Every Collisions with the Zeus Detector at HERA

Wesley Smith, *U. Wisconsin*

Outline:

- Proton Structure
- Photon Structure
- Conclusions

ZEUS Collaboration

Manitoba, McGill, Toronto, York **CANADA** Bonn, DESY, DESY-Zeuthen, Freiburg, Hamburg I, Hamburg II, Julich, Siegen **GERMANY** Tel Aviv, Weizmann ISRAEL Bologna, Cosenza, Florence, Frascati-Rome, Padua, La Sapienza-Rome, Turin ITALY Tokyo-INS, Tokyo-Metropolitan **JAPAN** Seoul **KOREA NIKHEF-Amsterdam** The NETHERLANDS **Cracow**, Warsaw POLAND Moscow **RUSSIA** Madrid SPAIN Bristol, London(I.C.), London(U.C.), **Oxford, Rutherford UNITED KINGDOM** Andrews, Argonne, Brookhaven, Columbia, Iowa, Ohio State, Pennsylvania State, U.C. Santa Cruz, Wisconsin, Yale U.S.A. **50 Total Institutions 420 Total Physicists**

HERA Data Runs

ZEUS Data Samples:

- •48 pb⁻¹ e⁺p (1994-1997)
- •22 pb⁻¹ e⁻p (1998-1999)
- •1999: 15.8 pb⁻¹ e⁺p (as of Oct. 18)

^{18.10.} Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Deep Inelastic Scattering

x = the fraction of the proton's momentum carried by the struck parton

 $s = (k + P)^2 = center of mass energy$

 $Q^2 = -q^2 = -(k-k')^2 = (momentum transferred)^2$

y = the fraction of the electron's energy lost in the proton rest frame

$$x = \frac{Q^2}{2P \cdot q}$$
 $y = \frac{P \cdot k}{P \cdot q}$ $Q^2 = SXY$

Photoproduction

Direct:

Resolved:

Background for DIS

DIS cross section

DIS differential cross section:

$$\frac{d\sigma^{NC}(e^{\pm}p)}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}}Y_{+}\left[F_{2} - \frac{y^{2}}{Y_{+}}F_{L} \mp \frac{Y_{-}}{Y_{+}}xF_{3}\right]$$
$$Y_{\pm} = 1 \pm (1-y)^{2}$$

 γ^* is longitudinally or transversely polarized

 $F_2(x,Q^2)$ = Structure function = interaction btw. transversely polarized photons & spin 1/2 partons = charge weighted sum of the quark distributions.

 $F_L(x,Q^2)$ = Structure function = cross section due to longitudinally polarized photons that interact with the proton. The partons that interact have transverse momentum. (Important at high y).

 $F_3(x,Q^2) =$ Parity-violating structure function from Z^0 exchange. (Important at high Q^2).

Two High -Q² DIS NC events

W. Smith, U. Wisconsin

Low Q² Measurements

$Q^2 = 4EE' \cdot \sin^2(\frac{\Theta}{2})$

Zeus Beampipe Calorimeter:

H1 & Zeus Shifted Vertex:

H1 & Zeus Initial State Radiation

HERA Kinematic Range

Kinematic reconstruction

Kinematic Reconstruction

Electron energy, E-P_z, electron angle & Z vertex used to measure F₂ Data shown vs. DIS, Photoprod., Diffractive MC

W. Smith, U. Wisconsin

Reconstructed Kinematics

Reconstructed x, y, Q², & hadron shower angle (γ_h)
Photoproduction bkgd. contributes mostly at high y
x & Q² used for binning & unfolding of F₂

