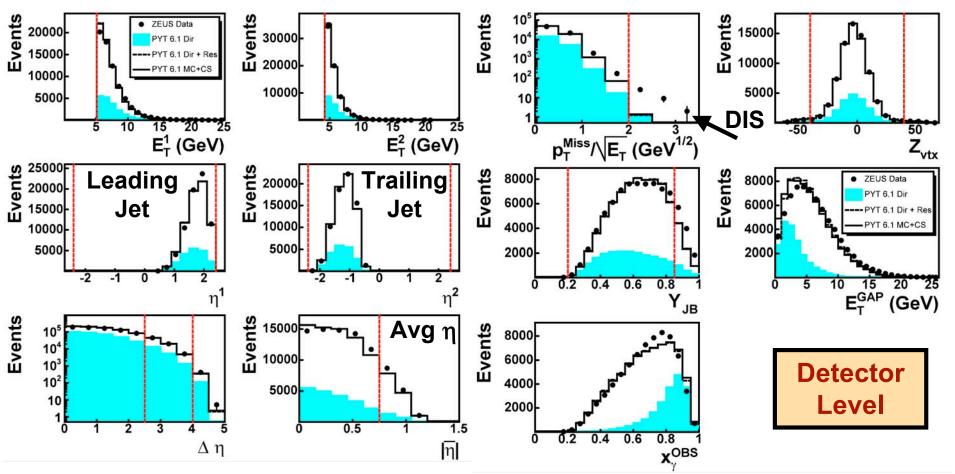
 $E_T^{1,2} > 5.1$, 4.25 GeV (corresponds to $E_T^{1,2} > 6.0$, 5.0 GeV at hadron level)

$$|\eta^{1,2}| < 2.4$$

$$\frac{1}{2}|\eta^1+\eta^2| < 0.75$$

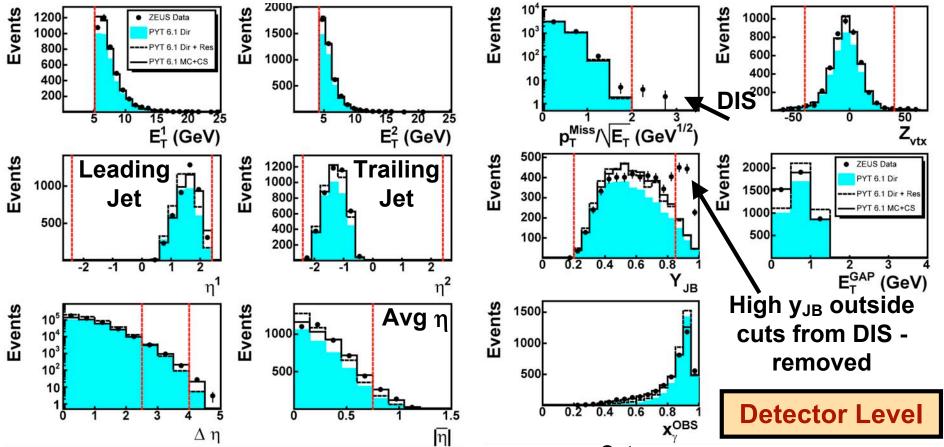
 $2.5 < |\eta^1 - \eta^2| < 4.0$ (Gap Definition)

~70,000 Events in Inclusive Sample


4 Samples of Gap Events:

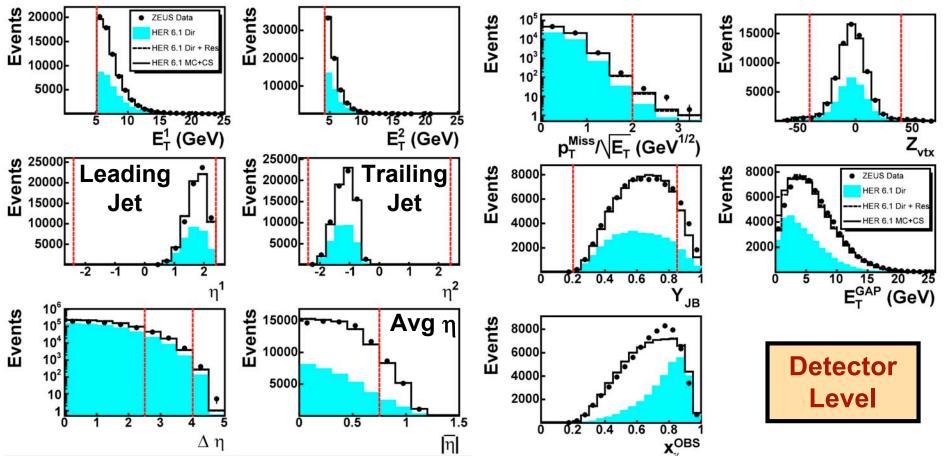
 E_T^{CUT} = 0.6, 1.2 1.8, 2.4 GeV (corr. to E_T^{CUT} = 0.5, 1.0, 1.5, 2.0 at hadron level)

