Search for BFKL Dynamics in Deep Inelastic Scattering at HERA

Preliminary Examination

Sabine Lammers
 University of Wisconsin
 December 20, 2000

HERA Collider

HERA: an electron-proton accelerator at DESY

- 820/920 GeV proton
- 27.5 GeV electrons or positrons
- 300/318 GeV center of mass energy
- 220 bunches, 96 ns crossing time
- Instantaneous luminosity: $1.8 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- currents: $\sim 90 \mathrm{~mA}$ protons, $\sim 40 \mathrm{~mA}$ positrons

Luminosity

- total integrated luminosity: $185 \mathrm{pb}^{-1}$
- currently undergoing luminosity upgrade
- $1 \mathrm{fb}^{-1}$ expected by end of 2005
\Rightarrow significant yearly improvement

Zeus Detector

Zeus Geometry

- Calorimeter: alternating layers of depleted uranium and scintillator.
- 99.7% solid angle coverage
- Energy resolution: 35\%/VE for hadronic section
$18 \% / \mathrm{NE}$ for electromagnetic section
- Central Tracking Detector: drift chamber
- 1.43 T solenoid
- vertex resolution: 1 mm transverse, 4 mm in z

Zeus Trigger

First level

- dedicated hardware
- no deadtime
- global and regional energy sums
- isolated muon and positron recognition
- track quality information
- Second Level
- timing cuts
- $\mathrm{E}-\mathrm{p}_{\mathrm{z}}$
- simple physics filters
- vertex information

■ Third Level

- full event information available
- advanced physics filters
- jet and electron finding
$10^{7} \mathrm{~Hz}$ crossing rate
$10^{5} \mathrm{~Hz}$ background rate 10 Hz physics rate

DIS Kinematics

$$
\mathrm{s}^{2}=(\mathrm{p}+\mathrm{k})^{2} \sim 4 \mathrm{E}_{\mathrm{p}} \mathrm{E}_{\mathrm{e}}=(318 \mathrm{GeV})^{2} \quad \begin{gathered}
\text { center of mass } \\
\text { energy }
\end{gathered}
$$

$Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2} \quad$ the square of the four momentum transferred

$$
\begin{array}{ll}
\mathrm{x}=\frac{\mathrm{Q}^{2}}{2 \mathrm{p} \bullet \mathrm{q}} & \begin{array}{l}
\text { fraction of proton's momentum } \\
\text { carried by the struck parton }
\end{array} \\
\mathrm{y}=\frac{\mathrm{p} \bullet \mathrm{q}}{\mathrm{p} \bullet \mathrm{k}} & \begin{array}{l}
\text { fraction of positron's energy } \\
\text { transferred to the proton in the } \\
\text { proton's rest frame }
\end{array} \\
& \mathrm{Q}^{2}=\text { sxy }
\end{array}
$$

Deep Inelastic Scattering Event

$$
Q^{2} \sim 3700 \quad x \sim .15 \quad y \sim .21
$$

Kinematic Reconstruction

■ Electron Method - use scattered electron energy, angle

$$
\begin{aligned}
& \mathrm{Q}^{2}=2 \mathrm{EE}^{\prime}\left(1+\cos \theta_{\mathrm{e}}\right) \\
& \mathrm{y}=1-\frac{\mathrm{E}^{\prime}}{2 \mathrm{E}}\left(1-\cos \theta_{\mathrm{e}}\right) \\
& \mathrm{x}=\frac{\mathrm{E}}{\mathrm{P}}\left(\frac{\mathrm{E}^{\prime}\left(1+\cos \theta_{\mathrm{e}}\right)}{2 \mathrm{E}^{-}-\mathrm{E}^{\prime}\left(1-\cos \theta_{\mathrm{e}}\right)}\right)
\end{aligned}
$$