Perturbative QCD

In the naive parton model the structure function F_2 is given by the charge weighted sum of parton momentum densities that depends only on x (scaling). Perturbative QCD provides a scheme to characterize the Q² dependence (scaling violations):

$$F_2(x,Q^2) = \sum_{i} e_i^2 x q_i(x,Q^2)$$

Given an empirical parameterization for parton densities at $Q^2=Q_0^2$, e.g.:

$$xg(x) = A_g x^{\delta_g} (1-x)^{\eta_g} (1+\gamma_g x)$$

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equations describe evolution of parton densities to higher Q²

$$\frac{dq_i(x,Q^2)}{d\ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dw}{w} \left[q_i(w,Q^2) P_{qq}\left(\frac{x}{w}\right) + g(w,Q^2) P_{qg}\left(\frac{x}{w}\right) \right]$$

$$\frac{dg(x,Q^2)}{d\ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dw}{w} \left[\sum_i q_i(w,Q^2) P_{gq}\left(\frac{x}{w}\right) + g(w,Q^2) P_{gg}\left(\frac{x}{w}\right) \right]$$

Calculation of DIS cross section requires
$$F_L$$
:

$$F_L(x,Q^2) = \frac{\alpha_s(Q^2)}{\pi} \int_x^1 \frac{dw}{w} \left(\frac{x}{w}\right)^2 \left\{ \frac{4}{3} F_2(w,Q^2) + 2\sum_i e_i^2 \left(1 - \frac{x}{w}\right) wg(w,Q^2) \right\}$$

The parameterization of gluon density can be determined by fitting QCD evolution to DIS data.

W. Smith, U. Wisconsin

October, 1999

New F_2 vs. x at Lower Q^2

Can reach lower Q² than 1994 data Steep rise in F₂ with decreasing x seen at low Q²

ZEUS

New F₂ vs. x at Higher Q²

Extension of measurement to higher Q^2 Steep rise in F_2 with decreasing x at high Q^2 confirmed

ZEUS Preliminary

Scaling violation increasing at low x QCD fits to scaling violation yields gluon

Charm Production in DIS

...a more direct probe of the gluon

Boson-gluon fusion process:

 F_2^{charm} is the charm contribution to F_2^{charm} charm almost exclusively from boson-gluon fusion From F_2^{charm} , gluon content can be extracted

Medium to High Q²:

- NLO-pQCD provides a self consistent description of the data from $Q^2 = 1$ to 20,000 GeV².
- Strong rise of F₂ towards low x seen across kinematic range
- New precise (1% stat + 3% syst) higher statistics data
- Measurement of F^c₂ provides additional consistency check
- Good agreement between HERA and fixed target
- Clear scaling violations enable calculation of gluons with 10-15% precision
- Gluon vs. sea density at $Q^2 = 1$?

Low Q²:

- Observed transition from perturbative to non perturbative regime
- Regge models can describe the data
- At lowest Q² a soft Pomeron is sufficient
- At higher Q^2 , need a hard/variable α Pomeron
- Need to understand coexistence of high Q² pQCD and low Q² Regge Theory

HERA is a photon-proton collider

At low Q², a source of almost real photons:

- •Can measure cross section over a wide range of γ^*p center of mass energies, W
- ...also study transition region between non-perturbative and perturbative QCD in the range 0.3<Q²<1.5 GeV²

$$\sigma_{\gamma^* p}^{total} = \sigma_L + \sigma_T$$

$$= \frac{4\pi\alpha^2}{Q^4} \frac{4M_p^2 x^2 + Q^2}{1 - x} F_2$$

$$\approx \frac{4\pi^2 \alpha}{Q^2} F_2(x, Q^2)$$

Charged Current DIS

Cross Section for $e^+p \longrightarrow \bar{\nu}X$:

$$\frac{d^2\sigma_{CC}}{dxdQ^2} = \frac{G_F^2}{2\pi} \frac{1}{(1+Q^2/m_W^2)^2} \left(\bar{u} + \bar{c} + (1-y)^2(d+s)\right)$$

- For e⁺p scattering the dominating contribution to the cross section comes from the d quark
 ⇒ Largest theoretical error arises from uncertainty of the d quark density
- The main experimental uncertainty is the hadronic energy scale of the calorimeter

Charged Current Events

W. Smith, U. Wisconsin

Jets in photoproduction

2 types of processes (at LO): direct photon: $\gamma \equiv$ pointlike

resolved photon: $\gamma \equiv$ source of partons

 $x_{\gamma}^{OBS} = \frac{1}{2yE_{e}} \left(E_{t}^{jet1} e^{-\eta^{jet1}} + E_{t}^{jet2} e^{-\eta^{jet2}} \right)$

