The direct CP Violation measurement of the CERN NA48 experiment

F. Costantini
Pisa University and INFN - Italy

Aspen Winter Conference, Jan. 2000

 \bigstar on behalf of the **NA48 Collaboration**:

Cagliari Cambridge CERN Dubna Edinburgh Ferrara Firenze Mainz Orsay Perugia Pisa Saclay Siegen Torino Vienna Warsaw

Outline

- ♦ Introduction
- ♦ The experiment
 - Method
 - Beams
 - Detector
- ♦ 1997 Data analysis
 - Event selection and reconstruction
 - The K_S Tagging as id. vs K_L
 - Triggers
 - Backgrounds
 - Accidental activity
 - Energy and distance scales, linearity
 - Acceptance correction
 - Summary of corrections and result
 - Systematic checks
- ♦ The future
- ♦ Conclusions

Theoretical Introduction

The neutral kaon system:

- $K^0(\bar{s}d)$ et $\overline{K^0}(s\bar{d})$: Flavour Eigenstates
- $K_1(+1)$ et $K_2(-1)$ CP Eigenstates $K_1 = (K^0 + \overline{K^0})/\sqrt{2} \to 2\pi \quad (CP = +1)$

$$K_2 = (K^0 - \overline{K^0})/\sqrt{2} \to 3\pi \quad (CP = -1)$$

• 1964: The CP Violation discovery

$$K_2 (-1) \to \pi^+ \pi^- (+1) ????$$

 \Rightarrow In reality the mass eigenstates are K_L et K_S :

$$ext{K}_{ ext{S}} \; \simeq \; K_1 + \; oldsymbol{arepsilon} K_2 \; ig| \; ext{K}_{ ext{L}} \; \simeq \; K_2 + \; oldsymbol{arepsilon} \mathcal{E} K_1$$

$$K_{\rm S} \simeq K_1 + \varepsilon K_2$$
 $K_{\rm L} \simeq K_2 + \varepsilon K_1$
 $K_{\rm L} \simeq K_1$
 $K_{\rm L} \simeq K_2 + \varepsilon K_1$
 $K_{\rm L} \simeq K_2 + \varepsilon K_1$
 $K_{\rm L} \simeq K_2 + \varepsilon K_1$
 $K_{\rm L} \simeq K_1$
 $K_{\rm L} \simeq K_2 + \varepsilon K_1$
 $K_{\rm L} \simeq K_2 + \varepsilon K_1$
 $K_{\rm L} \simeq K_1$
 $K_{\rm L} \simeq K_2 + \varepsilon K_1$
 $K_{\rm L} \simeq K_1$
 $K_{\rm L} \simeq K_2 + \varepsilon K_1$
 $K_{\rm L} \simeq K_1$
 $K_{\rm L} \simeq K_1$
 $K_{\rm L} \simeq K_1$
 $K_{\rm L} \simeq K_2 + \varepsilon K_1$
 $K_{\rm L} \simeq K_1$
 $K_{\rm L} \simeq K_2$
 $K_{\rm L} \simeq K_2$
 $K_{\rm L} \simeq K_1$
 $K_{\rm L} \simeq K_2$
 K_{\rm

$$27~\%$$
 $\pi\mu
u$

$$39\%$$
 $\pi e \nu$

$$39\%$$
 $\pi e \nu$ 0.2%

$$0,1 \%$$

$$c\tau_L = 15, 5 m$$

$$\varepsilon = (2, 28 \pm 0, 02) \ 10^{-3}$$

indirect CP Violation

 $c\tau_S = 2,67 \ cm$

Direct CP Violation

Indirect Violation due to $K^0/\overline{K^0}$ mix. \Rightarrow parameter ε

$$K_{L} = K_{2}^{-1} + \epsilon K_{1}^{+1}$$

$$\pi \pi, \pi \pi^{0}$$

$$CP = +1$$

Direct Violation:

