Photoproduction of Events with Rapidity Gaps Between Jets with ZEUS at HERA

Patrick Ryan

University of Wisconsin

Michigan State HEP Seminar
May 2, 2006
Outline

- Introduction to Rapidity Gaps
 - Photoproduction
 - Diffraction
 - Hard Diffractive Photoproduction
- HERA and ZEUS
- Simulation of photoproduction events
- Reconstruction
- Event Selection
- Comparisons between Data and MC
- Results
Photoproduction in ep Collisions

- **Q^2 \sim 0 in Photoproduction**
 - ep cross section has 1/Q^4 dependence
 - Majority of ep events are photoproduction
- **Time γ has to fluctuate into hadronic object: t \sim E_γ/Q^2**
 - Vector Dominance Model (VDM)
 - Long time: γ forms bound states of mesons
 - **Anomalous**
 - Medium time: γ fluctuates into unbound qq pair
 - **Direct**
 - Short time: γ acts as a point-like object
- **Resolved = VDM + Anomalous**
Direct & Resolved Photoproduction

- **Direct Photoproduction**
 - γ couples directly to parton in proton

- **Resolved Photoproduction**
 - Parton from γ couples to parton in proton

- **Boson-Gluon Fusion**
 - $gg \rightarrow qq$
Diffraction in ep Collisions

- **Two “definitions” of diffraction**
 - Final state particles preserve quantum numbers of associated initial state particles
 - Presence of rapidity gap

- **Exchange object: Pomeron (IP)**
 - Quantum numbers of vacuum
 - Does not radiate color charge

- **Small momentum transfer at p vertex**
 - Soft diffraction: No hard scale exists
 - Hard diffraction: A hard scale exists
 - Example: Large momentum transfer between Pomeron and quark
 - Perturbative QCD ($pQCD$) is applicable
Hard Diffractive Photoproduction

Rapidity Gap Between Hadron & Proton Remnants

Rapidity Gap Between 2 Final State Hadrons

Subject of this analysis

- Study the nature of the Pomeron exchange
 - Observe Color-Singlet (CS) exchange
- Hard Scale allows application of pQCD to diffractive process
Rapidity Gaps between Jets

2 Sources of Rapidity Gaps between Jets

- **Color-singlet Exchange**
 - Lack of color radiation produces gap
 - Example: Pomeron exchange

- **Color-Non-Singlet Exchange**
 - Fluctuations in particle multiplicity produces gap
 - Non-diffractive
The Gap Fraction $f(\Delta \eta)$

Color Singlet
- Gap created by lack of color flow
- $f(\Delta \eta)$ constant in $\Delta \eta$

Color Non-Singlet
- Gap created by multiplicity fluctuations
- $f(\Delta \eta)$ decreases exponentially with $\Delta \eta$

Expectation for Behavior of Gap Fraction (J. D. Bjorken, V. Del Duca, W.-K. Tung)

\[
d f_{\text{gap}} = \frac{d \sigma_{\text{gap}}}{d \Delta \eta} \frac{d \sigma}{d \Delta \eta}
\]

\[
\sigma_{\text{gap}} = \sigma_{\text{gap}}^{\text{singlet}} + \sigma_{\text{gap}}^{\text{non-singlet}}
\]

Dijet Events with large Rapidity separation between jets & $E_T^{\text{Gap}} < E_T^{\text{Cut}}$

All Dijet Events with large Rapidity separation between jets
HERA

DESY
Hamburg, Germany

• Beam Energy
 • 820 GeV Protons (1992-97)
 • 920 GeV Protons (since 1998)
 • 27.5 GeV e+ or e-
 • CM Energy: ~300/320 GeV
 • Equivalent to 50 TeV Fixed Target experiment

• 96 ns crossing time
• 220 bunches
 • Not all filled
• Currents:
 • ~90 mA Protons
 • ~40 mA Leptons
• Instantaneous Lumi
 • ~4x10^{31} cm^{-2} s^{-1}
• HERA I: 1992 – 2000
 • e^-: 27 pb$^{-1}$
 • e^+: 166 pb$^{-1}$

• HERA II: 2002 – 2007
 • 5x lumi and polarization
 • e^-: 205 pb$^{-1}$
 • e^+: 90 pb$^{-1}$
ZEUS Detector

Calorimeter

“Forward”

e

“Barrel”

