Rapidity Gaps in Photoproduction at HERA

Preliminary Examination

Patrick Ryan
University of Wisconsin
Dec. 17, 2002
Outline of Talk

• Introduction
• HERA and ZEUS
• Photoproduction and Diffraction
• Rapidity Gaps
• Comparisons between Data and MC
• Event Sample and Cuts
• Summary
• **Particle Scattering**
 - Particles interact via probe exchange
 - Wavelength of probe: $\lambda = \frac{h}{Q}$
 - h: Planck’s Constant
 - Q: related to Photon Momentum
 - Smaller wavelength means greater resolution

• **Lepton-Proton Collisions**
 - HERA: ep CMS Energy ~ 300 GeV
 - Deep Inelastic Scattering: $Q^2 \sim 40,000$ GeV2
 - Currently possible to probe to 0.001fm (Proton is 1fm)
Quark Parton Model and QCD

• Quarks and Gluons are colored objects called partons

• QCD describes “Strong” Interaction
 • Interactions between partons with strong coupling α_s

• Interaction mediated by exchange of gluons
 • Process called “Color Flow”
 • Multiple gluons can be exchanged

• Individual quarks have color, but only exist in colorless combinations (hadrons)
 • “Color Confinement”
Jets

What is Produced

“Hadron Level”

- Colored Partons produced in hard scatter
- Partons undergo hadronization to form colorless hadrons (Fragmentation)
- Colorless collimated “spray” of hadrons called a “Jet”
- Hadronization in calorimeter → observe deposited energy

What is Observed in Detector

“Detector Level”

Particle Shower

Calorimeter

Hadrons
Photoproduction

- Photon carries very little 4-momentum ($Q^2 \sim 0$)
- Photon is almost real
- Most ep events are photoproduction
 - Cross section has $1/Q^4$ dependence
- Direct: γ couples directly to a parton in proton
- Resolved:
 - Fluctuation of γ into partonic state
 - Parton from γ couples to parton in proton
Color Non-Singlet and Singlet Exchange in Photoproduction

Color Non-Singlet Exchange:
- Jets are color connected to each other
- Gap between jets filled with final state particles

Color Singlet Exchange:
- Jets are not color connected to each other
- No final state particles between jets (Empty Gap)
• Final state particles preserve quantum numbers of associated initial state particles

• Characteristics of Diffraction
 • Small momentum transfer \((t) \) at \(P \) vertex
 • Exchange object (Pomeron) has quantum numbers of vacuum
 • Absence of particles between \(P \) and \(\gamma \) remnants (next slide)

\[t = (P-P') \]
QCD Scale

Leading Order (LO) \[A = A_0 + A_1 \alpha_S + A_2 \alpha_S^2 + \ldots \]

Next to Leading Order (NLO)

• Running of \(\alpha_S \)
 - As scale \(\mu \) increases, \(\alpha_S(\mu) \) decreases \((\mu = E_T \text{ or } Q) \)

• Perturbative QCD
 - Small \(\alpha_S(\mu) \) (hard scale)
 - Series expansion used to calculate observables

• Nonperturbative QCD
 - Large \(\alpha_S(\mu) \) (soft scale)
 - Series not convergent

HERA DIS Data: Running of \(\alpha_S(\mu) \)

\[\begin{align*}
\alpha_S(\mu) & \approx 0.1 + 0.15 \mu + 0.2 \mu^2 + \ldots \\
& \mu \text{ (GeV)}
\end{align*} \]

\[\begin{align*}
\alpha_S(\mu) & \approx 0.1184 \pm 0.0031 \\
& \mu = \text{ET}_{\text{jet}}
\end{align*} \]
Hard Diffractive Scattering in Photoproduction

- Photoproduction: $Q^2 \sim 0$
- Diffraction: Absence of particles between jets, low t
- Hard process
 - High jet $E_T \rightarrow$ hard scale
 - Hard QCD inside soft QCD process
 - pQCD applicable to a hard QCD process

Sample contains more events with high E_T jets than predicted by diffraction without hard processes
HERA Description

