Energy Dependence of the Mean Charged Multiplicity in Deep Inelastic Scattering with ZEUS at HERA

Michele Rosin

University of Wisconsin, Madison

Thesis Defense, Madison WI
Jan. 27th, 2006

Standard Model

- Matter made of fermions:
- quarks or leptons
- Each particle has anti-particle with opposite quantum numbers
-Quarks carry color "charge"
- Four fundamental forces
-Electromagentic (EM) force
-Weak force
-Strong force
-Gravity
Fermions

Quarks (colored)		
Flavor	Mass (GeV/c$)$	Charge (Q/e)
u	0.003	$+2 / 3$
d	0.006	$-1 / 3$
c	1.3	$+2 / 3$
s	0.1	$-1 / 3$
t	175	$+2 / 3$
b	4.3	$-1 / 3$
Flavor	Mass (GeV/c$)$	Charge (Q/e)
v_{e}	$<1 \times 10^{-8}$	0
e	5.11×10^{-3}	-1
v_{μ}	<0.00002	0
μ	0.106	-1
v_{T}	<0.02	0
T	1.7771	-1
Thesis Defense, Jan 27th 2006 2		

Standard Model (II)

Bosons

Boson	Force	Types	Mass(GeV)	Charge (Q/e)	Color
γ (photon)	Electromagnetic	1	0	0	No
$\mathrm{W}^{ \pm}$	Weak	2	80.4	± 1	No
Z^{0}	Weak	1	91.187	0	No
g (gluon)	Strong	8	0	0	Yes

-Strength of forces determined by coupling constant ($\alpha_{\text {Ем }}$ and α_{s})

- forces mediated by exchange of bosons: $\mathrm{\gamma}, \mathrm{~W}^{ \pm}, \mathrm{Z}^{0}, \mathrm{~g}$
-Gravity described at macroscopic scale by general relativity.
-very weak, neglected in high energy particle physics
-Quantum Electrodynamics (QED): theory of EM, combined with weak $\boldsymbol{\rightarrow}$ Electro-weak theory
-Quantum Chromodynamics (QCD): theory of strong interaction
-Combined theories \rightarrow Standard Model

Particle Scattering

-Study structure of proton and nature of strong force which binds the quarks inside together.
-Scattering via probe

$Q \quad Q^{2}$: related to momentum of probe
Large momentum = small wavelength = can probe more deeply into proton
-Deep Inelastic Scattering (DIS) - \mathbf{Q}^{2} large

For example:

High energy electron transfers momentum to a proton via photon probe

HERA Description

DESY Hamburg, Germany

Unique opportunity to study hadronlepton collisions
-920 GeV p+
(820 GeV before 1999)
-27.5 GeV e- or e^{+} -318 GeV cms
-Equivalent to a 50 TeV Fixed Target
-HERA can probe to $\sim 0.001 \mathrm{fm}$ Size of proton $\sim 1 \mathrm{fm}$
-Instantaneous luminosity $\max : 1.8 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
-220 bunches
-96 ns crossing time
$\cdot_{\mathrm{P}} \sim 90 \mathrm{~mA} p$
${ }^{-1}{ }_{\mathrm{e}} \sim 40 \mathrm{~mA} \mathrm{e}{ }^{+}$

Kinematic Variables

Virtuality of exchanged photon

$$
Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2}
$$

Inelasticity: $\mathbf{0} \leq \mathbf{y} \leq \mathbf{1} \quad y=\frac{p \cdot q}{p \cdot k}$
Fraction of proton momentum carried by struck parton $\quad x=\frac{Q^{2}}{2 q \cdot p}$
$\mathbf{0} \leq \mathbf{x} \leq 1$
$\sqrt{s}=$ Center of mass energy of the ep system $s=(p+k)^{2} \cong 4 E_{e} E_{p}$
Center of mass energy of the $\gamma^{*} \mathrm{P}$ system $\quad W^{2}=(q+p)^{2}$
Only two independent quantities $Q^{2}=s x y$

