Measurement of the Proton F₂ Structure Function from 1996 and 1997 ZEUS data

Mike Wodarczyk

November 30, 1999

- •HERA and ZEUS
- •Kinematic Variables and Structure Functions
- •F₂ History
- •ZEUS Events
- •F₂ Analysis Challenges

-Electron Energy Angle

-Vertex

-Hadronic System

- •F₂ Binning & Unfolding
- • F_2 Result
- •Conclusions

• Fixed Target C.O.M. energy (Max ~35 GeV)

HERA

$$\frac{\sqrt{s} = \sqrt{2 * M_P * E_{beam}}}{\sqrt{s} = \sqrt{4 * E_{Beam} * P_{Beam}}} = 300 \ GeV$$

- Equivalent to a 48 TeV Fixed Target experiment
- Boosted C.O.M. in the proton direction

- Calorimeter
 - Rear, Barrel, Forward Calorimeters
 - Longitudinal segmentation (Electro-magnetic, Hadronic separation)
 - Transverse segmentation (Particle location)
- Central Tracking Detector (CTD)
 - Drift chamber (9 cylindrical layers, 8 sense wires per layer)
 - Inside a 1.4 T magnetic field
- Presampler / SRTD
 - Scintillator strips at the face of the rear calorimeter counting charged particles.

Kinematic Variables

$$Q^2 = -(k - k')^2$$

$$\lambda \approx \frac{2xM_P}{Q^2}$$

Inverse scale at which the proton is probed

Virtual photon wavelength λ

$$x = \frac{Q^2}{2P \bullet q}$$

Fraction of proton's momentum carried by struck quark

$$y = \frac{P \bullet q}{P \bullet k}$$

Fraction of electron's momentum transferred by the photon in the proton's rest frame

• Only 2 independent variables

$$sxy = Q^2$$
 Center of mass energy = \sqrt{s}

Structure Functions

$$\frac{d^2\sigma(e^+p)}{dxdQ^2}(x,Q^2) = \frac{2\pi\alpha^2}{xQ^4} \left[\left(1 + \left(1 - y\right)^2\right) F_2(x,Q^2) - y^2 F_L(x,Q^2) - (1 - (1 - y)^2) x F_3(x,Q^2) \right]$$

- e^+p cross section, σ , can be written in terms of unit-less structure functions F_2 , F_L , xF_3
- Quark Parton Model
 - Proton is made up of quarks (uud..)and gluons

$$F_{2}(x,Q^{2}) = \sum_{q}^{quarks} e_{q}^{2} x[q(x,Q^{2}) + \overline{q}(x,Q^{2})]$$

- F_2 is the contributions of photon-quark interactions.
- F_L is the contributions from photons with longitudinal polarization
 - F_L is 0 in leading order QCD theory
 - Contribution small at low y
- xF_3 is the electro-weak contribution from Z^0 exchange.
 - Contribution small for $Q^2 << M_Z^2 = 8100 \text{ GeV}^2$

– Quarks are point-like objects in the proton

$$F_2$$

$$F_2(x,Q^2) = \sum_q^{quarks} e_q^2 x[q(x,Q^2) + \overline{q}(x,Q^2)]$$

- What might one expect?
 - Proton is only 3 quarks (uud) which equally share the protons momentum.

 3 quarks exchange momentum via gluons but still carry the full protons momentum

1

3 quarks + a sea of quarks from pair production from gluons

• Remainder carried by gluons

DGLAP Evolution

- Dokshitzer-Gribov-Lipatov-Alterelli-Parisi
- Prediction for the Q^2 evolution of F_2
 - From parton distribution functions at an initial Q^2 it predicts the PDFs at all Q^2