Central Tracking Detector

p

“Rear”
Central Tracking Detector

- **Cylindrical Drift Chamber in 1.43 T magnetic field**
- **Covers** $15^\circ < \theta < 164^\circ$ (-1.96 < η < 2.04)
- **Organization**
 - 16 azimuthal sectors
 - 9 concentric superlayers
 - 8 radial layers in a superlayer
 - Between 32-96 cells in a superlayer
- **Resolutions**
 - **Track transverse momentum**
 - $\sigma/p_T = [(0.005p_T)^2 + (0.0016)^2]^{1/2}$
 - **Vertex Position**
 - x and y: accurate to 1 mm
 - z: accurate to 4 mm
Uranium Calorimeter

- Composed of plastic scintillator and depleted uranium
- Compensating
 - Equal response to electrons and hadrons of same energy
- Sampling
 - Most energy absorbed by U
- Segmented
 - 3 Regions: FCAL, BCAL, RCAL
 - Regions → Modules → Towers → Cells
 - Hadronic and Electromagnetic Cells
- Resolution (from test beam)
 - Electromagnetic: $\sigma = 0.18/\sqrt{E}\text{(GeV)}$
 - Hadronic: $\sigma = 0.35/\sqrt{E}\text{(GeV)}$

Patrick Ryan, Univ. of Wisconsin

Rapidity Gaps Between Jets in PHP

MSU HEP Seminar, May 2, 2006 - 13
ZEUS Trigger

- **First Level (4.4 μs)**
 - Dedicated custom hardware
 - Pipelined without deadtime
 - Global & regional energy sums
 - Isolated e and μ recognition
 - Track quality information

- **Second Level (6 ms)**
 - Commodity transputers
 - Calorimeter timing cuts
 - Cuts on $E-p_z$ and E_T
 - Vertex and tracking information
 - Simple physics filters

- **Third Level (0.3 s)**
 - Commodity processor farm
 - Full event info available
 - Refined jet and lepton finding
 - Advanced physics filters

Crossing: 10^7 Hz

After FLT: ~1000 Hz

After SLT: ~100 Hz

After TLT: ~1 Hz
Simulation of γp Events
PYTHIA

- Accurate hadronization model
 - Many input parameters

- Adjustable p_T^{Min1} and p_T^{Min2}
 - p_T^{Min1}: p_T^{Min} of hardest interaction
 - p_T^{Min2}: p_T^{Min} of soft secondary interactions (Multi-Parton Interactions)

- QCD Radiation: Matrix Element+Parton Shower (MEPS)

- Hadronization: String Model

- Multi-Parton Interactions in resolved MC

- Color-singlet exchange in PYTHIA
 - No Pomeron exchange model in PYTHIA
 - Use high-t γ exchange for qq scattering in LO resolved process
 - Reproduce topology of rapidity gap events
 - Not a source of events with rapidity gaps in hard diffractive γp
Simulation of γp Events
HERWIG

• Simple universal hadronization model
 • Few input parameters
• Adjustable p_T^{Min1} (but not p_T^{Min2})
• QCD Radiation: MEPS
• Hadronization: Cluster Model
• JIMMY package used to simulate MPIs
 • Multi-Parton Interactions in resolved & CS MC
• Color-singlet exchange in HERWIG
 • BFKL pomeron as exchange object
 • Resummation of leading log diagrams in $1/x$
Reconstruction

- Tracks: Use only information from CTD
- Vertex: Use CTD tracks fit to 5-parameter Helix model
- Calorimeter
 - Use cell position, magnitude of PMT pulse, time of PMT pulse
 - Island formation: Cells merged based on location and size of energy deposits
- e^-/e^+: SINISTRA95 Neural Network electron finder
- Energy Flow Objects (EFOs)
 - Combine track and calorimeter information for hadrons
 - CTD has better angular resolution than CAL
 - CTD has better energy resolution at low energy than CAL
k_T Cluster Jet Algorithm

- Historically used in e^+e^- experiments

Procedure

- For every object \(i\) and pair of objects \(i,j\) compute
 - \(d_{i}^2 = E_{T,i}^2\) (distance to beamline in momentum space)
 - \(d_{i,j}^2 = \min\{E_{T,i}^2, E_{T,j}^2\}[(\Delta \eta)^2 + (\Delta \phi)^2]^{1/2}\) (distance between objects)
- Calculate \(\min\{d_{i}^2, d_{i,j}^2\}\) for all objects
 - If \(d_{i,j}^2\) is the smallest, combine objects \(i\) and \(j\) into a new object
 - If \(d_{i}^2\) is the smallest, object \(i\) is a jet