DIS cross-section and the Quark Parton Model \rightarrow QCD

$$
\frac{d^{2} \sigma\left(e^{+} p\right)}{d x d Q^{2}}\left(x, Q^{2}\right)=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[\left(1+(1-y)^{2}\right) F_{2}\left(x, Q^{2}\right)-y^{2} F_{L}\left(x, Q^{2}\right)-\left(1-(1-y)^{2}\right) x F_{3}\left(x, Q^{2}\right)\right]
$$

DIS cross-section can be written in terms of unit-less structure functions, F2, FL and xF3. Quark Parton Model (QPM): The proton is made of quasi-free point-like constituents called partons, one parton participates in scattering

- Structure functions depend only on x, independent of Q^{2}
scaling
-Assuming spin $1 / 2$ partons: $F_{2}(x)=2 x F_{1}(x) \rightarrow F_{L}=0$ (Callan-Gross) QPM: good in kinematic regions where effects of nuclear force negligible
-Quarks carry $1 / 2$ of protons momentum \rightarrow remainder taken by gluons
-Quarks radiate gluons, split into qव̄ pairs: "sea quarks"
scaling violation
- Valence quarks carry higher momentum fraction, F_{2} rises with Q^{2} at low x .

QCD Theory

-QCD Quantum Chromodynamics

-Strong force couples to color and is mediated by the gluon
-Strong force increases as colored objects move apart: α_{s} "running"
-Quarks confined within hadrons (color confinement) yet behave as free particles when probed at high energies

- Gluons create quarks through pair production
-Gluons themselves carry color, (a color charge and an anti-color)
-The effect of polarization of virtual gluons in vacuum is to augment the color field. (anti-screening)

Thesis Defense, Jan 27th 2006

Perturbative QCD

Leading Order (LO) Next to Leading Order (NLO)

$$
A=A_{0}+A_{1} \alpha_{s}+A_{2} \alpha_{s}^{2}+\ldots
$$

Perturbative QCD p(QCD)

Small α_{s} (hard scale)
Series expansion in α_{s} used to calculate observables

Nonperturbative QCD
Large α_{s} (soft scale)
Series not convergent

Each term in expansion consists of 1 or more integrals represented by a Feynman diagram

QPM QCD Compton (initial \& final)

From Partons to Hadrons

hard scattering \otimes parton showers \otimes hadronization

- Hard scattering: hard scale (short distance) perturbative process
- Parton showers: initial QCD radiation of partons from initial partons
- Hadronization: colorless hadrons produced from colored partons soft process (large distance) - not perturbatively calculable phenomenological models and experimental input

Multiplicity and Energy Flow

-The hard scattering process determines the initial distribution of partons

- Parton Shower + Hadronization determine the number of charged particles produced
- Measure mean number of charged particles produced, (mean charged multiplicity, $<\mathrm{n}_{\mathrm{ch}}>$), in ep DIS, versus the energy available for production of final state hadrons, study the mechanisms of hard scattering, parton showers and hadronization
- Universality of the hadronization process can be tested by comparison of measurements of the energy dependence of $<\mathrm{n}_{\mathrm{ch}}>$ in reactions with different initial states: ep, e+e-, pp and fixed target DIS ($\mu \mathrm{p} \& \mathrm{vp}$).

Hadronic center of mass (HCM) frame

$$
\text { Definition of HCM frame } \quad \vec{P}+\vec{q}=0 \quad W=\sqrt{(q+P)^{2}}
$$

Hadronic center of mass energy is W

-Forward moving particles: photon hemisphere
-Backward moving particles: proton hemisphere
-Incoming photon and proton $E=W / 2$
-Final state: both hemispheres $\mathrm{E}=\mathrm{W} / 2$

$\mathrm{N}_{\text {photon region }}$ Vs W

Breit Frame

- "Brickwall" frame: incoming quark scatters off photon and returns along same axis
- Breit Frame definition: $2 x P+q=0$
$\bullet p_{z}<0$: current region, $p_{z}>0$: target region
-Advantage: Current region is analogous to single hemisphere $\mathrm{e}^{+} \mathrm{e}^{-}$: diagrams are similar above dashed line
-In e+e- pair of quarks produced back to back with $E=\sqrt{ } / 2$ each of them equiv. to the struck quark of $\mathrm{E}=\mathrm{Q} / 2$ in DIS.
\bullet Are they really the same?
Mean charged multiplicity has been measured for various initial state interactions, e+e-, pp, ep DIS, and fixed target DIS, in both Breit and HCM frames