- 820/920 GeV Protons
- 27.5 GeV e⁻ or e⁺
- CMS Energy 300/318 GeV
 - Equivalent to 50 TeV fixed target
- 220 bunches
 - Not all filled
- 96 ns crossing time
- Currents:
 - ~90mA protons
 - ~40mA positrons
- Instantaneous Luminosity:
 - $1.8 \times 10^{31} \text{cm}^{-2}\text{s}^{-1}$

$$L = \frac{R_{tot} - \left(I_{tot} / I_{unp} \right) R_{unp}}{\sigma_{BH}}$$

DESY
Hamburg, Germany
HERA Luminosity

- **Total Integrated Luminosity since 1992:**
 - e^{-}: ~ 27 pb$^{-1}$
 - e^{+}: ~ 165 pb$^{-1}$

- Luminosity upgrade recently completed
 - 5x increase in Luminosity
 - Longitudinal polarization of e

- Starting up now
 - Goal: 1 fb$^{-1}$ by end of 2006
ZEUS Calorimeter

- Depleted Uranium and Scintillator
- 99.8% Solid Angle Coverage
- Energy Resolution (single particle test beam)
 - Electromagnetic: $0.18 / \sqrt{E(\text{GeV})}$
 - Hadronic: $0.35 / \sqrt{E(\text{GeV})}$
- Measures energy and position of final state particles

\[\eta = -\ln[\tan(\theta/2)] \]
Central Tracking Detector

- Cylindrical Drift Chamber inside 1.43 T Solenoid
- Measures event vertex
- Vertex Resolution
 - Transverse (x-y): 1mm
 - Longitudinal (z): 4mm
• First Level
 • Dedicated custom hardware
 • Pipelined without deadtime
 • Global and regional energy sums
 • Isolated μ and e^+ recognition
 • Track quality information

• Second Level
 • Commodity Transputers
 • Calorimeter timing cuts (next slide)
 • $E - p_z$ cuts
 • Vertex information
 • Simple physics filters

• Third Level
 • Commodity processor farm
 • Full event info available
 • Refined jet and electron finding
 • Advanced physics filters
Background Rejection: Timing

"Distance" between FCAL and RCAL is \(\sim 10 \text{ns} \)

On Time Event

- \(T_F = 0 \text{ns} \)
- \(T_R = 0 \text{ns} \)

Beam Gas Event

- \(T_F = 0 \text{ns} \)
- \(T_R = -10 \text{ns} \)

Calorimeter timing at Level 2

- ZEUS Calorimeter timing resolution < 1 ns

\(T_{RCAL} \)
Kinematic Variables

- Center of Mass Energy of ep system squared
 - $s^2 = (p+k)^2 \sim 4E_p E_e$
- Center of Mass Energy of γp system squared
 - $W^2 = (q+p)^2$
- Photon Virtuality (4-momentum transfer squared at electron vertex)
 - $q^2 = -Q^2 = (k-k')^2$
- Fraction of Proton’s Momentum carried by struck quark
 - $x = Q^2/(2p \cdot q)$
- Fraction of e’s energy transferred to Proton in Proton’s rest frame
 - $y = (p \cdot q)/(p \cdot k)$
- Variables are related
 - $Q^2 = sxy$
Kinematic Reconstruction

Measured Quantities: E_h, p_z, p_T^2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Jacquet-Blondel Method (E_h, p_z, p_T^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>$\frac{E_h - p_{z,h}}{2E_e}$</td>
</tr>
<tr>
<td>Q^2</td>
<td>$\frac{p_{T,h}^2}{1 - y_{JB}}$</td>
</tr>
<tr>
<td>x</td>
<td>$\frac{Q_{JB}^2}{s \cdot y_{JB}}$</td>
</tr>
</tbody>
</table>
Jet Finding: Cone Algorithm

Particles close to each other in phase space used to retrace hadronization and fragmentation processes to original parton

\[R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \]

- Maximize total E_T of hadrons in cone of $R=1$
- Procedure
 - Construct seeds (starting positions for cone)
 - Move cone around until a stable position is found
 - Decide whether or not to merge overlapping cones
- Advantages:
 - Lorentz invariant along z axis
 - Conceptually simple
Jet Finding: Longitudinally Invariant K\textsubscript{T} Algorithm