 $\begin{array}{ccc}
\bar{a} & \text{Direct Violation} \\
\underline{u} & \pi^{+} & \text{Decay violating} \\
& & \text{directly CP} \\
\hline{\bar{u}} & \bar{\pi} & & \\
\end{array}$

 \Rightarrow parameter ε'

$$\eta^{+-} \equiv \frac{A(K_L \to \pi^+ \pi^-)}{A(K_S \to \pi^+ \pi^-)} \simeq \varepsilon + \varepsilon'$$

$$\eta^{00} \equiv \frac{A(K_L \to \pi^0 \pi^0)}{A(K_S \to \pi^0 \pi^0)} \simeq \varepsilon - 2 \varepsilon'$$

$$R = \frac{\Gamma(K_{L} \to \pi^{0}\pi^{0})}{\Gamma(K_{S} \to \pi^{0}\pi^{0})} / \frac{\Gamma(K_{L} \to \pi^{+}\pi^{-})}{\Gamma(K_{S} \to \pi^{+}\pi^{-})}$$
$$\simeq 1 - 6 \times \text{Re}(\varepsilon'/\varepsilon)$$

Introduction

NA48 aims at measuring the direct CP violation parameter $\text{Re}(\varepsilon'/\varepsilon)$ in the neutral Kaon system with an accuracy of 2×10^{-4} .

This is accomplished measuring the double ratio:

$$R = \frac{\Gamma(K_L \to \pi^0 \pi^0)}{\Gamma(K_S \to \pi^0 \pi^0)} / \frac{\Gamma(K_L \to \pi^+ \pi^-)}{\Gamma(K_S \to \pi^+ \pi^-)}$$
$$\simeq 1 - 6 \operatorname{Re}(\varepsilon'/\varepsilon)$$

Previous precision measurements results are:

NA31
$$(23.0 \pm 6.5) \times 10^{-4}$$

E731 $(7.4 \pm 5.9) \times 10^{-4}$

Measurement results published in '99 are:

KTeV
$$(28.0 \pm 4.1) \times 10^{-4}$$

NA48 $(18.5 \pm 7.3) \times 10^{-4}$

Overview of NA48 method

To achieve the required statistical precision several $10^6~K_L \to \pi^0 \pi^0$ decays (limiting mode) have to be collected.

To maximize systematic accuracy and to have minimal corrections, NA48 uses:

- \triangleright simultaneous, almost collinear K_L and K_S beams, allowing for
- > concurrent detection of the four decay modes in the same decay region to have cancellation of fluxes, acceptances, inefficiences, dead time, accidental losses;
- $\triangleright K_S$ identification by proton tagging upstream of K_S production target;
- ▷ a detector based on a magnetic spectrometer and a quasi-homogeneous liquid Krypton calorimeter, to achieve good resolutions and minimize the background contributions;
- \triangleright lifetime weighting procedure to minimize acceptance corrections by making K_S and K_L decay distributions similar.

Simultaneous K_S and K_L Beams

 $K_{\rm S}$ are distinguished from $K_{\rm L}$ by tagging the protons upstream of their production target.

Beam performance

 \bigstar K_S and K_L beam intensities are continuously monitored, their ratio is constant within \pm 10%

♦ Average beam intensities seen by K_S and K_L events at the 200 ns ÷ 1 ms time scale, are equal at the level of few %: beam intensities are time correlated at this level.

The NA48 detector

- $K_{\rm L,S} \to \pi^+\pi^-$: magn. spectr. $(P_T^{KICK} \sim 265 \, {\rm MeV/c})$; evt time measured with scintill. hodos
- $K_{L,S} \to \pi^0 \pi^0$: $\sim 27 X_0$ quasi-homogeneous LKr e.m. calorimeter with high granularity (13212 cells 2×2 cm²) and proj. geometry
- $\star K_{\mu 3}$ rejection: muon veto counters
- $\bigstar K_{e3}$ rejection: E(LKr)/P(spectrometer)
- \bigstar K_L $\to 3\pi^0$ rejection: hi res. e.m. calorimeter

