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 Collider:
• √s= 300 GeV

• Equivalent to 47 TeV fixed target 

 Experiments:
• 2 general purpose detectors (discussed):

• H1 & Zeus

• Dedicated Fixed Target (not discussed):
• HERMES:

• Polarized electrons on polarized H target

• HERA-B
• Proton Halo on wire target
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p

e
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820 GeV p x 27 GeV e±

HERA
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Deep Inelastic Scattering

 x = the fraction of the proton's momentum 
carried by the struck parton

y  = the fraction of the electron's 
energy lost in the proton rest frame

s = (k + P)2 =  center of mass energy

Q2 = -q2 = -(k-k')2 = (momentum transferred)2

Q2 = sxyy = 
P•q
P•kx = Q2

2P•q

e±(k')e±(k)

(q)
xP

p(P)

The DIS process

Measuring 
DIS at HERA:

electron (27 GeV) proton (820 GeV)

electron

jet

proton remnant

Forward Rear

beampipe
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electron
DIS event Q2 = 1600 GeV2

Jet
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Photoproduction

photon remnant

Proton Remnant

Jet

Jet

electron goes down the 

beampipe (low Q2)

photon 
remnant

q

q

q

q

Q2 < 4 GeV2

 Almost real photon

θ > 170°

Jet

Jet

Proton Remnant
Proton Remnant

Direct: Resolved:

(Jet)

(Jet)

(Jet)

(Jet)
(Jet)

γ γ

gg

(down beampipe)

(towards rear)

Background for DIS
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Photoproduction event

Calorimeter 
transverse 

energy

Jet

Jet

Jet

φ
η
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 Major background is beam-gas interactions:
Background rejection

Incoming 
proton

Rear CALorimeter
Forward 

CAL.
Mimics electron

Mimics current jet

reject beam gas
*vertex cut
*timing σt ~ 1 ns

← Cal. timing

(E - Pz) is conserved
Initially:
EP - PP + Ee -(-Pe) = 2Ee
remains same if no energy
down rear beam pipe.

True for DIS
False for photoproduction
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DIS cross section

DIS differential cross section:

 

γ* is longitudinally or transversely polarized

F2(x,Q2) = Structure function = interaction btw. 
transversely polarized photons & spin 1/2 partons 
= charge weighted sum of the quark distributions.

FL(x,Q2) = Structure function = cross section due 
to longitudinally polarized photons that interact 
with the proton.  The partons that interact have 
transverse momentum. (Important at high y).

F3(x,Q2) = Parity-violating structure function from 
Z0 exchange. (Important at high Q2).

e±(k')e±(k)

p(P)

α

α

γ∗(q)

Jet
Jet

Y± = 1± (1− y)2
 

dσ NC (e± p)
dxdQ2 = 2πα 2

xQ4 Y+ F2 − y2

Y+
FL m

Y−

Y+
xF3
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Kinematic Reconstruction

 2 kinematic variables
• x,Q2

 4 measured quantities
• Ee’,θe’,Eh,γh

 Any 2 measured variables can be 
used to reconstruct x,Q2

• Reconstruction may not be optimal.

 P
T
 method

• Best performance for full kinematic 
range

• Uses (Ee’,θe’,Eh,γh ), E-Pz conservation, 
and PT balance between the electron 
and current jet

E’e,θ’e

Eh,γh
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Experiments - High Q2

←pe→

H1:

ZEUS:

e→ ←p
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Experiments - Low Q2

+e

BPC

Zeus Beampipe Calorimeter:

H1 & Zeus Shifted Vertex:

H1 & Zeus Initial State Radiation



 Wesley Smith, U. Wisconsin SLAC Summer School, August, 1996

Experimental Kinematic Range 
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Proton is made up of non-interacting partons.

Bjorken scaling, i.e., Q2 independence of 
structure functions holds. SLAC-MIT experiments 
obseved approximate scaling in data.

Structure function is given by the charge 
weighted sum of parton momentum densities

For spin-half partons

For spin-zero partons

The parton densities fi(x) are not calculable in the 
model and are to be derived from experiment.

Deep inelastic scattering provides a good 
laboratory for parton density extraction because 
the electromagnetic probe is well understood.

F2 (x) = ei
2xf i (x)

i
∑

FL = 0

FL = F2

Parton model
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α

α

α
s

QCD Compton

γ∗

α
sα

α
γ∗

Boson-Gluon Fusion

electron

gluon

gluon

q
q

q

Quark transverse momentum from quark-gluon in-
teractions causes scaling violation: F2(x) →F2(x,Q2).

Splitting functions, probablities for these interac-
tions, are calculated in 2nd order perturbative QCD.

These interactions drive F2(x) to grow with 
decreasing x:

Scaling violations

electron

10
-4
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10
-2
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-1

1

1

2

MRSD-

MRSD0

Q 2 = 25 GeV 2Q 2 = 25 GeV 2Q 2 = 25 GeV 2

ZEUS 1993
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x

F
2

P

small x
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Perturbative QCD

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equations 
describe evolution of parton densities to higher Q2

Next-to-leading order splitting functions, P, are 
now available.