\longrightarrow best resolution at high y and low Q^{2}
Double Angle Method - use leptonic, hadronic angles

$$
\cos \gamma_{\mathrm{h}}=\frac{\left(\Sigma \mathrm{p}_{\mathrm{x}}\right)^{2}+\left(\Sigma \mathrm{p}_{\mathrm{y}}\right)^{2}-\left(\Sigma\left(\mathrm{E}-\mathrm{p}_{\mathrm{z}}\right)\right)^{2}}{\left(\Sigma \mathrm{p}_{\mathrm{x}}\right)^{2}+\left(\Sigma \mathrm{p}_{\mathrm{y}}\right)^{2}+\left(\Sigma\left(\mathrm{E}-\mathrm{p}_{\mathrm{z}}\right)\right)^{2}}
$$

$Q_{D A}^{2}=\frac{4 E^{2} \sin \gamma_{h}\left(1+\cos \theta_{e}\right)}{\sin \gamma_{h}+\sin \theta_{e}-\sin \left(\theta_{e}+\gamma_{h}\right)} \quad y_{D A}=\frac{\sin \theta_{e}\left(1-\cos \gamma_{\mathrm{h}}\right)}{\sin \gamma_{h}+\sin \theta_{e}-\sin \left(\theta_{e}+\gamma_{h}\right)} \quad x_{D A}=\frac{Q_{D A}^{2}}{\operatorname{sy} y_{D A}}$
depends only on energy ratios \Rightarrow
less sensitive to energy scale uncertainties

Kinematic Range

Q $1 / \lambda$ describes our ability to "see" inside the proton.

DIS Cross Section

For neutral current processes, the differential cross section is:

$$
\begin{gathered}
\frac{\mathrm{d}^{2} \sigma\left(\mathrm{e}^{ \pm} \mathrm{p} \rightarrow \mathrm{e}^{ \pm} \mathrm{X}\right)}{\mathrm{dxdQ} \mathrm{Q}^{2}}=\frac{2 \pi \alpha_{\mathrm{em}}^{2}}{\mathrm{xQ}^{4}}\left[\mathrm{Y}_{+} \mathrm{F}_{2}\left(\mathrm{x}, \mathrm{Q}^{2}\right) \mp \mathrm{Y}_{-} \mathrm{x} \mathrm{~F}_{3}\left(\mathrm{x}, \mathrm{Q}^{2}\right)-\mathrm{y}^{2} \mathrm{~F}_{\mathrm{L}}\left(\mathrm{x}, \mathrm{Q}^{2}\right)\right] \\
\mathrm{Y}_{ \pm}=1 \pm(1-\mathrm{y})^{2}
\end{gathered}
$$

The structure function F_{2} parameterizes the interaction between transversely polarized photon and spin $1 / 2$ partons.

The structure function F_{L} parameterizes the interaction between longitudinally polarized photons and the proton.

The structure function XF_{3} is the parity violating term due to the presence of the weak interaction.

Quark Parton Model

The structure function F_{2} can be expressed in terms of the quark distributions in the proton:

$$
\mathrm{F}_{2}\left(\mathrm{x}, \mathrm{Q}^{2}\right)=\sum_{\text {quats }} \mathrm{A}_{\mathrm{q}}\left(\mathrm{Q}^{2}\right) \cdot\left(\mathrm{xq}\left(\mathrm{x}, \mathrm{Q}^{2}\right)+\mathrm{x} \overline{\mathrm{q}}\left(\mathrm{x}, \mathrm{Q}^{2}\right)\right)
$$

parton distribution functions
$\mathrm{q}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ and $\overline{\mathrm{q}}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$, called parton distribution functions, are the average number of partons with momentum fraction between x and $x+d x$ inside the proton.

For $\mathrm{Q}^{2}<\mathrm{M}_{\mathrm{Z}}{ }^{2}$, the coefficient $\mathrm{A}_{\mathrm{q}}\left(\mathrm{Q}^{2}\right)$ approaches $\mathrm{e}_{\mathrm{q}}{ }^{2}$, the charge of the quarks, and $\mathrm{F}_{2}{ }^{\mathrm{NC}}$ reduces to $\mathrm{F}_{2}{ }^{\mathrm{EM}}$.