Previous Measurements: Multiplicity in $\mathrm{e}^{+} \mathrm{e}^{-}$and pp

$\sqrt{S_{p p}}=\sqrt{\left(p_{p}+p_{p}\right)^{2} \quad \begin{array}{c}\text { Energy available } \\ \text { for particle } \\ \text { production }\end{array}}$
remnant
-Agreement between $\mathrm{e}^{+} \mathrm{e}^{-}$and pp plotted vs. $\sqrt{\left(q_{\text {had }}^{2}\right)^{2}}$
$\left.\sqrt{\left(q^{\text {had }}\right)^{2}}=\sqrt{\left[\left(q_{1}^{\text {inc }}-q_{1}^{\text {leading }}\right)+\left(q_{2}^{\text {inc }}-q^{\text {leading }}\right)\right]^{2}}\right\} \mathbf{M}_{\mathrm{inv}}$ created within
the detector

Previous Measurements: Multiplicity vs. Q in Breit frame ep DIS

ZEUS 1994-97
-Current region Breit frame multiplicity vs. Q^{2} (hemisphere) shown along with $\mathrm{e}^{+} \mathrm{e}^{-}$data (whole sphere divided by 2) -Consistent with $\mathrm{e}^{+} \mathrm{e}^{-}$data for high Q^{2} \rightarrow disagreement at $\mathrm{Q}^{2}<80 \mathrm{GeV}^{2}$ -ep has gluon radiation whereas $\mathrm{e}^{+} \mathrm{e}^{-}$ does not- (radiated gluons migrating out of current region-possible source of disagreement at low Q^{2})

European Physics Journal C11 (1999) 251-270

Previous Measurements: Multiplicity vs. W in HCM frame ep DIS

 and $e+e$ - prediction \rightarrow similar rate of increase with \mathbf{W} for $e p$ and e+e-

Present Analysis

- Investigated energy dependence of <nch> in
-photon region of HCM frame
-compared to e+e-, pp and previous DIS
-Breit Frame: current regions
-compared to one hemisphere of e+e-: previous results show disagreement at low energies: used total energy in current region of
Breit frame as a scale for comparison with $\mathrm{e}+\mathrm{e}-$
-Laboratory frame: in bins of x and Q^{2}
-Evaluated an alternative energy scale, the effective mass of hadronic system, $\mathbf{M}_{\text {eff }}$
-compared ep DIS < $\mathrm{n}_{\mathrm{ch}}>$ dependence on $\mathrm{M}_{\text {eff }}$ in
-current and target regions of Breit frame
-current region Breit and photon region HCM frames

HERA I Data

-Present Analysis not statistics limited -Used well studied NC DIS sample of events taken in 1996-97 -positron-proton collisions
-Luminosity studied for this analysis: $38.58 \mathrm{pb}^{-1}$

HERA II Luminosity upgrade

-5x increase in Luminosity

ZEUS Luminosities (pb-1)			\# events (106)
Year	HERA	ZEUS on-tape	Physics
$\mathrm{e}: 93-94,98-99$	27.37	18.77	32.01
$\mathrm{e}^{+}: 94-97,99-00$	165.87	124.54	147.55
Michele Rosin, University of Wisconsin, Madison	Thesis Defense, Jan 27th 2006		

HERA Kinematic Range

$Q^{2}=\mathbf{s x y}$
 $0.1<\mathrm{Q}^{2}<20000 \mathrm{GeV}^{2}$ $10^{-6}<x<0.9$

ZEUS Detector

-Measure ep final state particles: energy, particle type and direction

Central Tracking Detector

View Along Beam Pipe

Side View
-Drift Chamber inside 1.43 T Solenoid
-Can resolve up to 500 charged tracks
-Average event has ~20-40 charged tracks
-Determine interaction vertex of the event
-Measure number of charged particles (tracks)
\cdot Region of good acceptance: - $1.75<\eta<1.75$

$$
\eta=-\ln \left(\tan \left(\frac{\theta}{2}\right)\right)
$$

Uranium-Scintillator Calorimeter (CAL)

