Forward Jets with the CAL

Sabine Lammers

Juan Terron

March 4, 2004

- Motivation
- Event Selection
- Monte Carlo Programs
- Forward Jet Measurements
- Summary and Plans

Parton Evolution Schemes

As terms small in x contribute strongly to BFKL resummation scheme, BFKL evolution may become important at the lowest x values HERA can measure.

 $BFKL \Rightarrow$ additional hadrons from high transverse momentum forward partons, above the DGLAP prediction.

A requirement on the hadronic angle (current jet) allows the exploration of lower $x_{_{Bi}}$

3

Event Selection

Data Set: ZEUS 96/97 (~38.6 pb⁻¹) Monte Carlo: Detector acceptance estimated with LO Color Dipole Model (CDM) implemented with Ariadne, using CTEQ4M PDFs

Trigger Chain: FLT40,41,42,43,44; SLT DIS6; TLT DIS03,04; DST11,12,14

NLO

2 implementations of NLO calculation by DISENT

Inclusive Jet (QPM) Phase Space (1) QPM Suppressed Phase Spaces (2&3) $d \sigma_{LO} = A_0$ $d \sigma_{LO} = C_1 \alpha_s^1$ $d \sigma_{NLO} = A_1 + B_1 \alpha_s^1$ $d \sigma_{NLO} = C_2 \alpha_s^1 + D_2 \alpha_s^2$

- employs subtraction method
- $\mu_{r} = \mu_{f} = Q$
- estimated renormalisation scale uncertainty: $\frac{Q}{2} < \mu_r < 2Q$
- PDF : CTEQ6
- corrected from partons to hadrons using Ariadne (CDM MC)

Inclusive Jet Cross Section vs. $\eta_{_{jet}}$

Cross section drops in forward region due to y-cut

- Significant discrepancy with NLO at high η,
- Ariadne (BFKL-like LO MC) can describe the data
- Lepto (DGLAP-like LO MC) gives fairly good description

Cross section dominated by QPM events - should be well understood! NLO is $O(\alpha_s)$

BFKL?

Parton shower missing from NLO?

Inclusive Jet Cross Section vs. Q², x

Discrepancy between data and NLO localized in lowest $x_{_{Bj}}$ and Q^2 bins, regions where BFKL may be important

Event Topology: Isolating the Signal

Reselection of Phase Space

Inclusive Jet Phase Space

• $Q^2 > 25 \text{ GeV}^2$ • $Q^2 > 25 \text{ GeV}^2$ • y > 0.04 • y > 0.04 $\bullet E_{al} > 10 \text{ GeV}$ to suppress QPM $\bullet E_{al} > 10 \text{ GeV}$ • $E_{T,jet} > 6 \text{ GeV}$ $\bullet E_{T.iet} > 6 \text{ GeV}$ • $0 < \eta_{iet} < 3$ \bullet -1 < η_{iet} < 3 $\bullet \cos(\gamma_{\rm had}) < 0$ with hadronic angle **Disent Calculations:** requirement $LO = O(\alpha_{0}^{0}) = QPM \longrightarrow QPM = 0 \text{ for } \eta > 0 \longrightarrow LO = O(\alpha_{1}^{1}) = BGF + QCDC$ NLO = QPM + corrections \rightarrow BGF + QCDC for $\eta > 0 \rightarrow$ NLO = O(α_{c}^{2}) = BGF + QCDC + corrections Just 1 order in the series of α 2 orders in the series of α_{α} 2 orders in the series of α_{a}

"OPM Suppressed" Phase Space

Inclusive Jet Cross Section vs. η_{jet} for "QPM Suppressed" Phase Space

For our signal events, agreement with NLO within errors. NLO now includes terms $O(\alpha_s^2)$

Ariadne gives good description of data

Lepto gives fair description of data

Renormalization scale uncertainty grows in the forward region

Inclusive Jet Cross Section vs. Q²,x for QPM Suppressed Phase Space

NLO based on DGLAP agrees with data within errors.

BFKL Phase Space

Further restrictive phase space suggested by Mueller, Navalet

limitation on Q²/E²_{T,jet} suppresses events exhibiting DGLAP evolution $Q^2 \sim E_T^2$, jet

Inclusive Sample:

• $Q^2 > 25 \text{ GeV}$

◆ y > 0.04

 $\bullet E_{el} > 10 \text{ GeV}$

•
$$E_{T,jet} > 6 \text{ GeV}$$

• -1 < η_{jet} < 3

QPM Suppressed Sample:

- $Q^2 > 25 \text{ GeV}$
- ◆ y > 0.04
- $E_{el} > 10 \text{ GeV}$
- $E_{T,jet} > 6 \text{ GeV}$
- $\bullet 0 < \eta_{_{jet}} < 3$
- $\bullet \cos(\gamma_h) < 0$

BFKL Jets Sample:

- $Q^2 > 25 \text{ GeV}$
- y > 0.04
- $E_{el} > 10 \text{ GeV}$
- $E_{T,jet} > 6 \text{ GeV}$
- $0 < \eta_{jet} < 3$
- $\cos(\gamma_h) < 0$

•
$$0.5 < Q^2 / E_{T.iet}^2 < 2$$

12

BFKL Phase Space – Data/MC Comparison

CDM (Ariadne) describes data well.

plots are area normalized

BFKL Phase Space – Efficiencies, Purities

Efficiencies, purities reasonable. Low purity in highest eta bin

Inclusive Jet Cross Section vs η_{jet} for BFKL Phase Space

Data shows excess over NLO

Large renormalization scale uncertainty persists

Ariadne (BFKL-like MC) gives excellent description of data over entire region

Lepto (DGLAP-like MC) cannot describe data

Inclusive Jet Cross Section vs Q²,x for BFKL Phase Space

NLO Calculation can describe the data.