- In ep: \(k_T \) is transverse momentum with respect to beamline
- For every object \(i \) and every pair of objects \(i, j \) compute
 - \(d_{i}^{2} = E_{T,i}^{2} \) (distance to beamline in momentum space)
 - \(d_{ij}^{2} = \min\{E_{T,i}^{2},E_{T,j}^{2}\}[(\Delta \eta)^{2} + (\Delta \phi)^{2}]^{1/2} \) (distance between objects)
- Calculate \(\min\{d_{i}^{2},d_{ij}^{2}\} \) for all objects
 - If \(d_{ij}^{2} \) is the smallest, combine objects \(i \) and \(j \) into a new object
 - If \(d_{i}^{2} \) is the smallest, the object \(i \) is a jet
- Advantages:
 - No ambiguities (no seed required and no overlapping jets)
 - \(k_T \) distributions can be predicted by QCD
• x_γ: Fraction of γ momentum involved in collision
 - Direct Photoproduction: $x_\gamma \sim 1$
 - Resolved Photoproduction: $x_\gamma < 1$

• x_P: Fraction of P momentum involved in hard interaction

$$x_\gamma^{OBS} = \frac{\sum E_T e^{-\eta}}{2 y E_e^{jets}}$$

$$x_P^{OBS} = \frac{\sum E_T e^{\eta}}{2 E_P^{jets}}$$
Direct Photoproduction Event
Resolved Photoproduction Event

Model Events: PYTHIA Generator

- **Parton Level**
 - LO Matrix Element + Parton Shower

- **Hadron Level**
 - Hadronization Model

- **Detector Level**
 - Detector simulation based on GEANT

Factorization: Long range interactions below certain scale absorbed into proton’s structure
Topography of Rapidity Gaps

- 2 jets represented as circles in (η, ϕ) phase space
 - Distance between jet centers: $\Delta \eta$
 - Radius of jet cone: $R \sim 1$

- Gap indicates color singlet exchange
- No final state particles between jets (Rapidity Gap)
The Gap Fraction

Dijet events with Rapidity Gap

\[f(\Delta \eta) = \frac{d \sigma_{\text{gap}} / d \Delta \eta}{d \sigma / d \Delta \eta} \]

\[\sigma_{\text{gap}} = \sigma_{\text{gap}}^{\text{singlet}} + \sigma_{\text{gap}}^{\text{non-singlet}} \]

• **Singlet:**
 • \(f(\Delta \eta) \) constant in \(\Delta \eta \)

• **Non-Singlet:**
 • Particle production fluctuations \(\rightarrow \) gap
 • Non-diffractive exchange
 • \(f(\Delta \eta) \) decreases exponentially with \(\Delta \eta \)

Expectation for Behavior of Gap Fraction (J. D. Bjorken, V. Del Duca, W.-K. Tang)
1994 ZEUS Results

Gap Fraction

![Graph showing f(Δη) versus Δη for data and PYTHIA predictions.](image)

Gap Fraction Fit

![Graph showing fit of f(Δη) versus Δη for data and PYTHIA predictions.](image)

- **Suggests Color Singlet (Diffractive) Exchange**

- **Color singlet exchange not in ZEUS 1994 PYTHIA**

- **f(Δη) excess at high Δη suggests singlet contribution**
 - Excess of Gap Fraction ~ 0.07
 - P and γ remnants limit size of measurable gap

Data:

<table>
<thead>
<tr>
<th>Δη</th>
<th>Data</th>
<th>PYTHIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>![Data Point]</td>
<td>![PYTHIA Point]</td>
</tr>
<tr>
<td>2.5</td>
<td>![Data Point]</td>
<td>![PYTHIA Point]</td>
</tr>
<tr>
<td>3</td>
<td>![Data Point]</td>
<td>![PYTHIA Point]</td>
</tr>
<tr>
<td>3.5</td>
<td>![Data Point]</td>
<td>![PYTHIA Point]</td>
</tr>
<tr>
<td>4</td>
<td>![Data Point]</td>
<td>![PYTHIA Point]</td>
</tr>
</tbody>
</table>

