

Photoproduction of Events with Rapidity Gaps Between Jets with ZEUS at HERA

Patrick Ryan

University of Wisconsin

Michigan State HEP Seminar May 2, 2006

Outline

- Introduction to Rapidity Gaps
 - Photoproduction
 - Diffraction
 - Hard Diffractive Photoproduction
- HERA and ZEUS
- Simulation of photoproduction events
- Reconstruction
- Event Selection
- Comparisons between Data and MC
- Results

- Q² ~ 0 in Photoproduction
 - ep cross section has 1/Q⁴ dependence
 - Majority of ep events are photoproduction
- Time γ has to fluctuate into hadronic object: t ~ E_{γ}/Q²
 - Vector Dominance Model (VDM)
 - Long time: γ forms bound states of mesons
 - Anomalous
 - Medium time: γ fluctuates into unbound qq pair
 - Direct
 - Short time: γ acts as a point-like object
- Resolved = VDM + Anomalous

- Direct: γ couples directly to parton in proton
- Resolved: parton from γ couples to parton in proton

Diffraction in ep Collisions

- Two "definitions" of diffraction
 - Final state particles preserve quantum numbers of associated initial state particles
 - Presence of rapidity gap
- Exchange object: Pomeron (IP)
 - Quantum numbers of vacuum
 - Does not radiate color charge
- Small momentum transfer at p vertex
 - Soft diffraction: No hard scale exists
 - Hard diffraction: A hard scale exists
 - Example: Large momentum transfer between Pomeron and quark
 - Perturbative QCD (pQCD) is applicable

Hard Diffractive Photoproduction

- Study the nature of the Pomeron exchange
 - Observe Color-Singlet (CS) exchange
- Hard Scale allows application of pQCD to diffractive process

FUS

Rapidity Gaps between Jets

Color-Singlet Exchange Color-Non-Singlet Exchange e'(k') e'(k') e(k) e(k $\gamma(\mathbf{q})$ γ(q Photon Remnant Photon Remnant **Non-Diffractive Rapidity Gap** γ, IPi **Rapidity Gap** g From Lack of **From Multiplicity No Color** Color < W[±],Z⁰¹ **Color Radiation** Connection Fluctuations Proton Proton P(p)P(p)

- 2 Sources of Rapidity Gaps between Jets
 - Color-singlet Exchange
 - Lack of color radiation produces gap
 - Example: Pomeron exchange
 - Color-Non-Singet Exchange
 - Fluctuations in particle multiplicity produces gap
 - Non-diffractive

The Gap Fraction f(Δη)

f(Δη) decreases exponentially with Δη

DESY Hamburg, Germany

- Beam Energy
 - 820 GeV Protons (1992-97)
 - 920 GeV Protons (since 1998)
 - 27.5 GeV e+ or e-
 - CM Energy: ~300/320 GeV
 - Equivalent to 50 TeV Fixed
 Target experiment
- 96 ns crossing time
- 220 bunches
 - Not all filled
- Currents:
 - ~90 mA Protons
 - ~40 mA Leptons
- Instantaneous Lumi
 - ~4x10³¹ cm⁻² s⁻¹

HERA I and II Luminosity

- HERA I: 1992 2000
 - e⁻: 27 pb⁻¹ e⁺: 166 pb⁻¹

- HERA II: 2002 2007
 - 5x lumi and polarization
 - e⁻: 205 pb⁻¹ e⁺: 90 pb⁻¹

300

350

ZEUS Detector

- Cylindrical Drift Chamber in 1.43 T magnetic field
- Covers 15° < θ < 164° (-1.96 < η < 2.04)
- Organization
 - 16 azimuthal sectors
 - 9 concentric superlayers
 - 8 radial layers in a superlayer
 - Between 32-96 cells in a superlayer
- Resolutions
 - Track transverse momentum
 - $\sigma/p_T = [(0.005p_T)^2 + (0.0016)^2]^{1/2}$
 - Vertex Position
 - x and y: accurate to 1 mm
 - z: accurate to 4 mm

Uranium Calorimeter

- Composed of plastic scintillator and depleted uranium
- Compensating
 - Equal response to electrons and hadrons of same energy
- Sampling
 - Most energy absorbed by U
- Segmented
 - 3 Regions: FCAL, BCAL, RCAL
 - Regions → Modules → Towers → Cells
 - Hadronic and Electromagnetic Cells
- Resolution (from test beam)
 - Electromagnetic: $\sigma = 0.18/\sqrt{E(GeV)}$
 - Hadronic: $\sigma = 0.35/\sqrt{E(GeV)}$