Summary

Inclusive jet cross sections at Q² > 25 GeV², y >0.04 have been measured over the full rapidity acceptance region in three phase space regions

	NLO Calculation	Ariadne (BFKL-like MC)	Lepto (DGLAP-like MC)
Inclusive PS	cannot describe data in forward	good description	good description
QPM Suppressed PS	data above NLO; agreement w/in errors	good description	fair description
BFKL PS	data above NLO	excellent description	data above Lepto

Conclusions and Plans

Large renormalization scale uncertainty indicates higher order contributions are important for obtaining an accurate prediction from the theory.

A resummed NLO calculation, perhaps using the BFKL implementation, would be interesting to compare to the data, both for its cross section predictions and as a measure of the renormalization scale uncertainty in the low- x_{Bi} and high- η_{iet} region

<u>Paper Publication:</u> • writing has begun

- SL leaves at end of April
- action items
 - $\textbf{\textbf{+}}$ cross sections in most forward region 2 < $\eta~<3$
 - ➤ CASCADE prediction
 - → fine tuning of systematics

End of Talk

$\text{HERA} \rightarrow \text{ LHC}$

HERA densities extrapolate into LHC region

DGLAP parton densities, QCD knowledge from HERA ↓ LHC measurements

HERA measurements crucial for understanding signal + background at LHC!

20

Dijet Event

Looking for presence of strong forward jets accompanied by hadronic activity in central and/or rear parts of the detector

DGLAP Evolution Equations

Quark and gluon parton distribution functions (PDF's) are predicted at a certain x and Q^2 , given an initial distribution at x_0^2 and Q_0^2 .

$$\frac{dq_i(x,Q^2)}{d \ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dz}{z} [q_i(y,Q^2)P_{qq}(\frac{x}{z}) + g(y,Q^2)P_{qg}(\frac{x}{z})]$$
splitting functions
-calculable by QCD
$$\frac{dg(x,Q^2)}{d \ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dz}{z} [\sum q_i(y,Q^2)P_{gq}(\frac{x}{z}) + g(y,Q^2)P_{gg}(\frac{x}{z})]$$

In the perturbation series calculation of the evolution of the PDF's with x and Q², there are terms proportional to $(\alpha \ln Q^2)^n$, $(\alpha \ln (1/x))^n$ and $(\alpha \ln Q^2 \ln (1/x))^n$

DGLAP = Dokshitzer, Gribov, Lipatov, Altarelli, Parisi

DGLAP Approximation:

- sums terms $\alpha_{s} \ln Q^{2}$, ignores $\alpha_{s} \ln(1/x)$
- has limited applicability ---> $\alpha_s \ln(Q^2) \sim 1$ $\alpha_s \ln \frac{1}{x} \ll 1$

Previous ZEUS Measurement

do/dx [nb] **140 ZEUS Data** 120 ARIADNE 4.08 100 **LEPTO 6.5 (SCI)** 80 LDC 1.0 60 **40** a) 20 0 -3 -2 10 10 X

ZEUS 1995

Issues:

- all monte carlo models understimate the data at low x
- LO monte carlo models are not consistent with each other

Improvements:

- new data set: 6x more statistics
- new calculation: NLO
- higher reach in η
- jet finding with k_{T} -algorithm

Monte Carlo

LEPTO:

- \bullet $k_{_{\rm T}}\text{-}ordered$ parton shower DGLAP
- Hadronization: Lund String Model

ARIADNE:

- Parton showering with CDM (Color Dipole Model: BFKL-like)
- Hadronization: Lund String Model

Lund String Model: Color string stretched across pairs of final state partons. Energy stored in the string gives rise to hadrons.

Detector acceptance estimated with LO Color Dipole Model (CDM) implemented with Ariadne , which has the best description of data 24

Inclusive Jet Cross Sections vs. total Inclusive Cross Sections using DISENT

A hard lower cut-off in the jet $E_{_{\!\mathrm{T}}}$ significantly limits the phase space

 $\Rightarrow inclusive jet cross section does not dominate inclusive DIS cross section at low x_{Bi} and Q²$

Systematic Uncertainties

Systematic uncertainties arise from

- data measurement resolution
- poor description of data by MC at cut boundary
- model dependencies in MC

Systematic Checks

Typical/Maximal (in a bin) Variation

1. Lepto instead of Ariadne	6% / 15%
2.Calorimeter Energy Scale ±3%	5% / 23%
3. Jet Et cut variation ± 1 GeV	2% / 13%
4. Jet η cut (forward) variation ± 0.2	1% / 5%
5. Electron energy cut variation ± 1 GeV	2% / 5%
6. Q^2 cut variation ± 2 GeV	1% / 3%
7. Vtx cut variation \pm 10 cm.	1% / 2%
8. High E-pz cut variation \pm 3 GeV	1% / 1%
9. Low E-pz cut variation \pm 3 GeV	1% / 1%
10. Hadronic angle cut variation \pm 0.1	3%/ 12%