Advantages

- Collinear and infrared safe
- No problems with overlapping jets
- Distributions can be predicted by QCD
Kinematic Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Electron Method</th>
<th>Jacquet-Blondel Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta)</td>
<td>(1 - \frac{E'_e}{2E_e} (1 - \cos \theta_e))</td>
<td>(\sum_i (E_i - p_{z,i})) (\frac{2E_e}{2E_e})</td>
</tr>
<tr>
<td>(Q^2)</td>
<td>(2E_eE'_e (1 + \cos \theta_e))</td>
<td>(\frac{(\sum_i p_{z,i})^2 + (\sum_i p_{y,i})^2}{1 - \eta_{JB}})</td>
</tr>
</tbody>
</table>

- Jet \(E_T = [p_x^2 + p_y^2]^{1/2} \)
- Jet \(\eta = -\ln (\tan \theta/2) \) where \(\theta = \tan^{-1}(E_T/p_z) \)
- \(x_\gamma \): Fraction of \(\gamma \) momentum involved in collision
 - Direct \(\gamma p \): \(x_\gamma \approx 1 \)
 - Resolved \(\gamma p \): \(x_\gamma < 1 \)

\[
x_\gamma^{OBS} = \frac{\sum_{jets} E_T e^{-\eta}}{2 \gamma E_e}
\]
Rapidity Gap Topology

- Distance between leading and trailing jet centers: $\Delta \eta$
- E_T^{Gap}: Total E_T of jets between leading and trailing jet centers
- Gap Event has small energy in Gap: $E_T^{\text{Gap}} < E_T^{\text{Cut}}$
- Gap definition based on E_T better than that based on multiplicity
 - Collinear and infrared safe
 - Gap spans between centers of leading & trailing jets (increased statistics)
Monte Carlo Tuning

• PYTHIA and HERWIG parameters modified
 • Tuning based on JetWeb parameters (Global fit to collider data)
 • Tuned p_T^{Min} to ZEUS E_T^{GAP} distributions

• Tuned PYTHIA 6.1
 • Proton PDF: CTEQ 5L (Set 46)
 • Photon PDF: SaS-G 2D
 • $p_T^{\text{Min}1} = 1.9$ GeV $p_T^{\text{Min}2} = 1.7$ GeV (default 2.0 GeV, 1.5 GeV)

• Tuned HERWIG 6.1
 • Proton PDF: CTEQ 5L (Set 46)
 • Photon PDF SaS-G 2D
 • Square of factor to reduce proton radius: 3.0 (default 1.0)
 • Probability of Soft Underlying Event: 0.03 (default 1.0)
 • $p_T^{\text{Min}1} = 2.7$ GeV (default 1.8 GeV)
Acceptance Correction
Direct + Resolved MC

- Correct data for acceptance: Detector \rightarrow Hadron level
- Dir & Res relative amounts fit to Data
 - x_γ^{OBS} distribution
- PYTHIA – Detector Level
 - 28% Direct
 - 72% Resolved
- HERWIG – Detector Level
 - 44% Direct
 - 56% Resolved
- Non-Color-Singlet (NCS)
 - Direct and Resolved only
Acceptance Correction
Direct + Resolved + Color Singlet

- Correct data for acceptance: Detector → Hadron level
- NCS & CS relative amounts fit to Data
 - Dir and Res fractions fixed from x_{γ}^{OBS} fit
 - E_{TOT} for $E_T^{\text{GAP}} < 1.5$ GeV
- For Inclusive Sample
 - PYTHIA – Detector Level
 - 96% NCS (Direct + Resolved)
 - 4% CS (Direct + Resolved)
 - HERWIG – Detector Level
 - 94% NCS
 - 6% CS
- Compare to other methods
 - Fit to Num Jets for $E_T^{\text{GAP}} < 1.5$ GeV
 - Hadron level E_T^{GAP}
 - Similar results
Rapidity Gap Event Selection

ZEUS 1996-97 Data (38 pb$^{-1}$)

Trigger Selection:
- FLT, SLT, and TLT requirements to select dijet photoproduction events

Clean Photoproduction Sample:
- Reject events having Electron with $E_e > 5$ GeV AND $y_e < 0.85$
- $\Sigma p_T / \Sigma \sqrt{E_T} < 2$ GeV$^{1/2}$
- $|z_{vtx}| < 40$ cm
- $0.2 < y_{JB} < 0.85$