ZEUS Trigger

$10^{7} \mathrm{~Hz}$ Crossing Rate, $10^{5} \mathrm{~Hz}$ Background Rate, 10 Hz Physics Rate

\rightarrow First Level
Dedicated custom hardware Pipelined without deadtime Global and regional energy sums Isolated μ and e^{+}recognition Track quality information
\rightarrow Second Level
"Commodity" Transputers Calorimeter timing cuts
$E-p_{z}$ cuts
Vertex information
Simple physics filters
\rightarrow Third Level
Commodity processor farm Full event info available Refined Jet and electron finding Advanced physics filters

UW group responsible for CFLT

Modeling DIS with Monte Carlo

Event generators use algorithms based on QCD and phenomenological models to simulate DIS events
-Hard subprocess: pQCD
-Parton Cascade
-Hadronization
-Detector Simulation

- correct for detector effects: finite efficiency, resolutions \& acceptances

Parton Cascades
 -LO Matrix Element + Parton Showers (MEPS)
 -Color Dipole Model (CDM)

 Next slide

Monte Carlo models: parton cascades and hadronization

Models for parton cascades:

Parton Shower Model:

- cascade of partons with decreasing virtuality continuing until a cut-off

Lund String Model:

- color "string" stretched between q and q moving apart, -string breaks to form 2 color singlet strings, and so on until only on-mass-shell hadrons. LEPTO
ARIADNE

Color Dipole Model:

- Gluons are emitted from the color field between quark-antiquark pairs, supplemented with BGF processes. quark

ARIADNE

Hadronization models:

Cluster Fragmentation Model:

- color-singlet clusters of neighboring partons formed
- Clusters decay into hadrons

1996-97 Data sample

- Event Selection

Scattered positron found with E > 12 GeV
A reconstructed vertex with $\left|Z_{v t x}\right|<50 \mathrm{~cm}$
Scattered positron position cut: radius $>25 \mathrm{~cm}$
$40 \mathrm{GeV}<\mathrm{E}-\mathrm{p}_{\mathrm{z}}<60 \mathrm{GeV}$
Diffractive contribution excluded by requiring $\eta_{\max }>3.2$

- Track Selection

Tracks associated with primary vertex

$$
|\eta|<1.75
$$

$$
\mathrm{p}_{\mathrm{T}}>150 \mathrm{MeV}
$$

- Physics and Kinematic Requirement

```
\(Q^{2}{ }_{\text {da }}>25 \mathrm{GeV}^{2}\)
\(\mathrm{y}_{\text {el }}<0.95\)
\(y_{J B}>0.04\)
\(70 \mathrm{GeV}<\mathrm{W}<225 \mathrm{GeV}\left(\mathbf{W}^{2}=(\mathrm{q}+\mathrm{p})^{2}\right)\)
```


Analysis Methods: Breit Frame

Investigated cause of disagreement between ep vs. Q and $e+e-$ at low energies \rightarrow look more closely at comparison of one hemisphere e+eand current region Breit frame
-ep: Split into Current and Target Region - one string two segments.

- In ep we have a color field between 2 colored objects the struck quark and the proton remnant
-When we use Q^{2} as a scale we are assuming the configuration is as symmetric as it is in $\mathrm{e}^{+} \mathrm{e}^{-}$, but it isn't
-This asymmetric configuration leads to migration of particles from the current region to the target region

Current region Breit Frame Q and $2^{*} E_{\text {Breit }}$

Soft Contribution

Hard Contribution

- In hard and soft processes gluon radiation occurs
-These gluons can migrate to target region
-Total energy in the current region of Breit frame and multiplicity are decreased due to these migrations (Q^{2} is not)
-Effect is more pronounced for low Q^{2} : more low energy gluons

$$
E_{\text {Breit }}=\frac{\sqrt{Q^{2}}}{2}
$$

Effects of gluon migrations

$\cdot 2^{*} \mathrm{E}_{\text {current }} / \mathrm{Q}$ as a function of Q with ARIADNE