Inclusive Kinematic Variables Data vs. PYTHIA



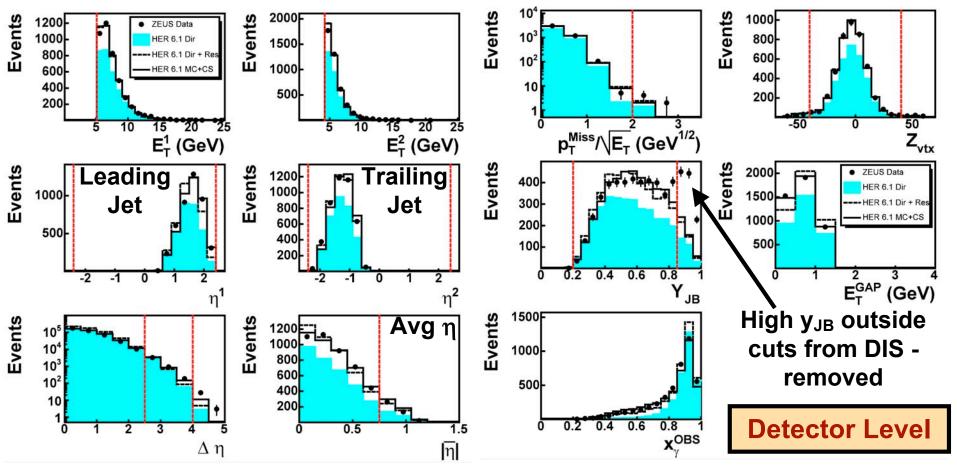
- PYTHIA describes the inclusive variables
- Addition of CS makes small improvement for inclusive sample

Gap Kinematic Variables Data vs. PYTHIA ($E_T^{CUT} = 1 \text{ GeV}$)



- PYTHIA describes the gap variables (E_T^{Cut} = 1 GeV)
- Addition of CS makes substantial improvement for gap sample

Inclusive Kinematic Variables Data vs. HERWIG



- HERWIG describes the inclusive variables
- Addition of CS makes small improvement for inclusive sample

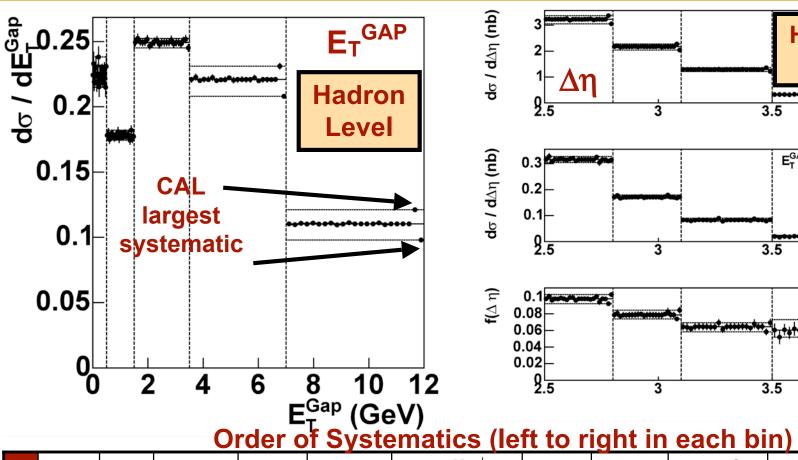
Gap Kinematic Variables Data vs. HERWIG (E_TCUT = 1 GeV)

- HERWIG describes the gap variables (E_T^{Cut} = 1 GeV)
- Addition of CS makes substantial improvement for gap sample