- Naive Quark Parton Model
- No interaction between the partons
- Proton structure function independent of Q^{2}
- Interpretation: partons are point-like particles
\Rightarrow Bjorken Scaling $\mathrm{F}_{2}\left(\mathrm{x}, \mathrm{Q}^{2}\right) \rightarrow \mathrm{F}_{2}(\mathrm{x}), \mathrm{F}_{\mathrm{L}}=0$

QCD

Quarks only account for half of the proton's momentum

 \rightarrow introduce gluons
(a)

(b)

(c)

The relevant strong interactions are given by splitting functions, which are related to the probabilities that
(a) a gluon splits into a quark-antiquark pair
(b) a quark radiates a gluon
(c) a gluon splits into a pair of gluons

Prediction: presence of gluons will break Bjorken scaling

Scaling Violation

- gluon density can be extracted from fits of F_{2} along lines of constant x

$$
g\left(x, Q^{2}\right) \sim \frac{d F_{2}\left(x, Q^{2}\right)}{d \ln Q^{2}}
$$

- gluons account for nearly half the momentum of the proton

QCD Evolution - DGLAP

A powerful mechanism in QCD is the ability to predict the PDF at a selected x and Q^{2}, given an initial parton density.

The DGLAP equations give the quark and gluon densities in the proton as follows:

$$
\frac{d q_{i}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \int_{x}^{1} \frac{d z}{z}\left[q_{i}\left(y, Q^{2}\right) P_{q q}\left(\frac{x}{z}\right)+g\left(y, Q^{2}\right) P_{q g}\left(\frac{x}{z}\right)\right]
$$

splitting functions
-calculable by QCD

$$
\frac{d g\left(x, Q^{2}\right)}{d \ln Q^{2}}=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \int_{x}^{1} \frac{d z}{z}\left[\sum q_{i}\left(y, Q^{2}\right) P_{g q}\left(\frac{x}{z}\right)+g\left(y, Q^{2}\right) P_{g g}\left(\frac{x}{z}\right)\right]
$$

The splitting functions are the probabilities for a quark or gluon to split into a pair of partons.

In the evolution of the PDF's, there are terms proportional to $\ln Q^{2}, \ln (1 / x)$, and $\ln Q^{2} \ln (1 / x)$.
DGLAP Approximation:

- sums terms $\ln \mathrm{Q}^{2}, \ln \mathrm{Q}^{2} \ln (1 / \mathrm{x})$
- limited range of validity
$\longrightarrow \quad \alpha_{s}\left(Q^{2}\right) \ln \left(Q^{2}\right) \sim O(1) \quad \alpha_{s}\left(Q^{2}\right) \ln \left(\frac{1}{x}\right) \ll 1$

Dijet Processes

Direct measurement of the gluon distribution

- how well does perturbative QCD and DGLAP evolution describe events with jets?
- investigate dijet production in DIS
- kinematic range easily accesible at HERA

Leading Order QCD Diagrams:

Boson-Gluon Fusion

QCD Compton

Now the fraction of the proton's momentum carried by the parton is:

$$
\xi=x\left(1+\frac{M_{j j}{ }^{2}}{Q^{2}}\right) \quad \mathrm{M}_{\mathrm{ij}}=\operatorname{dijet} \operatorname{mass}
$$

LO Monte Carlo Models

"Monte Carlos" are event generators that attempt to reproduce theoretically predicted cross section distributions.