1997: First data-taking period

- ♦ Installation and commissioning of the complete readout and trigger electronics for the LKr calorimeter
- ♦ Full DAQ and trigger integration, detector calibration
- ♦ First physics run (after fire in SPS power supply): Sep-Oct 1997 (42 days)
- $1 \cdot 10^{12}$ ppp on K_L target ($\simeq 2/3$ of nominal beam intensity)
- $ightharpoonup \simeq 12 \mathrm{K}$ evts read-out in 2.4 s spill every 14.4 s; $\pi^+\pi^-$ triggers downscaled by 2
- ♦ 80 MB/s read-out rate, 12 MB/s to Central Data Recording facility
- ♦ 25 TB of data on tape
- $\Leftrightarrow \approx 0.5 \cdot 10^6 \ K_{\rm L} \to \pi^0 \pi^0$ corresponding to $\simeq 10\%$ of the expected final statistics

$K_{S,L} o \pi^0 \pi^0$ - Detector

- ♦ LKr calorimeter operated at reduced HV (1.5 KV) due to few leaking capacitors:
 - \triangleright electronic noise $\approx 20\%$ higher
 - \triangleright < 0.5% energy correction for space charge
- 4 cm wide column not connected to HV: 15% acceptance loss for $\pi^0\pi^0$
- $\diamond \approx 40 \text{ dead channels } (0.3 \%)$

- * redundant time information
- \diamond El. chann. calibr. at $\lesssim 1\%$ during data-taking
- \bullet single intercalibration factor per cell based on K_{e3} and π^0 , η response to improve resolution

$K_{S,L} \to \pi^0 \pi^0$ - Detector performance

* energy resolution:

$$\frac{\sigma_E}{E} = \frac{3.2\%}{\sqrt{E(GeV)}} \oplus \frac{125MeV}{E} \oplus 0.5\%$$
< 1% above 20 GeV

- cell to cell disuniformity 0.67 % corrected with K_{e3} and π^0 , η events
- \bullet En. linearity $\lesssim 0.3\%$ in the 5-100 GeV range
- \bullet $\sigma(x), \sigma(y) < 1.3 \text{ mm above } 20 \text{ GeV}$
- \bullet $\sigma(t) < 300 \text{ ps above } 20 \text{ GeV}$
- \diamond time stability $\approx 0.1\%$
- \bullet π^0 mass resolution 1.1 MeV/ c^2

$K_{S,L} \to \pi^+\pi^-$ - Detector performance

- \bullet Hi-rate DCH's: 5 mm drift dist. $(t_d \sim 100ns)$
- \diamond Absolute position of wires: better than 100. μ m

- ♦ DCH plane efficiency: 99.5%
- ♦ DCH space resolution: $\approx 90.\mu m$ per projection
- $\diamond \sigma(vertex)$: $\approx 2 \text{ mm}$ transv. and $\approx 50 \text{ cm}$ long.
- ***** DCH momentum resolution:

$$\frac{\sigma_P}{P} = 0.5\% \oplus 0.009P \; (\text{GeV}/c) \; \%$$

- \diamond time resolution: ≈ 200 ps per track
- $\bullet \pi \pi$ mass resolution: $\sim 2.5 \text{ MeV}/c^2$

Tagging: K_S vs K_L Identification

- \bigstar K_S = event time within \pm 2 ns of proton.
- **\bigstar** $\mathbf{K_L}$ mistagging ($\mathbf{K_L} \to \mathbf{K_S}, \alpha_{LS}$) due to accidental protons in tagger: charged-neutral symmetric to first order.
- \bigstar K_S mistagging (K_S \to K_L, α_{SL}) due to inefficiencies & time reconstr. tails: can be different btw charged-neutral decays.
- ♦ Mistagging only "dilutes" R if charged-neutral symmetric.

$$\Delta R \approx 5.3(\alpha_{SL}^{00} - \alpha_{SL}^{+-}) - 1.7(\alpha_{LS}^{00} - \alpha_{LS}^{+-})$$