$$\frac{dq_{i}(x,Q^{2})}{d\ln Q^{2}} = \frac{\alpha_{s}(Q^{2})}{2\pi} \int_{x}^{1} \frac{dy}{y} \left[q_{i}(y,Q^{2})P_{qq}\left(\frac{x}{y}\right) + g(q,Q^{2})P_{qg}\left(\frac{x}{y}\right) \right]$$
$$\frac{dg(x,Q^{2})}{d\ln Q^{2}} = \frac{\alpha_{s}(Q^{2})}{2\pi} \int_{x}^{1} \frac{dy}{y} \left[\sum_{i} q_{i}(y,Q^{2})P_{gq}\left(\frac{x}{y}\right) + g(q,Q^{2})P_{gg}\left(\frac{x}{y}\right) \right]$$

- 1997 and 1997 F₂ analysis
 - Covers 1994+1995 shifted vertex data
 - Reaches higher Q^2 and lower Q^2 in a single analysis
- BPC and BPT
 - electron detectors near the rear beam pipe to accept very low Q^2

Medium Q^2

- Any 2 variables $(E_e, \theta_e, E_h, \gamma_h)$ determine x,Q²
 - Electron Method (E_e, θ_e)
 - Jacquet Blondel Method (E_h, γ_h)
 - Double Angle Method (θ_e, γ_h)
 - Can also be used to predict $E_e(\theta_e, \gamma_h)!$
 - P_{T} method combines ($E_{e}, \theta_{e}, E_{h}, \gamma_{h}$)
- Beam pipe holes limit acceptance at low y and high y

Reconstruction Resolutions

- P_T method
 - Uses a combination of electron variables (E_e, θ_e) and hadronic variables $(P_{T,h}, (E-Pz)_h \rightarrow \gamma_h)$ to optimize the reconstructed x, Q^2

- P_T method superior over widest kinematic range.

P_T Method of x, Q^2 Recon.

$$\gamma = A \cos \left(\frac{P_{T,h}^2 - (E - P_z)_h^2}{P_{T,h}^2 + (E - P_z)_h^2} \right)$$

- Improve γ by improving $P_{T,h}$ and $(E-Pz)_h$ - E-Pz is the dominant contribution to γ
- Replace $P_{T,h}$ with $P_{T,e}$
 - electron energy better calibrated
- Scale $(E-Pz)_h$ by a correction related to $P_{T,h}/P_{T,e}$

- P_T energy loss must also be E-Pz energy loss
- small Q^2 and γ dependence to correction
- Electron and hadrons at the same level of energy corrections.
- Scale $(E-Pz)_h$ by $2E_{beam}/(E-Pz)_{total}$
 - Corrects overall E-Pz energy scale
- Use angles (θ_e, γ_h) method to reconstruct x, Q^2

F₂ Measurement

- Select deep inelastic scattering events
 - Backgrounds
 - Selection cuts
- Reconstruct x, Q²
 - Electron
 - Energy E_e
 - Angle θ_e
 - Event Vertex
 - Electron position in the detector
 - Hadronic
 - P_T , E- P_z to calculate γ_h
- Unfold F₂
 - Count events in bins of x, Q^2
 - Divide by luminosity to produce a cross section.
 - Correct for detector acceptance (Monte Carlo)
 - Interpret cross section in terms of F_2
- Below $Q^2=800 \text{ GeV}^2$ the F_2 error is dominated by the understanding of the measured variables

Backgrounds

- Any event with the DIS electron in the detector is a signal event!
- Photoproduction
 - Electron escapes down the rear beam pipe $Q^2 \sim 0$
 - Hadronic activity fakes an electron
 - Dominant low Q² background
 - E-Pz Cut!
- Cosmic muons
 - Reject with P_T balance cuts and vertex cuts

- QED Comptons (Q²=0)
 - Reject events with only 2 electro-magnetic clusters

E-Pz Cut

• E-Pz is conserved

- Before the event E-Pz = E-Pz(e beam) + E-Pz(P beam) = 27.5-(-27.5)+820-(820) GeV = 55 GeV
- If all particles are measured, one should measure 55 GeV.