- Higher energies: $2^{*} \mathrm{E}_{\text {current }}=\mathrm{Q}$
\rightarrow Gluon migrations negligible
-Lower energies: Q doesn't accurately reflect actual energy in hemisphere.
-Must Use $\mathbf{2}^{*} \mathrm{E}_{\text {current }}$ instead of Q as a scale for comparing with $\mathrm{e}^{+}{ }^{-}$

Analysis Methods: photon hemisphere HCM frame

Check migrations in HCM frame: Is it better to use $\mathbf{2 *}_{\text {photon }}$ instead of \mathbf{W} ?
$2^{*} \mathrm{E}_{\text {photon }} / \mathrm{W}$ as function of W with ARIADNE

Difference is negligible
Measure dependence of $<\mathrm{n}_{\mathrm{ch}}>$ on energy available for particle production, $\mathrm{M}_{\mathrm{inv}}$, in HCM as was done in Breit frame

Migrations here are small
$\rightarrow 2^{*} \mathrm{E}_{\text {photon }} \approx \mathrm{W}$
$\mathrm{M}_{\text {inv }}=\mathrm{W} \rightarrow$ use W as scale

Invariant Mass of Hadronic System

Following idea in pp: Use $\mathbf{M}_{\text {inv }}$ created within the detector as a scale -Measure hadronic final state within $\Delta \eta$ for best acceptance in the central $0^{20^{\circ}}$ tracking detector (CTD)
-Measure \# charged tracks, reconstruct number of charged hadrons
-Measure invariant mass of the system $\left(\mathrm{M}_{\text {eff }}\right)$ in corresponding $\Delta \eta$ region.
-Energy is measured in the Calorimeter (CAL)

$$
M_{e f f}^{2}=\left(\sum_{i \neq e} E^{i}\right)^{2}-\left(\sum_{i \neq e} p_{x}^{i}\right)^{2}-\left(\sum_{i \neq e} p_{y}^{i}\right)^{2}-\left(\sum_{i \neq e} p_{z}^{i}\right)^{2}
$$

Used as a scale to compare:
Study: $\left\langle n_{\text {ch }}>\right.$ vs. $\mathrm{M}_{\text {eff }}$
 current and target regions of Breit frame current region Breit frame to photon region HCM CAL within the CTD acceptance

Corrections: detector level to hadron level

ZEUS data: convolution of real physical quantities and detector effects
To understand underlying physics must remove effects specific to ZEUS detector
Bin-by-bin method: a correction factor (C) is calculated for each bin i which corrects for purity (p) < 100\% and efficiency (e) < 100\%
$p=$ percentage of correctly detected events
$\mathrm{e}=$ percentage of generated events that are detected

$$
p=\frac{\operatorname{had}_{i} \oplus \operatorname{det}_{i}}{\operatorname{det}_{i}} \quad e=\frac{\operatorname{had}_{i} \oplus \operatorname{det}_{i}}{\operatorname{had}_{i}} \quad C=\frac{p}{e}=\frac{\operatorname{had}_{i}}{\operatorname{det}_{i}}
$$

The correction factor, C, is a number for each bin which is multiplied by the data Straight forward method for correcting cross sections. We correct the energy scale in this way, but to correct the track distributions must use other methods:
modified bin-by-bin method and Matrix unfolding method

Detector level to hadron level: Modified bin-by-bin correction

Part one: correct to hadron level using only hadrons generated with $\mathrm{p}_{\mathrm{T}}>0.15 \mathrm{GeV}$ (Detector Effects)

$$
C_{1, i}=\frac{n_{c h, i}^{G E N}, 0.15}{n_{c h, i}^{D E T}}
$$

$$
\left\langle n_{c h, i}^{\text {corrected }}\right\rangle=\left\langle n_{c h, i}^{\text {DATA }} \cdot C_{1, i}\right\rangle \cdot C_{2, i}
$$

number

Part two: correct for hadrons with lower p_{T}, using ratio of <gen> with p_{T} cut to <gen> no p_{T} cut in each bin.