Dijet leading order monte carlo models include:

- LO matrix elements for two parton final state
- higher order effects
- parton showers
- non-perturbative effects
- hadronization

LO monte carlo programs: ARIADNE, LEPTO, HERWIG

- LO matrix element
- ARIADNE, LEPTO and HERWIG use the Feynman inspired calculation of the matrix element
- Parton Showers
- LEPTO, HERWIG use parton showers that evolve according to the DGLAP Equation
- ARIADNE uses the color dipole model, in which each pair of partons is treated as an independent radiating dipole.
- Hadronization
- LEPTO, ARIADNE use the Lund String Model
- HERWIG uses Cluster Fragmentation

NLO Calculations

At next to leading order, a single gluon emission is included in the dijet final state

Next to leading order calculations include:

- matrix elements for three parton final states
- soft/collinear gluon emissions
- virtual loops

They do not include:

- parton showering
- hadronization

Uncertainties:

- renormalization scale: scale at which the strong coupling constant α_{s} is evaluated
- factorization scale: scale at which the parton densities are evaluated

NLO calculations: MEPJET, DISENT, DISASTER++

96/97 Dijet Cross Section Measurement

Data Sample: $38.4 \mathrm{pb}^{-1}$ of data taken in 1996 and 1997
Event Selection Cuts: $10<\mathrm{Q}^{2}<10,000$

$$
\begin{aligned}
& y>0.04 \\
& \text { electron energy }>10 \mathrm{GeV}
\end{aligned}
$$

Jet cuts: jet $\mathrm{E}_{\mathrm{T}}>5 \mathrm{GeV}$

$$
-2.0<\eta<2.0\}
$$

Lab Frame
leading jet $\mathrm{E}_{\mathrm{T}}>8 \mathrm{GeV}, \quad$ Breit Frame subleading jet $\mathrm{E}_{\mathrm{T}}>5 \mathrm{GeV}$ \}

Breit Frame

Dijet identification is easier in the Breit Frame

QPM event in Breit Frame

Definition:

- quark rebounds off photon with equal and opposite momentum
- axis is the proton-photon axis
- photon is completely space-like: its $4-$ momentum has only a zcomponent
- outgoing jet has no E_{T}

QCD Compton event in Breit Frame

In dijet events, the outgoing jets are balanced in E_{T}

A cut on the jet E_{T} removes QPM events from the dijet sample

Jet Finder

Inclusive mode k_{T} cluster algorithm:

Combine particles i and j into a jet if $\mathrm{d}_{\mathrm{i}, \mathrm{j}}$ is smaller of $\left\{\mathrm{d}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}, \mathrm{j}}\right\}$.

$$
d_{i}=E_{T, i}{ }^{2}
$$

$$
\mathrm{d}_{\mathrm{i}, \mathrm{j}}=\min \left\{\mathrm{E}_{\mathrm{T}, \mathrm{i}}{ }^{2}, \mathrm{E}_{\mathrm{T}, \mathrm{j}}{ }^{2}\right\}\left(\Delta \eta^{2}+\Delta \varphi^{2}\right) / \mathrm{R}^{2}
$$

Repeat algorithm with all calorimeter cells.

Preferred over cone algorithms because:

- no seed requirements
- same application to cells, hadrons, partons
- no overlapping jets
- infrared safe to all orders

Agreement with DGLAP

Comparison of the data with the NLO calculation that uses a DGLAP model for the PDF's has shown good agreement - a triumph for pQCD !

Questions remain:

- large renormalization scale uncertainty
- $\eta>2$ region not investigated

Dijet cross section vs. η

Why BFKL?

DGLAP: In the perturbative expansion of the parton densities, only terms proportional to $\left(\ln \mathrm{Q}^{2}\right)^{\mathrm{n}}$ are kept and summed to all orders.
At small values of x, terms in the evolution that contain $\ln \frac{1}{x}$ are no longer negligible.

BFKL, another evolution of the PDF's, includes terms $\ln \frac{1}{\mathrm{X}}$ in its sum.

BFKL provides an evolution in x at fixed Q^{2}, given a starting distribution at x_{o}.