Systematics

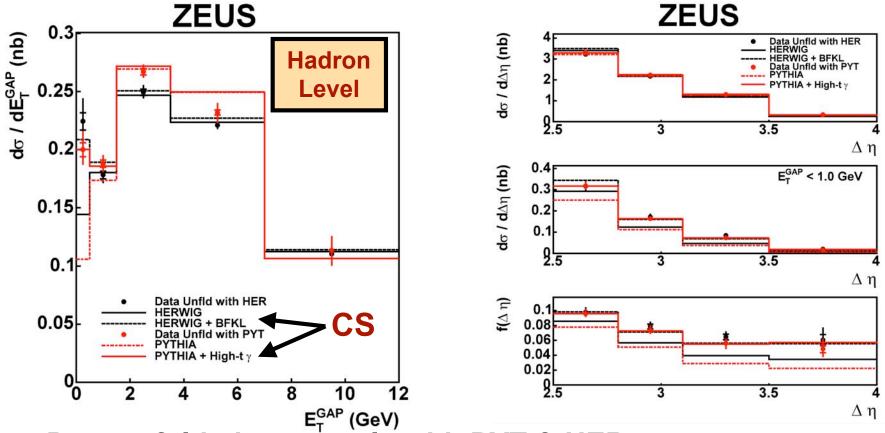
- Kinematic Cuts: +/- HERWIG Resolutions
- Amount of CS in unfolding varied by 25%
- CAL Energy Scale varied by 3%

Difference between PYT and HER acceptance correction


Variable	+/- Change	Variable	+/- Change
E _T ^{1,2}	13%	η1,2	2%
$1/2 \eta^1+\eta^2 $	9%	Δη	2%
У _{ЈВ}	5%	$p_{T}^{Miss}/\sqrt{E_{T}}$	10%
y _e	6%	Z _{vtx}	25%
E _T Cut	36%		

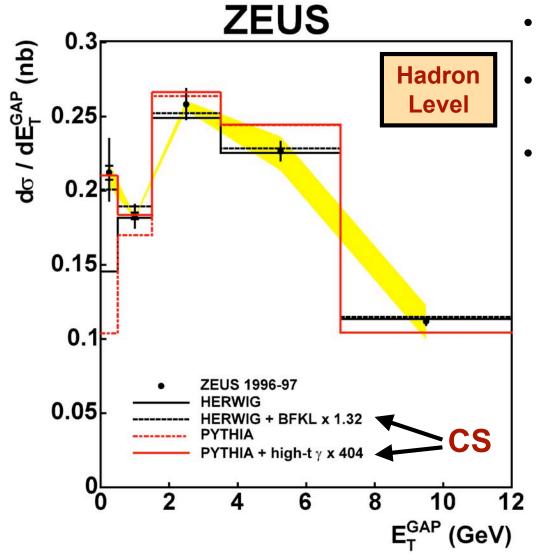

- Same systematics used for all bins
- Systematic variation in cross section dependent on E_T^{Gap} , $\Delta\eta$, W, and \mathbf{x}_v^{OBS} bins

Cross Section Systematics Unfolded with HERWIG



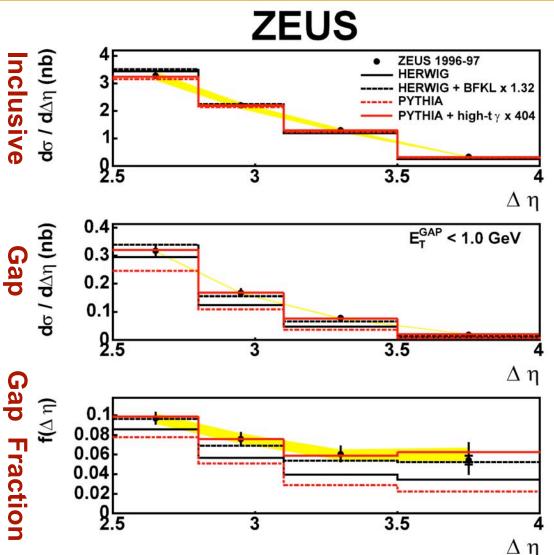
+	1.E _T	3.η	5.Αν η	7.∆η	9.y _{JB}	11.p _T ^M /√E _T	13.y _e	15.Z _v	17.E _T ^{Cut}	19.%CS	21.CAL
-	2.E _T	4.η	6. Αν η	8.Δη	10.y _{JB}	12.p _T ^M /√E _T	14.y _e	16.Z _v	18.E _T ^{Cut}	20.%CS	22.CAL