Selection Cuts

• Event Selection

- First Level Trigger
 - Isolated calorimeter electromagnetic trigger tower E>2 GeV in Rcal
 - Rcal EMC E>3.4 GeV, Bcal EMC E>4.78 GeV
 - Calorimeter E_T >30 GeV, E_T >11.6 GeV and CTD track
- Timing consistent with e+p interaction
- $38 < E Pz < 65 \ GeV \ \ \ (remove events with electron lost in rear beam pipe)$
- -50 < Vertex z < 50 cm
- $P_T/E_T < 0.7$ and $P_T/\sqrt{E_T} < 3 \sqrt{GeV}$ (cuts cosmic events)
- $P_{T,h} / P_{T,e} > 0.3$ (well contained hadrons)
- Electron Cuts
 - Neural Net probability cut (function of energy)
 - Energy > 8 GeV
 - Position away from rear beam pipe
 - Track Match (in tracking acceptance)
 - Distance of Closest Approach < 10 cm
 - Track Momentum > 5 GeV
 - Non-electron energy in cone around electron<5 GeV
 - Number of Calorimeter cells<30 in forward direction. (cut hadronic jets found as electrons)
 - y_{el} < 0.95 (removes high Q², high y fakes)
- 2 Data sets
 - $1.5 \text{ GeV}^2 < Q^2 < 27 \text{ GeV}^2 2.21 \text{ pb}^{-1}$ of luminosity
 - $Q^2 > 27 \text{ GeV}^2 30.66 \text{ pb}^{-1} \text{ of luminosity}$

- Used for very low Q^2 background events where the electron escapes down the rear beam pipe

- E_e
 - Calibration, Calorimeter edges, Loss in inactive material
- θ_e
 - Vertex position, Detector alignment
- Hadrons
 - Energy Calibration, μ energies, Backsplash
 - Vertex position, Detector alignment
- Monte Carlo Data Agreement
 - Monte Carlo used to remove detector effects!

Electron Energy

• Important to calibrate the energy

- Electron Energy Cut for DIS event selection
- Used in P_T balance with hadrons to correct γ_h

Calibration Steps

- Calorimeter Cell calibration
- Non-uniformity (Calorimeter Edges)
- Dead Material Correction

Calorimeter Cell Calibration

- Need a beam of known energy electrons
 - Double Angle Events.
 - From hadron and electron angles, the electron energy can be predicted. (2 independent variables)
 - Kinematic Peak events.
 - Special class of double angle events in which no hadronic activity is measured. ($\gamma_h = 0$)
- Force Data and Monte Carlo to be the same.

University of Wisconsin - Madison

Measurement of the F₂ Structure Function

Mike Wodarczyk

Non-Uniformity Correction

• Energy loss in calorimeter cell edges not well modeled by Monte Carlo.

Dead Material Correction

- Electrons passing through material before reaching the calorimeter lose energy and produce a shower of particles.
- "Presampler" Method

Mike Wodarczyk

 Measure the number of charged particles at the face of the calorimeter and correct for the energy loss.

University of Wisconsin - Madison

Measurement of the F₂ Structure Function

- "True" Scattering Angle
 - Tracking angle at vertex
- A 2 point method is used when outside of tracking
 - Correct vertex z position
 - Electron track seed vertex
 - Fcal Timing vertex
 - Detector alignment
 - Aligned to track end point

Event Vertex

- Proton bunch length 12 cm long
- Event by event vertex measurement
 - Angles of electron and hadrons measured with respect to the event vertex.
 - Electron seed vertexing method. 4 mm resolution. (Finds true vertex)

- Cut off axis vertices

• Fcal timing for no track events 8.6 cm resolution

Vertex Distribution

• Acceptance depends on vertex

- Need same vertex distribution in data and Monte Carlo simulation!
 - Use unbiased event sample to measure data vertex distribution