Dijets with Large Rapidity Separation:
- $E_T^{1,2} > 5.1, 4.25$ GeV (corresponds to $E_T^{1,2} > 6.0, 5.0$ GeV at hadron level)
- $|\eta^{1,2}| < 2.4$
- $1/2|\eta^1 + \eta^2| < 0.75$
- $2.5 < |\eta^1 - \eta^2| < 4.0$ (Gap Definition)

~ 70,000 Events in Inclusive Sample

4 Samples of Gap Events:
- $E_T^{\text{CUT}} = 0.6, 1.2, 1.8, 2.4$ GeV (corr. to $E_T^{\text{CUT}} = 0.5, 1.0, 1.5, 2.0$ at hadron level)
Inclusive Kinematic Variables
Data vs. PYTHIA

- PYTHIA describes the inclusive variables
- Addition of CS makes small improvement for inclusive sample
• PYTHIA describes the gap variables ($E_T^{\text{Cut}} = 1 \text{ GeV}$)
• Addition of CS makes substantial improvement for gap sample
Inclusive Kinematic Variables
Data vs. HERWIG

- HERWIG describes the inclusive variables
- Addition of CS makes small improvement for inclusive sample
Gap Kinematic Variables
Data vs. HERWIG ($E_T^{\text{Cut}} = 1$ GeV)

- HERWIG describes the gap variables ($E_T^{\text{Cut}} = 1$ GeV)
- Addition of CS makes substantial improvement for gap sample

Patrick Ryan, Univ. of Wisconsin
Rapidity Gaps Between Jets in PHP
MSU HEP Seminar, May 2, 2006 - 28
Systematics

- Kinematic Cuts: +/- HERWIG Resolutions
- Amount of CS in unfolding varied by 25%
- CAL Energy Scale varied by 3%
- Difference between PYT and HER acceptance correction

<table>
<thead>
<tr>
<th>Variable</th>
<th>+/- Change</th>
<th>Variable</th>
<th>+/- Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_T^{1,2}$</td>
<td>13%</td>
<td>$\eta^{1,2}$</td>
<td>2%</td>
</tr>
<tr>
<td>$\frac{1}{2}</td>
<td>\eta^1+\eta^2</td>
<td>$</td>
<td>9%</td>
</tr>
<tr>
<td>y_{JB}</td>
<td>5%</td>
<td>$p_T^{\text{Miss}}/\sqrt{E_T}$</td>
<td>10%</td>
</tr>
<tr>
<td>y_e</td>
<td>6%</td>
<td>Z_{vtx}</td>
<td>25%</td>
</tr>
<tr>
<td>E_T^{Cut}</td>
<td>36%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Same systematics used for all bins
- Systematic variation in cross section dependent on E_T^{Gap}, $\Delta\eta$, W, and x_γ^{OBS} bins
Acceptance Corrected Data vs MC

E_T^{Gap} Cross Section

- Acceptance Correction
 - Average of PYT & HER
- Systematic Errors from HER
 - Difference between HER & PYT values added to systematic
- MCs fit to Data
 - χ^2 Minimization
 - Yield Scale Factors
 - HER: $1.01^{\text{NCS}} + 1.32^{\text{CS}}$
 - PYT: $1.25^{\text{NCS}} + 404^{\text{CS}}$
 - High CS Scale Factor in PYTHIA due to High-\(t\) γ exchange
 - Same scale factors used in all following plots

Fit to E_T^{Gap} Cross Section results in ~3%
CS contribution for both PYTHIA & HERWIG
Acceptance Corrected Data vs MC $\Delta \eta$ Cross Sections

- **Inclusive Cross Section**
 - MC with and without CS added describes data

- **Gap Cross Section**
 - MC without CS disagrees with data
 - MC with CS added describes data

- **Gap Fraction**
 - MC without CS disagrees with data
 - MC with CS added describes data
$\Delta \eta$ for Different Gap Fractions
Unfolded with AVG of PYT & HER

All x_γ^{OBS}

- MC with CS added describes data for entire x_γ^{OBS} region
- CS contribution in resolved region is 1-2% from Gap Fraction
 - Resolved region should allow comparison to Tevatron (1-1.5% CS)
W for Different Gap Fractions
Unfolded with AVG of PYT & HER

- Disagreement at low W for All x_γ^{OBS} sample
- CS contribution in resolved region is 1-2% from Gap Fraction
 - Resolved region should allow comparisons to Tevatron
x_γ^{OBS} for Different Gap Fractions
Unfolded with AVG of PYT & HER

$$x_\gamma^{\text{OBS}} = \frac{\sum E_T e^{-\eta}}{2 y E_e}$$

- PYTHIA and HERWIG with CS describes the data well
- HERWIG agreement remains better than PYTHIA agreement
- PYTHIA agreement in resolved region improved compared to $\Delta \eta$