The structure function F
2
 is given by,

Calculation of DIS cross section requires F
L
:

Parameterization of gluon density can be deter-
mined by fitting QCD evolution to DIS data. 

dqi (x,Q2 )

d lnQ2 = αs (Q2 )
2π

dw
wx

1
∫ qi (w,Q2 )Pqq

x
w





 + g(w,Q2 )Pqg

x
w













dg(x,Q2 )
d lnQ2 = αs (Q2 )

2π
dw
wx

1
∫ qi (w,Q2 )

i
∑ Pgq

x
w





 + g(w,Q2 )Pgg

x
w













F2 (x,Q2 ) = ei
2xqi (x,Q2 )

i
∑

FL (x,Q2 ) = αs (Q2 )
π

dw
w

x
w







2

x

1
∫

4
3

F2 (w,Q2 ) + 2 ei
2

i
∑ 1− x

w




 wg(w,Q2 )





Given an empirical parameterization for parton 
densities at Q2=Q0

2 ,e.g.:

xg(x) = Agx
δg (1− x)

ηg (1+ γ gx)
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Expected low-x behavior of F2
• Regge Approach

• Donnachie-Landshoff (DL)

       
• Martin-Roberts-Stirling (MRS)

• Assume g(x,Q0
2) ~ xγ1 & F2(x,Q0

2) ~ xγ2

• Evolve in Q2 according to QCD
• Gluck-Reya-Vogt (GRV)

• Use "valence-like" distributions at low Q2

• Evolve in Q2 according to QCD

• Empically produces γ << -0.08

• Balitsky-Fadin-Kuraev-Lipatov (BFKL)
• Summation of many QCD graphs in 

powers of ln(1/x)

since :   

but at 

and at low 

Therefore :  
lim

Q2

F
Q

p

Q p C W

x W
Q

x
p C Q X

F x Q f Q x

2

2

2

2 2 0 08

2
2

2 0 08

0
2

2 2 0 08

4

0

=

= =

= → = ′

=

−

−

→

−

πα
σ γ

σ γ

σ γ

( * )

: ( * ) ( )

: ( * ) ( )

( , ) ( )

.

.

.

g x Q x s( , ) ~
ln( )

~ .0
2 12 2

0 5γ γ
π
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F2 Results
 Extraction:

• Bin data in x, Q2

• Subtract background

• Cross section multiplied by QCD FL 

calculation using  parameterizations 
of q(x,Q2)  and G(x,Q2)

• Acceptance estimated from Monte 
Carlo

• F2 unfolded iteratively until MC 
matches data

• Estimate Systematic Error
 Issues:

• Does rise at low x continue?
• Over what kinematic range is rise 

observed?
• Agreement with fixed target 

experiments?



DGLAP describes down to x ~ 10-4, Q2 ~ 1.5 GeV2

No need to resum ln(1/x) terms (BFKL)



Scaling violations → Gluons

Overlap with FT: good agreement
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Scaling Violation - Gluon sensitivity
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Sensitivity to the gluon distribution is in the 
slope of F2 versus logQ2 plots. 1994 and 1993 
ZEUS F2 data is shown above. It is seen that 94 
data constrains dF2/dlogQ2 with high precision.
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 Example: fit to ZEUS 1994 F
2
 data:

• Used NMC data to constrain fit at larger 
values of x.

• Assumed momentum sum rule to 
constrain gluon density.

• Assumed quark and gluon density 
functional forms.

• Assumed (SLAC/BCDMS) αs(MZ
2)=0.113 

and evolved to higher Q2.
• Evolved the distributions using GLAP 

eq'ns to measured Q2 bins to calculate F2.
• In computation of χ2 for agreement with 

the fit only the statistical errors were 
included.

• Performed nonlinear minimization of χ2 to 
find fit parameters for assumed functional 
forms of quarks and gluons.

• Systematic uncertainty estimated 
separately by varying each of the 31 
different systematic effects individually 
and performing a new fit.

Extraction of gluon density
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Gluon results

A significant improvement in the uncertainty and 
in the validity range in kinematic plane is seen in 
the gluon density extracted from the 1994  H1 
and ZEUS DIS data. Agreement with 1993 
extraction is remarkable.

H1 1994

ZEUS 1994 (preliminary)

H1 1993

ZEUS 1993

NMC

by A.Quadt

NLO QCD fit Q2 = 20 GeV2
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Impact of FL uncertainty (FL: 0 → F2) on F2 and dF2/dlnQ2
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Caveats on F2 & Gluons
 ZEUS F

2
 extraction, as is true with most world F

2
 data, involved 

apriori assumptions for α
s
 and quark-gluon parameterizations in 

computing F
L
 and F

3
 corrections for DIS cross section.

 The extracted F
2
 is sensitive to these assumptions, particularly 

for high y kinematic range data, which is sensitive to the gluon.
 Therefore, an assumption independent analysis needs to be 
done by fitting directly to the cross section data.

 The results of such analysis can yield consistent values for α
s
, 

quark and gluon parameterizations.
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 Analyze components of F
2

• Identify Flavor in the final state
• Justify NLO QCD assumptions
• Further understand the rise in F2

 Evolution of charm from the sea:
• Boson Gluon Fusion:   

    
• Small Contribution from framentation
• Higher sensitivity to gluon density 

than F2

Charm F2

-c

c

P

g

k

k'

γ
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Identifying open charm/D* signals

Mass(K,π)

D* → ( K π ) πS in DIS
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H1 Result:
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