- **2 Jets With:**
 - $E_T > 6\text{GeV}$,
 - $\eta < 2.5$,
 - $\Delta \eta > 2$,
 - $|\eta_{\text{avg}}| < 0.75$,
 - $0.15 \leq y \leq 0.7$
2002 H1 (ep) Results

• Color Singlet exchange added in PYTHIA and HERWIG
 - PYTHIA: γ exchange
 - HERWIG: IP exchange
 - Now agrees with data at high $\Delta \eta$

• Low Statistics for large $\Delta \eta$

Jet Cuts:

- $E_T^{\text{Jet } 1} > 6.0$ GeV
- $E_T^{\text{Jet } 2} > 5.0$ GeV
- $\eta^{1,2} < 2.65$
- $2.5 < |\Delta \eta| < 4.0$
- $165 < W_{\gamma p} < 233$ GeV
Event Selection – 1996 ZEUS Data

Trigger Cuts

- FLT
 - Total CAL energy > 14 GeV
 - Good Track

- SLT
 - E-p_z > 8.0 GeV
 - Eliminates beam gas events
 - E_T^{Box} > 8.0 GeV
 - Sum of E_T in all CAL cells excluding 1st ring around FCAL beam pipe
 - Ensure energy is not from proton remnant
 - At least one CAL SLT EMC cluster
 - Vert. Tracks/Tot. Tracks > 0.15

- TLT
 - >2 jets with E_T ≥ 4 GeV, |η| < 2.5
 - p_z/E < 1.0

Offline Cuts

- |z_{vtx}| < 40cm
 - Region of best acceptance and prediction by MC

- No Scattered Electron
 - Select photoproduction events

- 0.2 < y_{JB} < 0.85
 - Lower: Remove beam gas
 - Upper: Remove DIS events
Jet Finding

- Jets built using calorimeter cells
- k_T Algorithm
- Jets ordered in decreasing E_T
- Cuts on Jets:
 - $E_T^{Jet 1} > 6$ GeV
 - $E_T^{Jet 2} > 5$ GeV
 - $|\eta^{Jet 1,2}| < 2.4$
 - $|\Delta \eta| > 2.0$

Jets Separated by a large rapidity gap
Position of interaction vertex well simulated.
Important as anchor of tracking reconstruction.
Simulation of y_{JB}

$y_{JB} = (E-p_z)/55$ GeV

Reweighting PYTHIA in y_{JB} may be necessary

Upper y_{JB} cut

Lower y_{JB} cut

PYTHIA Total

PYTHIA Direct
Jet Distributions: Highest E_T Jet

ZEUS Data vs. PYTHIA

Direction and energy of produced partons understood

Jet kinematics and detector effects well understood and simulated

![Graphs showing distributions of E_T, η, and ϕ for first jet ordered in E_T.](image)

ZEUS 1996

PYTHIA 6.1

PYTHIA 6.1 dir
Jet Distributions: 2nd Highest E_T

Zeus Data vs. PYTHIA

2nd Jet allows test of jet finding algorithms

Jet kinematics and detector effects well understood and simulated
Simulation of $\Delta \eta$

- Validates
 - Jet finding
 - Hadron models
 - Detector simulation

- Distance in η between jets well simulated
 - Important for study of Rapidity Gaps
x_{γ}^{OBS} used to distinguish direct and resolved
Below 0.75 is resolved enhanced

Fit of MC to Data yields:
43% Direct
57% Resolved
Summary

• Conclusions
 • Compare diffractive photoproduction events to pQCD predictions
 • First look at rapidity gaps in ZEUS 1996 Data
 • Jet kinematics are well understood and simulated and detector effects accounted for
 • Hard Scale in Soft Process \(\Rightarrow\) pQCD applicable for a soft process

• Plans
 • First add 1997 Data and then 1999-2000 Data
 • Measure jet cross-sections and gap fraction
 • Understand systematic uncertainties
 • Cuts on kinematic variables
 • Mixing of direct and resolved PYTHIA contributions
 • Calorimeter energy scale
 • Use of HERWIG instead of PYTHIA for acceptance corrections