Resolved region: $x_\gamma^{\text{OBS}} < 0.75$
Should allow comparison to Tevatron
Comparisons to Previous ZEUS Measurement

ZEUS 1995

- Data •
- PYTHIA ○

Gap defined by multiplicity (not E_T)

$f(\Delta \eta) = 0.11$ for $3.5 < \Delta \eta < 4.0$

1-4% CS from 2-4 in $\Delta \eta$

Measurements consistent

ZEUS (this analysis)

$E_T^{\text{GAP}} < 0.5$ GeV

$E_T^{\text{GAP}} < 1.0$ GeV

$E_T^{\text{GAP}} < 1.5$ GeV

$E_T^{\text{GAP}} < 2.0$ GeV

E_T^{GAP} < 1.5 GeV closest to previous results
Comparison to H1 Measurement

- **Gap Fraction for** $E_T^{\text{Gap}} < 1.0$ GeV
 - 6.6 pb$^{-1}$ of Lumi
 - Excess of data when compared to NCS MC
 - Data described by NCS+CS MC
 - Consistent with ZEUS within errors
- **Reference**
 - C. Aldoff et al.
Rapidity Gap Between Jets
Summary

• Conclusions
 • Data demonstrate evidence of ~3% Color-Singlet contribution estimated at the cross section level for entire phase space
 • Observe ~1-2% Color-Singlet in resolved region
 • Data consistent with published ZEUS and H1 results
 • PYTHIA and HERWIG describe data well after the Color-Singlet contribution is added

• In Progress
 • Examine W dependence
 • Explore comparisons with Tevatron
Purities and Efficiencies

E_T Gap

PYTHIA

<table>
<thead>
<tr>
<th>Purity</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{GAP} (GeV)</td>
<td>E_{GAP} (GeV)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
</tr>
</tbody>
</table>

HERWIG

<table>
<thead>
<tr>
<th>Purity</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{GAP} (GeV)</td>
<td>E_{GAP} (GeV)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Stability

<table>
<thead>
<tr>
<th>Corr Factor</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{GAP} (GeV)</td>
<td>E_{GAP} (GeV)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Correction Factor

$$\text{Correction Factor}_i = \frac{\text{Purity}_i}{\text{Efficiency}_i}$$

Stability

$$\text{Stability}_i = \frac{\text{Detector}_i \text{ && Generator}_i}{\text{Reconstructed in any bin}_i}$$

- **Purity**: $(\text{Detector} \&\& \text{Generator})_i / (\text{Detector})_i$
- **Efficiency**: $(\text{Detector} \&\& \text{Generator})_i / (\text{Generator})_i$
- **Correction Factor**: $(\text{Generator} / \text{Detector})_i = (\text{Purity} / \text{Efficiency})_i$
- **Stability**: $(\text{Detector} \&\& \text{Generator})_i / \text{Reconstructed in any bin}_i$
Purities and Efficiencies $\Delta \eta$

PYTHIA

- **Purity:** \(\frac{\text{Detector} \&\& \text{Generator}}{\text{Detector}} \) _i
- **Efficiency:** \(\frac{\text{Detector} \&\& \text{Generator}}{\text{Generator}} \) _i
- **Correction Factor:** \(\frac{\text{Generator}}{\text{Detector}} \) _i = \(\frac{\text{Purity}}{\text{Efficiency}} \) _i
- **Stability:** \(\frac{\text{Detector} \&\& \text{Generator}}{\text{Reconstructed in any bin}} \) _i

HERWIG

- **Purity:** \(\text{Inclusive} \) _i
- **Efficiency:** \(E_T^{\text{Cut}} = 1.0 \text{ GeV} \) _i
- **Stability:** \(\text{Inclusive} \) _i
- **Correction Factor:** \(E_T^{\text{Cut}} = 1.0 \text{ GeV} \) _i

_i: Bin i
Cross Section Systematics Unfolded with HERWIG

Order of Systematics (left to right in each bin)

Cross Sections
Unfolded with PYT & HER

• Data unfolded separately with PYT & HER
• NCS MC fit to data in E_T^{GAP} cross section
• CS MC added by fitting NCS+CS to E_T^{Gap}
 • Addition of CS maximizes agreement with Data for PYT and HER