Jet Production (Real Photons)

Use jets to probe photon structure •Scale ~E_T² of jets HERA can probe higher scales than e⁺e⁻ •e⁺e⁻ scale < 400 GeV² •HERA scale ~30 - ~1000 GeV² (Higher w/ more luminosity)

Jet Production (Virtual Photons)

Probe virtual photon structure using jets

Large virtuality range available

DIS (Q²>0) usually assumes all structure is from proton (pointlike photon)

 When E_T² > Q² photon structure is important (small part of phase space)

Future Outlook

1998-1999:

- Modifications to HERA
- •e⁻p running
- Expect similar luminosity as e⁺p
- 2000-2005:
 - Major HERA upgrade
 - New Silicon Vertex Detector
 - •Charm tags: F₂(charm)
 - Factor of 7 increase in luminosity
 - •1 x 10³¹ to 7 x 10³¹
 - Higher Proton energy: > 900 GeV?
 - Polarized electrons & positrons
 - Goal of 1 fb⁻¹ by 2005
 - Beyond: polarized protons?
- **Physics expectations by 2005:**
 - • $\alpha_{s}(M_{z})$ measured to .001
 - •xg(x) measured to 1%
 - F₂: does the rise at low-x continue?, xF₃
 - Quark couplings from NC, CC polarized e^{+/-}
 - WW γ couplings

• Leptoquarks?

Conclusions - I

New x,Q² range in Deep Inelastic Scattering

• $0.11 < Q^2 < 5000 \text{ GeV}^2$ & down to x ~ 10^{-5} & growing

• F₂ observed to rise rapidly as x decreases

• F₂(charm) contributes large fraction (~25%) to F₂ pQCD fits to the F₂ data, with DGLAP evolution

- fit the data well even down to Q²~1.5 GeV²
- F_2 measured at low Q^2
 - Transition between perturbative and soft regime
 - γ^* p cross section measured vs. W

The gluon distribution has been extracted

- Steep rise of gluon with decreasing x is observed High Q² Neutral Current data:
 - Typical systematic error ~ 2-3%
 - Statistically limited for $Q^2 > 1000 \text{ GeV}^2$
 - Consistent w/SM up to Q² ~ 30000 GeV²
 - 2 exceptional events at $Q^2 > 35000 \text{ GeV}^2$ (<1997)

High Q² Charged Current data:

- Typical systematics ~ 10%, increasing for Q² > 10000 GeV²
- Consistent w/SM up to Q² ~ 10000 GeV²
- 1 exceptional event at $Q^2 > 30000 \text{ GeV}^2$ (<1997)
- $M_W = 78.6^{+2.5}_{-2.4} (stat.)^{+3.3}_{-3.0} (syst.) \text{ GeV (prelim.)}$

Jets in Photoproduction:

 Photon structure probed at scales up to ~10³ GeV² and higher

Real Photons

- Jet cross sections sensitive to different photon parton density parametrisations
- Jet data give new constraints on photon parton distribution functions (higher scale)

Virtual Photons

- Virtual photon structure probed across large range of virtuality
- Virtual photon structure observed to be important when Q²<E_τ*²
- Suppression of low x_γ cross section with increasing Q^2 observed

Jet shapes in DIS & Photoproduction

- DIS & direct γp agree & w/e+e⁻ (quarks)
- Resolved γp agrees w/p-p (gluons)

The Future

- Luminosity upgrade, polarization, e⁻ & e⁺
- Much more physics!

Dijets

- General agreement with models
 - •worse at high E_t
- Resolved reduced but remains present at higher E_t

Isolated High-E_t (Prompt) Photons

- Consistent with LO QCD expectations
- Measured cross section and η-distribution consistent with NLO QCD prediction
 - • σ = 15.3 +/- 3.8 (stat) +/- 1.8 sys pb
 - •GRV favored over GS photon PDF

Virtual Photon Structure

- Resolved (low x_{γ}) processes are suppressed with increasing photon virtuality
- LO Resolved needed to describe the data at the highest photon virtuality measured (Q² = 4.5 GeV²)