Cross Sections Unfolded with PYT & HER



- Data unfolded separately with PYT & HER
- NCS MC fit to data in E_TGAP cross section
- CS MC added by fitting NCS+CS to E_TGap
 - Addition of CS maximizes agreement with Data for PYT and HER

Acceptance Corrected Data vs MC E_TGap Cross Section


- Acceptance Correction
 - Average of PYT & HER
- Systematic Errors from HER
 - Difference between HER & PYT values added to systematic
- MCs fit to Data
 - χ² Minimization
 - Yield Scale Factors
 - HER: 1.01*NCS + 1.32*CS
 - PYT: 1.25*NCS + 404*CS
 - High CS Scale Factor in PYTHIA due to High-t γ exchange
 - Same scale factors used in all following plots

Fit to E_T^{GAP} Cross
Section results in ~3%
CS contribution for both
PYTHIA & HERWIG

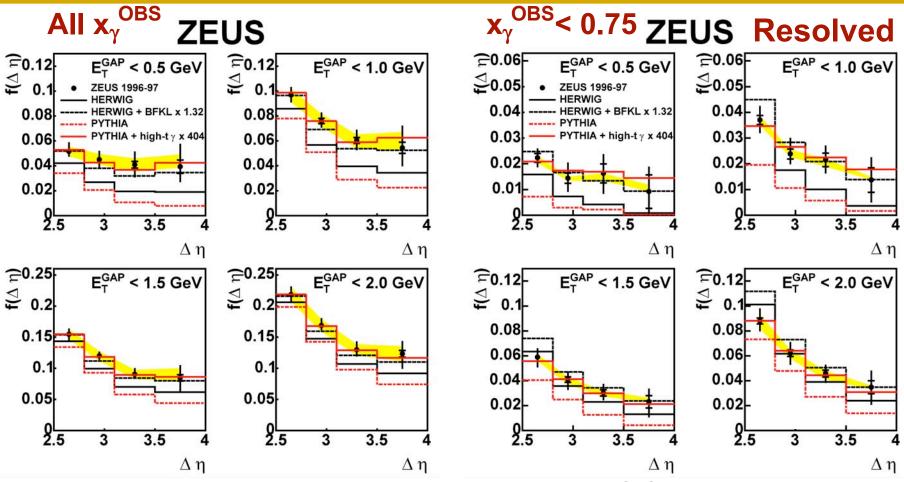
Acceptance Corrected Data vs MC Δ η Cross Sections

Inclusive Cross Section

MC with and without CS added describes data

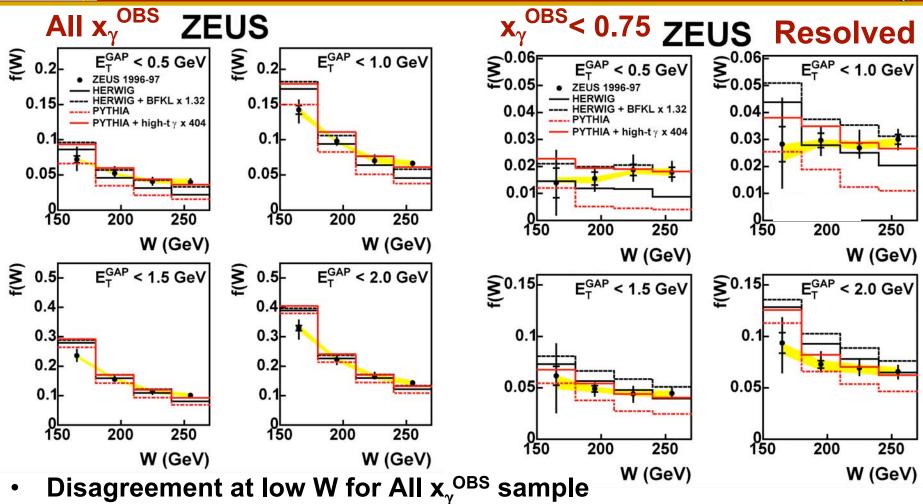
Gap Cross Section

- MC without CS disagrees with data
- MC with CS added describes data


Gap Fraction

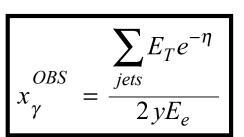
- MC without CS disagrees with data
- MC with CS added describes data