ZEUS Trigger

- First Level (4.4 μs)
 - Dedicated custom hardware
 - Pipelined without deadtime
 - Global & regional energy sums
 - Isolated e and μ recognition
 - Track quality information
- Second Level (6 ms)
 - Commodity transputers
 - Calorimeter timing cuts
 - Cuts on E-p_z and E_T
 - Vertex and tracking information
 - Simple physics filters
- Third Level (0.3 s)
 - Commodity processor farm
 - Full event info available
 - Refined jet and lepton finding
 - Advanced physics filters

Simulation of γp Events PYTHIA

- Accurate hadronization model
 - Many input parameters
- Adjustable p_T^{Min1} and p_T^{Min2}
 - p_T^{Min1}: p_T^{Min} of hardest interaction
 - p_T^{Min2}: p_T^{Min} of soft secondary interactions (Multi-Parton Interactions)
- QCD Radiation: Matrix Element+Parton Shower (MEPS)
- Hadronization: String Model
- Multi-Parton Interactions in resolved MC
- Color-singlet exchange in PYTHIA
 - No Pomeron exchange model in PYTHIA
 - Use high-t γ exchange for qq scattering in LO resolved process
 - Reproduce topology of rapidity gap events
 - Not a source of events with rapidity gaps in hard diffractive γp

Simulation of γp Events HERWIG

- Simple universal hadronization model
 - Few input parameters
- Adjustable p_T^{Min1} (but not p_T^{Min2})
- QCD Radiation: MEPS
- Hadronization: Cluster Model
- JIMMY package used to simulate MPIs
 - Multi-Parton Interactions in resolved & CS MC
- Color-singlet exchange in HERWIG
 - BFKL pomeron as exchange object
 - Resummation of leading log diagrams in 1/x

- Tracks: Use only information from CTD
- Vertex: Use CTD tracks fit to 5-parameter Helix model
- Calorimeter
 - Use cell position, magnitude of PMT pulse, time of PMT pulse
 - Island formation: Cells merged based on location and size of energy deposits
- e⁻/e⁺: SINISTRA95 Neural Network electron finder
- Energy Flow Objects (EFOs)
 - Combine track and calorimeter information for hadrons
 - CTD has better angular resolution than CAL
 - CTD has better energy resolution at low energy than CAL

k_T Cluster Jet Algorithm

- Historically used in e⁺e⁻ experiments
- Procedure
 - For every object *i* and pair of objects *i*,*j* compute
 - $d_i^2 = E_{T,i}^2$ (distance to beamline in momentum space)
 - $d_{i,j}^2 = \min\{E_{T,i}^2, E_{T,j}^2\}[\Delta \eta^2 + \Delta \phi^2]^{1/2}$ (distance between objects)
 - Calculate min{d_i², d_{i,j}²} for all objects
 - If d_{i,j}² is the smallest, combine objects *i* and *j* into a new object
 - If d_i² is the smallest, object *i* is a jet
- Advantages
 - Collinear and infrared safe
 - No problems with overlapping jets
 - Distributions can be predicted by QCD

Kinematic Variables

Variable	Electron Method	Jacquet-Blondel Method
У	$1 - \frac{E'_{e}}{2E_{e}}(1 - \cos\theta_{e})$	$\frac{\sum_{i} (E_i - p_{z,i})}{2E_e}$
Q ²	$2E_{e}E_{e}^{'}(1+\cos\theta_{e})$	$\frac{(\sum_{i} p_{z,i})^{2} + (\sum_{i} p_{y,i})^{2}}{1 - y_{JB}}$

• Jet
$$E_T = [p_x^2 + p_y^2]^{1/2}$$

- Jet $\eta = -\ln (\tan \theta/2)$ where $\theta = \tan^{-1}(E_T/p_z)$
- \mathbf{x}_{γ} : Fraction of γ momentum involved in collision