Hadrons

Hadrons no $\mathbf{P}_{\mathbf{T}}$ cut Hadron $\mathrm{p}_{\mathrm{T}}>\mathbf{0 . 1 5} \mathbf{~ G e V}$

$$
C_{2, i}=\frac{\left\langle n_{c h, i}^{G E N}\right\rangle}{\left\langle n_{c h, i}^{G E N, 0.15}\right\rangle}
$$

Detector level to hadron level: Modified bin-by-bin correction

Average correction for detector effects: $\left\langle\mathrm{C}_{1, \mathrm{i}}\right\rangle$

$$
C_{1, i}=\frac{n_{c h, i}^{G E N}, 0.15}{n_{c h, i}^{D E T}}
$$

Correction of hadrons of
$\mathrm{p}_{\mathrm{T}}>0.15 \mathrm{GeV}$ to all hadrons

$$
C_{2, i}=\frac{\left\langle n_{c h, i}^{G E N}\right\rangle}{\left\langle n_{c h, i}^{G E, 0.15}\right\rangle}
$$

Example: lab frame vs. $\mathrm{M}_{\text {eff }}$

Invariant Mass correction: normal bin-by-bin method:
$M_{\text {inv }}=\left\langle M_{\text {inv }}^{\text {DATA }}\right\rangle \frac{\left\langle M_{\text {inv }}^{\text {GEN }}\right\rangle}{\left\langle M_{\text {inv }}^{\text {DET }}\right\rangle}$
Average less than 2\%

Detector level to hadron level: Matrix Correction

Step 1: Correction Matrix:

$M_{n_{\text {GEV }}, n_{D E T}}=\frac{\text { No. of events with } n_{c h}^{G E N} \text { hadrons generated and } n_{c h}^{\text {DET }} \text { tracks observed }}{\text { No. of events with } n_{c h}^{\text {DET }} \text { tracks observed }}$

b) Correction Matrix

Starts at zero and runs through all possible n combinations

The matrix relates the observed to the generated distributions by:

$$
P_{n_{G E N}}=\sum_{n_{D E T}} M_{n_{G E N}, n_{D E T}} \cdot P_{n_{D E T}}
$$

Step 2: Correction for acceptance of event selection cuts in the bins
$C=\frac{\rho_{G E N}}{\rho_{\text {DET }}} \quad \rho_{\text {GEN }}$: distribution with GEN level cuts

- Matrix corrects tracks to hadron level
- ρ corrects phase space to hadron level

Detector level to hadron level: Matrix Correction

To illustrate average size of $1^{\text {st }}$ part of correction:
Mean matrix correction factor:
〈uncorrected tracks distribution〉
$\overline{\langle\text { track distribution after matrix correction }\rangle}$
Mean of C distributions:

$$
P_{n_{\text {corrected }}}=C \cdot \sum_{n_{d a t a}} M_{n_{G E N}, n_{d a t a}} \cdot P_{n_{d a t a}}
$$

Example: current region of Breit frame vs. 2*E
Matrix Correction Factors for current region Breit frame

1 st part of Matrix Correction

2nd part of Matrix Correction

Acceptance correction: Current region of Breit frame:

-Breit Frame: 95\% of hadrons in current region visible in detector, only 30% of target region hadrons are visible Generated in full η range $C_{\eta}^{\text {hadrons }}=\frac{\left\langle n_{c h}^{\text {GEN }}\right\rangle}{\left\langle n_{c h}^{\text {GEN,visible }}\right\rangle}$
Multiplied by $<\mathrm{n}_{\mathrm{ch}}>$
Generated in visible part

Acceptance correction: Photon region HCM

-HCM Frame: 60-80\% Photon region HCM frame contained in visible part of detector. \rightarrow larger corrections.

Photon Region HCM Frame

Correction factors for <nch> vs. W in photon region HCM frame: 1.78, 1.42, 1.26

Additional correction needed for $\mathbf{M}_{\text {eff }}$ in HCM: calculated in bins of W, similar to hadron acceptance correction:
Visible Part

Systematic Checks

Systematic	Change
Ee'	$\pm 1 \mathrm{GeV}$
Radius Cut	$\pm 1 \mathrm{~cm}$
Track p_{T}	$\pm 50 \mathrm{MeV}$
Q^{2}	$\pm 2.25 \mathrm{GeV}^{2}$
y_{JB}	$\pm .008$
y_{el}	$\pm .05$
$\mathrm{Z}_{\mathrm{vtx}}$	$\pm 15 \mathrm{~cm}$
W	$\pm 15 \mathrm{GeV}$ $\pm 7 \mathrm{GeV}$
E - p_{z}	$\pm 2 \mathrm{GeV}$
CAL energy scale	$\pm 3 \%$
Choice of correction method	
Choice of MC	
Removing the $\eta_{\text {max }} \mathrm{cut}$	