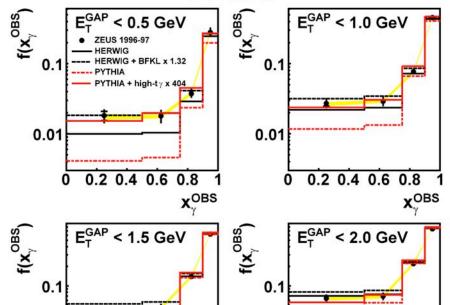
Δη for Different Gap Fractions Unfolded with AVG of PYT & HER



- MC with CS added describes data for entire x_{γ}^{OBS} region
- CS contribution in <u>resolved region</u> is 1-2% from Gap Fraction
 - Resolved region should allow comparison to Tevatron (1-1.5% CS)

W for Different Gap Fractions Unfolded with AVG of PYT & HER


- CS contribution in <u>resolved region</u> is 1-2% from Gap Fraction
 - Resolved region should allow comparisons to Tevatron



x_γ^{OBS} for Different Gap Fractions Unfolded with AVG of PYT & HER

Resolved region: $x_{\nu}^{OBS} < 0.75$

Should allow comparison to Tevatron

0.2 0.4 0.6 0.8

0.01

HERWIG agreement remains better than PYTHIA agreement

XOBS

PYTHIA agreement in resolved region improved compared to Δη

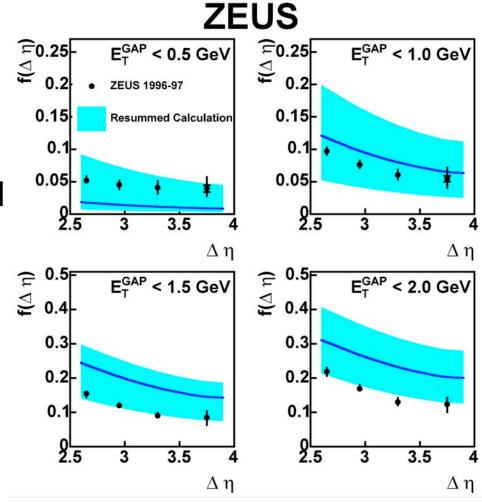
0.01

0.2 0.4 0.6

0.8

XOBS

Δη Gap Fractions Resummed Calculation

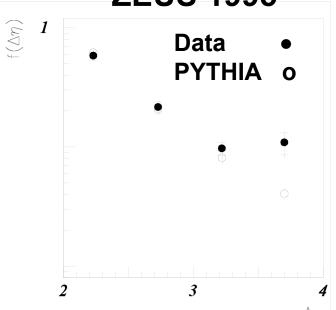


Resummed Calculation

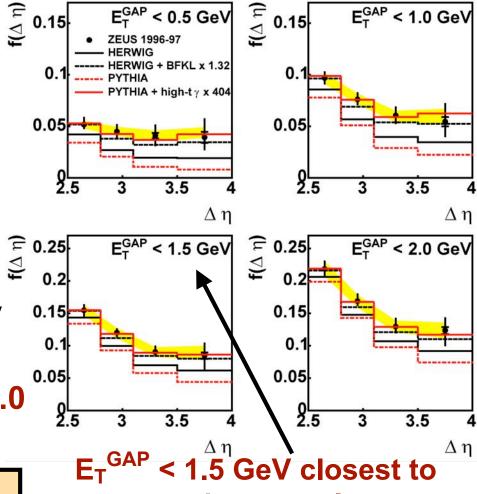
- Seymour & Appleby
- Only calculation available
- Large Errors

Shape of data described

- $E_T^{Cut} = 0.5$
 - Data above prediction
- All other E_T^{Cut} values
 - Data below predictions
 - Disagreement increases as E_T^{Cut} increases



Comparisons to Previous ZEUS Measurement

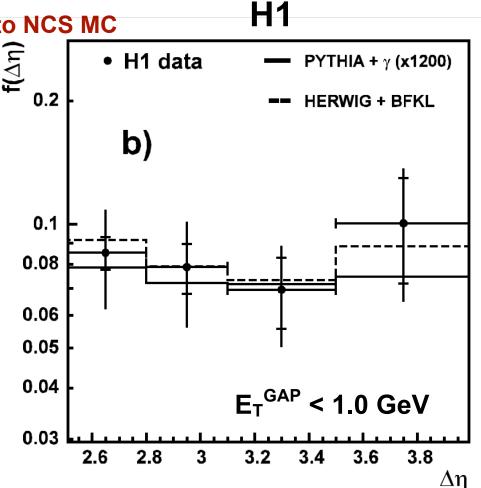

Gap defined by multiplicity (not E_T)