BFKL

The BFKL Equation is:

$$
\frac{\partial f\left(x, k_{T}^{2}\right)}{\partial \ln \frac{1}{x}}=\frac{3 \alpha_{s}}{\pi} k_{T}^{2} \int_{0}^{\infty} \frac{k_{T}^{\prime 2}}{k_{T}^{\prime 2}}\left[\frac{f\left(x, k_{T}^{\prime 2}\right)-f\left(x, k_{T}^{2}\right)}{\left|k_{T}^{\prime 2}-k_{T}^{2}\right|}+\frac{f\left(x, k_{T}^{2}\right)}{\sqrt{4 k_{T}^{\prime 4}+k_{T}^{4}}}\right]
$$

where the gluon density is defined to be:

$$
x g\left(x, Q^{2}\right)=\int_{0}^{Q^{2}} \frac{d k_{T}^{2}}{k_{T}^{2}} f\left(x, k_{T}^{2}\right)
$$

The forward jet cross section has been calculated:

$$
\sigma_{\text {forward jet }} \sim\left(\frac{x_{j e t}}{x}\right)^{4 \ln 2 \alpha_{s} \frac{N_{c}}{\pi}}\left(\frac{Q^{2}}{p_{t}^{2}}\right)^{\mu}
$$

Expanding,

$$
\begin{aligned}
&\left\{1+\frac{\alpha_{s} N_{c}}{\pi} 4 \ln 2 \log \left(\frac{x_{j e t}}{x}\right)+\frac{1}{2}\left[\frac{\alpha_{s} N_{c}}{\pi} 4 \ln 2 \log \left(\frac{x_{j e t}}{x}\right)\right]^{2}+\ldots\right\}\left(\frac{Q^{2}}{p_{t}^{2}}\right)^{1+\mu} \\
& \text { expansion in } \ln (1 / \mathrm{x})
\end{aligned}
$$

The first term of this expansion is similar to the NLO calculation in DGLAP perturbation theory.

The range of applicability is:

$$
\alpha_{s} \ln \left(Q^{2}\right) \ll 1 \quad \alpha_{s} \ln \frac{1}{x}=O(1)
$$

Gluon Ladder

$\nabla \begin{gathered}\text { HERA } \\ \text { forward } \\ \text { region }\end{gathered}$

DGLAP: $\mathrm{x}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}<\mathrm{x}_{\mathrm{n}-1}<\ldots<\mathrm{x}_{1}, \mathrm{Q}^{2}=\mathrm{k}_{\mathrm{T}, \mathrm{n}}^{2} \gg \ldots \gg \mathrm{k}_{\mathrm{T}, 1}^{2}$ BFKL: $x_{n}=x_{n} \ll x_{n-1} \ll \ldots \ll x_{1}$, no ordering in k_{T}

If BFKL works, we should see additional contributions to the hadronic final state from high transverse momentum partons going forward in the HERA frame.

Forward Jets at Zeus

Previous Measurement

Data Sample: $6.36 \mathrm{pb}^{-1}$ taken in 1995
Analysis done in lab frame
Jet finding with cone algorithm

Selection Cuts

- $4.5 \times 10^{-4}<\mathrm{x}<4.5 \times 10^{-2}$ range in x limited by resolution and choice of binning
- $\mathrm{E}_{\mathrm{e}}>10 \mathrm{GeV}$ good electron
- $y>0.1$ sufficient hadronic energy away from forward region
- $0.5<\mathrm{E}_{\mathrm{T}, \mathrm{Jet}}^{2} / \mathrm{Q}^{2}<2$ selects BFKL phase space
- $\mathrm{E}_{\mathrm{T}, \mathrm{Jet}}>5 \mathrm{Gev}$ good reconstruction of the jet
- $\eta_{\text {Jet }}<2.6$ experimental limitations
- $\mathrm{X}_{\text {Jet }}>0.036$ selects high energy jets at the bottom of the gluon ladder
- $\mathrm{p}_{\mathrm{Z}, \mathrm{Jet}}($ Breit $)>0$ rejects forward jets with large x_{Bj} (QPMevents) rejects leading order jets from the quark box

Results of the 1995 Forward Jets analysis

ZEUS 1995

None of the models used describes the cross section over the entire x range investigated

Issues:

- all monte carlo models understimate the data at low x
- LO monte carlo models are not consistent with each other
- LDC underestimates measured forward jet cross section
\longrightarrow results inconclusive
LDC, the Linked Dipole Chain model, implements the structure of the CCFM Equation, intended to reproduce DGLAP and BFKL in their respective ranges of validity.