OBS

 x_{γ}

- Direct γp: x_γ ~ 1
- Resolved $\gamma p: x_{\gamma} < 1$

$$=\frac{\sum_{jets}E_{T}e^{-\eta}}{2\,yE_{e}}$$

- Distance between leading and trailing jet centers: $\Delta\eta$
- E_T^{Gap} : Total E_T of jets between leading and trailing jet centers
- Gap Event has small energy in Gap: E_T^{Gap} < E_T^{Cut}
- Gap definition based on E_T better than that based on multiplicity
 - Collinear and infrared safe
 - Gap spans between centers of leading & trailing jets (increased statistics)

- PYTHIA and HERWIG parameters modified
 - Tuning based on JetWeb parameters (Global fit to collider data)
 - Tuned p_T^{Min} to ZEUS E_T^{GAP} distributions
- Tuned PYTHIA 6.1
 - Proton PDF: CTEQ 5L (Set 46)
 - Photon PDF: SaS-G 2D

p_T^{Min 1}: p_T of hardest interaction p_T^{Min 2}: p_T of all secondary interactions

- p_T^{Min1}= 1.9 GeV p_T^{Min2}= 1.7 GeV (default 2.0 GeV, 1.5 GeV)
- Tuned HERWIG 6.1
 - Proton PDF: CTEQ 5L (Set 46)
 - Photon PDF SaS-G 2D
 - Square of factor to reduce proton radius: 3.0 (default 1.0)
 - Probability of Soft Underlying Event: 0.03 (default 1.0)
 - p_T^{Min1} = 2.7 GeV (default 1.8 GeV)

- Correct data for acceptance: Detector → Hadron level
- Dir & Res relative amounts fit to Data
- Fit of HERWIG to Data for x_{γ}^{OBS} x_v^{OBS} distribution vents **ZEUS** Data • PYTHIA – Detector Level HER 6.1 Dir HER 6.1 Dir + Res • 28% Direct 72% Resolved **Detector** 6000 Level HERWIG – Detector Level 44% Direct 4000 56% Resolved Non-Color-Singlet (NCS) 2000 **Direct and Resolved only** 0.2 0.4 0.6 0.8 0 x^{OBS}

ZEUS 1996-97 Data (38 pb ⁻¹)					
Trigger Selection:					
FLT, SLT, and TLT requirements to	FLT, SLT, and TLT requirements to select dijet photoproduction events				
Clean Photoproduction Sample:					
Reject events having Electron with E _e > 5 GeV AND y _e < 0.85					
Σp_T / $\Sigma \sqrt{E_T}$ < 2 GeV ^{1/2}					
z _{vtx} < 40 cm	0.2 < y _{JB} < 0.85				
Dijets with Large Rapidity Separation:					
$E_{T}^{1,2} > 5.1$, 4.25 GeV (corresponds to $E_{T}^{1,2} > 6.0$, 5.0 GeV at hadron level)					
$ \eta^{1,2} < 2.4$ $\frac{1}{2} \eta^1 + \eta^2 < 0.75$					
2.5 < η ¹ -η ² < 4.0 (Gap Definition)					
~70,000 Events in Inclusive Sample					
4 Samples of Gap Events:					
E _T ^{CUT} = 0.6, 1.2 1.8, 2.4 GeV (corr. to E _T ^{CUT} = 0.5, 1.0, 1.5, 2.0 at hadron level)					

Patrick Ryan, Univ. of Wisconsin

- PYTHIA describes the inclusive variables
- Addition of CS makes small improvement for inclusive sample

Gap Kinematic Variables Data vs. PYTHIA (E_T^{CUT} = 1 GeV)

- PYTHIA describes the gap variables (E_T^{Cut} = 1 GeV)
- Addition of CS makes substantial improvement for gap sample

7FUS

- HERWIG describes the inclusive variables
- Addition of CS makes small improvement for inclusive sample

- HERWIG describes the gap variables (E_T^{Cut} = 1 GeV)
- Addition of CS makes substantial improvement for gap sample

Systematics

- Kinematic Cuts: +/- HERWIG Resolutions
- Amount of CS in unfolding varied by 25%
- CAL Energy Scale varied by 3%
- Difference between PYT and HER acceptance correction

Variable	+/- Change	Variable	+/- Change
E _T ^{1,2}	13%	η ^{1,2}	2%
$1/_{2} \eta^{1}+\eta^{2} $	9%	Δη	2%
y _{JB}	5%	$p_{T}^{Miss}/\sqrt{E_{T}}$	10%
y e	6%	Z _{vtx}	25%
E _T ^{Cut}	36%		