Detector Alignment

- Challenges... µ energies, Backsplash
- Combine tracking and calorimeter info. $(P_{Th}, E-Pz_h)$
 - Find calorimeter islands and match tracks to islands
 - Use tracking momentum if calorimeter energy << track momentum
 - Improves µ energies
 - Use tracking angle for 1 to 1 matches

• Remove backsplash

- Calculate γ from islands and $\gamma_{Max} = \gamma + 50^{\circ}$

$$\gamma = A \cos \left(\frac{P_{T,h}^2 - (E - P_z)_h^2}{P_{T,h}^2 + (E - P_z)_h^2} \right)$$

– remove low energy, trackless, isolated islands beyond γ_{Max}

- repeat up to 3 times or until γ is stable within 1%

- Count events in bin in data N_{data} and Monte Carlo N_{MC} for the same luminosity
- Extract F₂ $F_2^{data}(x,Q^2) = F_2^{MC}(x,Q^2) \times \frac{N_{data}}{N_{MC}}$
- Fit F_2^{data} , Reweight MC to fit, and repeat

Luminosity

• Luminosity = how many particles pass per unit area (per unit time).

- Use precisely known cross section $\sigma(ep->ep\gamma)$
 - Photon measured in gamma detector
 - Electron measured in 35 m tagger is used to calibrate the gamma detector energy.
- Luminosity = $\#\gamma$ events / $\sigma(ep->ep\gamma)$
- Sets Normalization of F₂

- Finer binning than 1994 at high Q²
- Detector understanding (systematic error) is the dominant error up to Q²=800 GeV²

- Strong rise in F_2 seen at our highest Q^2
 - Over 4 orders of magnitude in Q²
- DGLAP prediction good over whole range
- Increased coverage by an order of magnitude from 1994

F_2 vs. Q^2

- gluon small at high x
- Low x, F_2 rises strongly with Q^2
 - Strong gluon -> sea quark contribution

Conclusions

- F_2 is a measure of the quark structure of the proton.
- It has been measured from 1996 and 1997 ZEUS data from e+p collisions.
 - $1.5 < Q^2 < 30000 \ GeV^2$
 - Wider Coverage at high and low Q² compared to 1994
 - $2(10^{-5}) < x < 0.65$
- F_2 shows a strong rise with decreasing x
 - Gluon quark cascade produces more quarks at lower momenta
 - Rise is seen at very low Q^2 (not expected!)
- The rise in F_2 becomes stronger with increasing Q^2
 - Parton splitting increases at smaller distances
- F_2 is described well by QCD DGLAP evolution over the full kinematic range covered.
- Dominant errors on F₂
 - Detector understanding for $Q^2 < 800 \text{ GeV}^2$
 - Event statistics for $Q^2 < 800 \text{ GeV}^2$

Future of ZEUS Structure Functions

 $\frac{d^2\sigma(e^{\pm}p)}{dxdQ^2}(x,Q^2) = \frac{2\pi\alpha^2}{xQ^4} \left[\left(1 + \left(1 - y\right)^2\right) F_2(x,Q^2) - y^2 F_L(x,Q^2) \mp (1 - (1 - y)^2) x F_3(x,Q^2) \right]$

- e+ and e- running to measure xF_3
 - ZEUS has enough e+ data (used in this analysis)
 - HERA 70.92 pb⁻¹, ZEUS 48.08 pb⁻¹
 - Plans are forming to get additional e- data
 - HERA 27.37 pb⁻¹ ZEUS 17.61 pb⁻¹
- Lower P beam energy to measure F_L

 $sxy = Q^2$ Center of mass energy = \sqrt{s}

- Change \sqrt{s} and measure at two different y for the same x and Q^2
- After 2000 Luminosity upgrade
- Continue high Q²>800 GeV² Analysis
- Longitudinal polarized electron beam
- Far future?...Polarized proton beams to measure polarized proton structure functions.