Dominant sources of systematic uncertainty: -Main uncertainty is choice of MC. Up to 5\%. Average correction between LEPTO and ARIADNE taken for measurements

- In photon region HCM HERWIG fails to describe multiplicity distributions, and included in systematics

Other sources (typical values in parenthesis)
-CAL energy scale (1.5\%)
-Event \& Track reconstruction and selection (<0.5\%)

- Method of correction: Matrix or Bin-by-bin ($<1.5 \%$)
-Contaminations due to migrations from $\mathrm{Q}^{2}<25$ (<1.7\%)
-Uncertainty due to diffractive event contamination negligible

Systematics added in quadrature and shown on plots
CAL energy scale correlated between points: not shown

Mean charged multiplicity Breit and HCM frames for ep DIS

- Multiplicity in current region of Breit frame and photon region of HCM frame described by ARIADNE
-ARIADNE with "high Q2 treatment" gives better description in high energy bins

Comparison to other multiplicity measurements at HERA

ZEUS
$\bullet<\mathrm{n}_{\mathrm{ch}}>$ in current region of Breit frame and photon region of HCM frame, and ARIADNE predictions plotted together
-photon region HCM ARIADNE agrees with $<\mathrm{n}_{\mathrm{ch}}>$ measurements when extended to lower energies
-Results agree with previous measurements in HCM frame vs. W
-Measure higher multiplicities at lower energies than previous ep measurements as result of using $2^{*} \mathrm{E}_{\text {current }}$.

Comparison of ep multiplicity to other experiments

$\bullet<n_{\mathrm{ch}}>$ in current region Breit frame agree with pp and $\mathrm{e}^{+} \mathrm{e}^{-}$.
-1 ${ }^{\text {st }}$ time lowest energy data in current region of Breit frame show agreement with $\mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{pp}$, and DIS fixed target.
$\bullet<n_{\mathrm{ch}}>$ in photon region HCM frame are compared to high energy $\mathrm{e}^{+} \mathrm{e}^{-}$ (LEP \& LEPII) data. ep measurement agrees within errors of measurement

ZEUS

$<\mathrm{n}_{\mathrm{ch}}>$ vs. $\mathrm{M}_{\text {eff }}$ in x and Q^{2} bins

$<\mathrm{N}_{\mathrm{ch}}>$ shows only small x or Q^{2} dependence: confirms that comparison of <nch> as function of $\mathrm{M}_{\text {eff }}$ not biased by choice of phase space.

ZEUS

ZEUS 96-97
_- ARIADNE for all bins

ZEUS

$1.0-10.0 \times 10^{-2}$

$<n_{c h}>$ vs. $M_{\text {eff }}$ in Breit and HCM frames

ZEUS

ZEUS

Compare Breit frame current and target multiplicities as function of $M_{\text {eff }}$: $<\mathrm{n}_{\mathrm{ch}}>$ target is slightly above current \rightarrow bigger contribution of soft particles.

Compare current region BF and photon region HCM frame as function of $\mathrm{M}_{\text {eff: }}$: behave similarly at low energies, $<\mathrm{n}_{\mathrm{ch}}>$ increases faster in HCM than in Breit

Summary and Conclusions

HFS investigated in NC ep DIS in range $25<q 2$ and $70<\mathrm{W}<225$ in terms of <nch>, the center of mass energy, and the invariant mass, Meff
 by using 2^{*} E as energy scale
<nch> in photon region HCM agree with e+e-
Total energy region of analysis from 2 to 200
New energy variable used for comparison between diff e regions of ep HFS
<nch> scales with Meff in the same way as 2*E in cr Breit frame, (and therefore also same as e+e-), <nch> in photon region HCM rises faster as a function of Meff than <nch> in current region BF.
<nch> in photon region HCM show no dep. On x or Q