- Same systematics used for all bins
- Systematic variation in cross section dependent on E_T^{Gap} , $\Delta \eta$, W, and x_{γ}^{OBS} bins

Acceptance Corrected Data vs MC 7FUS E_TGap Cross Section **ZEUS Acceptance Correction** 0.3 Average of PYT & HER do / dE_T^{GAP} (nb) Hadron **Systematic Errors from HER** Level Difference between HER & PYT values added to systematic 0.25 MCs fit to Data χ^2 Minimization 0.2 **Yield Scale Factors** HER: 1.01*NCS + 1.32*CS PYT: 1.25*NCS + 404*CS 0.15 High CS Scale Factor in PYTHIA due to High-t γ exchange Same scale factors used in all 0.1 following plots

Fit to E_T^{GAP} Cross Section results in ~3% CS contribution for both PYTHIA & HERWIG

2

0.05

0,

ZEUS 1996-97 HERWIG

PYTHIA

4

HERWIG + BFKL x 1.32

PYTHIA + high-t γ x 404

6

8

12

10

E_TGAP (GeV)

Acceptance Corrected Data vs MC Δ η Cross Sections

- Inclusive Cross Section
 - MC with and without CS added describes data
- Gap Cross Section
 - MC without CS disagrees with data
 - MC with CS added describes data
- Gap Fraction
 - MC without CS disagrees with data
 - MC with CS added describes data

7FUS

$\Delta\eta$ for Different Gap Fractions Unfolded with AVG of PYT & HER

• MC with CS added describes data for entire x_{γ}^{OBS} region

- CS contribution in <u>resolved region</u> is 1-2% from Gap Fraction
 - Resolved region should allow comparison to Tevatron (1-1.5% CS)

Patrick Ryan, Univ. of Wisconsin

Rapidity Gaps Between Jets in PHP

W for Different Gap Fractions Unfolded with AVG of PYT & HER

- Disagreement at low W for All x_{γ}^{OBS} sample
- CS contribution in <u>resolved region</u> is 1-2% from Gap Fraction
 - Resolved region should allow comparisons to Tevatron

- PYTHIA and HERWIG with CS describes the data well
- HERWIG agreement remains better than PYTHIA agreement
- PYTHIA agreement in resolved region improved compared to $\Delta \eta$

Patrick Ryan, Univ. of Wisconsin

Rapidity Gap Between Jets Summary

- Conclusions
 - Data demonstrate evidence of ~3% Color-Singlet contribution estimated at the cross section level for entire phase space
 - Observe ~1-2% Color-Singlet in resolved region
 - Data consistent with published ZEUS and H1 results
 - PYTHIA and HERWIG describe data well after the Color-Singlet contribution is added
- In Progress
 - Examine W dependence
 - Explore comparisons with Tevatron

Patrick Ryan, Univ. of Wisconsin

HERWIG

- Purity: (Detector && Generator), / (Detector)
- Efficiency: (Detector && Generator), / (Generator)
- Correction Factor: (Generator / Detector)_i = (Purity / Efficiency)_i
- Stability: (Detector && Generator), / Reconstructed in any bin

i: Bin i

Purities and Efficiencies $\Delta \eta$

- Purity: (Detector && Generator), / (Detector)
- Efficiency: (Detector && Generator), / (Generator)
- Correction Factor: (Generator / Detector)_i = (Purity / Efficiency)_i
- Stability: (Detector && Generator), / Reconstructed in any bin

i: Bin i

+	1.Е _т	3.η	5.Αν η	7.Δη	9.y _{JB}	11.p _T ^M /√E _T	13.y _e	15.Z _v	17.E _T ^{Cut}	19.%CS	21.CAL
	2.Ε _Τ	4.η	6.Αν η	8.Δη	10.y _{JB}	12.p _T ^M /√E _T	14.y _e	16.Z _v	18.E _T ^{Cut}	20.%CS	22.CAL

Patrick Ryan, Univ. of Wisconsin

Cross Sections Unfolded with PYT & HER

- Data unfolded separately with PYT & HER
- NCS MC fit to data in E_T^{GAP} cross section
- CS MC added by fitting NCS+CS to E_{T}^{Gap}
 - Addition of CS maximizes agreement with Data for PYT and HER