Proposal

Proposal: Test perturbative QCD in a new kinematic range, applying knowledge acquired from the dijet analysis.

Challenges: find kinematic region where

- measurement uncertainties are small
- theoretical uncertainties are small
- BFKL effects potentially large

\rightarrow forward jet region

We expect a successful measurement because of:

- Increased statistics by $17 \mathrm{x} \Rightarrow$ higher jet E_{T}
\rightarrow smaller hadronization corrections
\rightarrow improved jet purities and efficiencies
- Better understanding of DGLAP from dijet analysis
\rightarrow Jet finding in Breit Frame using k_{T} algorithm
- Better understanding of theoretical calculations

Analysis Method

Plan: Measure the forward jet rate and compare

 to QCD based Monte Carlo predictions and analytical calculations based on DGLAP, BFKL and CCFM evolution.Data Sample: 1996,1997,1999,2000 data is available

Use leading order monte carlos for detector corrections

Studies needed:

- jet finding purities and efficiencies
- hadronizationl corrections
- systematic uncertainties
- energy scale uncertainty

Compare forward jet cross section with NLO
calculation, using jets found in the Breit Frame and reconstructed using the k_{T} method
\longrightarrow look for excess

Data Sample

1996-1997 integrated luminosity $=38.4 \mathrm{pb}^{-1}$
1999-2000 integrated luminosity $=67.7 \mathrm{pb}^{-1}$

- new detector component: Forward Plug Calorimeter - increases eta range by 1 unit

Calorimeter Energy Scale Uncertainty

Scheme: In QPM events, the scattered positron and the jet are balanced in E_{T} in the laboratory frame.
Assuming the reconstructed electron energy is reliable, the jet transverse energy should be the same as the positron's.

Preliminary Conclusion: energy uncertainty is within 3\%

Summary

- A departure from parton evolution described by DGLAP at low x is theorized
- Forward region is the best place to look for low x, BFKL signature dynamics
- 96/97 dijets analysis laid out standards with which to make a solid cross section measurement
- data exists

Forward Jet	statistics	jet E_{T}	jet η	reference frame	jet finder	DGLAP
95 measurement	$6.36 \mathrm{pb}^{-1}$	$>5 \mathrm{GeV}$	<2.6	Lab	cone	LO
proposed mesurement	$106 \mathrm{pb}^{-1}$	$\gg 5 \mathrm{GeV}$	farther forward	Breit	k_{T} cluster	NLO

[^0]
Pseudorapidity

$$
\text { rapidity }=\frac{1}{2} \ln \left[\frac{E+p_{\|}}{E-p_{\|}}\right]
$$

pseudorapidity $=\eta=\frac{1}{2} \ln \left[\frac{|p|+p_{\|}}{|p|-p_{\|}}\right]=-\ln \left(\tan \frac{9}{2}\right)$

Lorentz boost along the beam direction:

$$
\eta^{\prime}=\eta+f(v)
$$

η is shifted by an additive constant

$\Delta \eta$ is unaffected

The form of the transverse energy distribution in $\eta-\varphi$ space is the same in all frames

Comparison of Data and Monte Carlo Distributions

Jet quantities

ZEUS 1995

Comparison of Data and Monte Carlo Distributions

Event quantities

ZEUS 1995

FPC

[^0]: Conclusion: A measurement of forward jet cross section is warranted because we have the possibility to learn more about pQCD .