 $f(\Delta \eta) = 0.11 \text{ for } 3.5 < \Delta \eta < 4.0$

1-4% CS from 2-4 in Δη

Measurements consistent

ZEUS (this analysis)


previous results

Comparison to H1 Measurement

- Gap Fraction for E_T^{Gap} < 1.0 GeV
 - 6.6 pb⁻¹ of Lumi
 - Excess of data when compared to NCS MC
 - Data described by NCS+CS MC
 - Consistent with ZEUS within errors
 - Reference
 - C. Aldoff et al.
 - Eur.Phys.J C24:517-527 2002

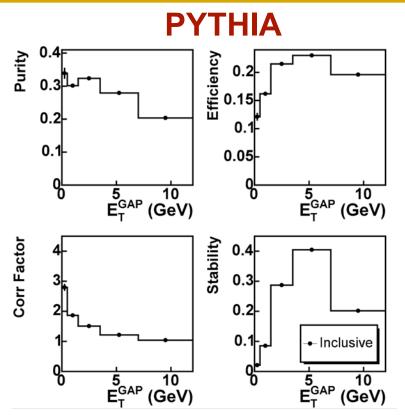
Rapidity Gap Between Jets Summary

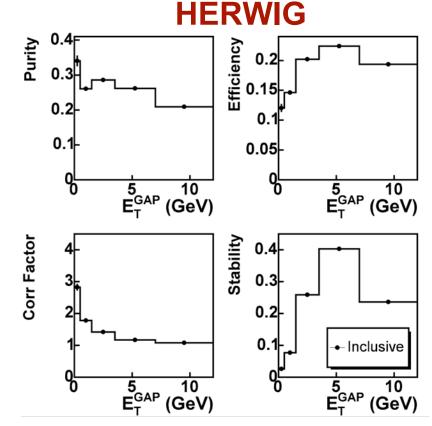
Conclusions

- Data demonstrate evidence of ~3% Color-Singlet contribution estimated at the cross section level for entire phase space
 - Observe ~1-2% Color-Singlet in resolved region
- Data consistent with published ZEUS and H1 results
- PYTHIA and HERWIG describe data well after the Color-Singlet contribution is added

In Progress

- Examine W dependence
- Explore comparisons with Tevatron


Extra Slides

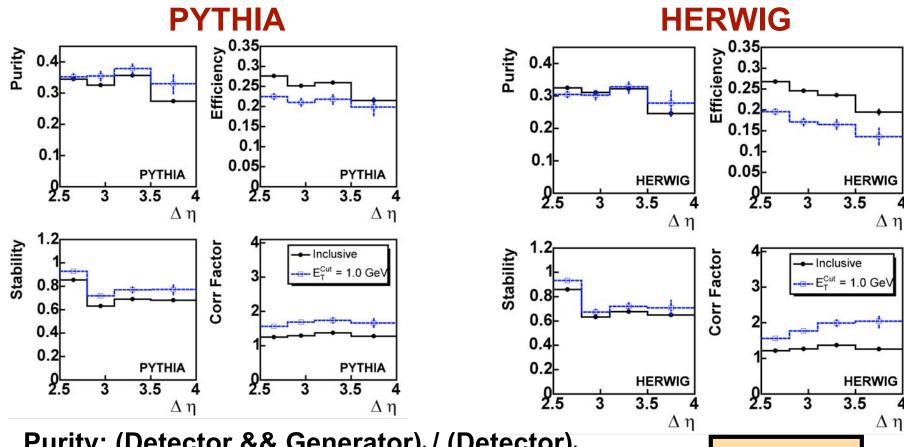


Purities and Efficiencies E_T Gap

- Purity: (Detector && Generator), / (Detector),
- Efficiency: (Detector && Generator), / (Generator),

Correction Factor: (Generator / Detector); = (Purity / Efficiency);

Stability: (Detector && Generator), / Reconstructed in any bin


i: Bin i

Purities and Efficiencies

- Purity: (Detector && Generator), / (Detector),
- Efficiency: (Detector && Generator), / (Generator),
- Correction Factor: (Generator / Detector); = (Purity / Efficiency);
- Stability: (Detector && Generator), / Reconstructed in any bin

i: Bin i