Tagging - $K_L \rightarrow K_S$ transitions

- $\diamond \alpha_{LS}$ measures the $K_L \to K_S$ mistagging probability due to accidental protons in the tagger.
- $\diamond \alpha_{LS}$ is charged/neutral symmetric, except for rate-dependent trigger inefficiencies.
- $\diamond \alpha_{LS}^{+-}$ is directly measured by vertex tagging:

$$\alpha_{LS}^{+-} = (11.19 \pm 0.03) \%$$

 $\diamond \alpha_{LS}^{00} - \alpha_{LS}^{+-}$ is measured by comparing suitable side bands (4 ns wide) outside the tagged region in charged and neutral modes:

$$\alpha_{LS}^{00} - \alpha_{LS}^{+-} = (0.10 \pm 0.05) \%$$

The net effect on the double ratio is:

$$\Delta R = (-18 \pm 9) \cdot 10^{-4}$$

Tagging - Measurements

- ♦ Charged mode: K_L and K_S well distinguished by de-
- cay vertex vertical position. $\alpha_{LS}^{+-} = (11.19 \pm 0.03) \%$ $\alpha_{SL}^{+-} = (1.5 \pm 0.1) \times 10^{-4}$
- Neutral mode:
 - $\bullet \ (\alpha_{LS}^{00} \alpha_{LS}^{+-}) =$ (0.10 ± 0.05) % measured with side bands of tag-
 - $\begin{array}{l}
 \text{ging window.} \\
 \bullet \left(\alpha_{SL}^{00} \alpha_{SL}^{+-}\right) =
 \end{array}$ $(0 \pm 1) \cdot 10^{-4}$ measured with $K_S \to \pi^0 e^+ e^- \gamma$ and γ conversions.

Tagging uncertainty on R is statistically dominated and net effect is:

$$\Delta R = (-18 \pm 11) \cdot 10^{-4}$$

Δt(ns)

Tagging - $K_S \rightarrow K_L$ transitions

- $\diamond \alpha_{SL}$ measures the $K_S \to K_L$ mistagging probability due to tails in the proton or event time reconstruction (tagging inefficiences)
- Measurement shows that 2/3 of α_{SL} is due to the tagger, therefore charged/neutral symmetric
- $\diamond \alpha_{SL}^{+-}$ is directly measured by vertex tagging

$$\alpha_{SL}^{+-} = (1.5 \pm 0.1) \cdot 10^{-4}$$

- $\diamond (\alpha_{SL}^{00} \alpha_{SL}^{+-})$ is bounded by neutral/charged time comparison on γ conversions

$$\alpha_{SL}^{00} - \alpha_{SL}^{+-} = (0 \pm 1) \cdot 10^{-4}$$

The net effect on the double ratio is:

$$\Delta R = (0 \pm 6) \cdot 10^{-4}$$

Neutral trigger

- ♦ 40 MHz pipelined system based on 64 hor. and 64 vert. projections of e.m. calorimeter cells
- rejects dominant $K_L \to 3\pi^0$ background by on-line reconstruction of:
 - > number of in-time clusters in each projection
 - ▶ total energy in E.M. and HAD. calorimeters
 - ▶ longitudinal decay vertex position

- ♦ During 1997 run:
 - \triangleright Input rate: ~ 500 kHz K_L decays in detector
 - \triangleright Output rate: $\sim 2 \text{ kHz}$
 - ▷ Efficiency: $\epsilon_{NT} = (99.88 \pm 0.04)\%$
- The net effect on R is due to the differential K_L-K_S inefficiency:

$$\Delta R = \epsilon_{NT}^{L(W)} - \epsilon_{NT}^{S} < 2 \cdot 10^{-4}$$

Charged trigger - General

- \clubsuit Hardware and software trigger reduces dominant background from 3-body K_L decays
- Level 1: Two track topology in scintillation hodoscopes and $E_{TOT} \gtrsim 30 \text{ GeV}$ in calorimeters
- ♦ Level 2: fast tracking in the spectrometer by a farm of processors reconstructing and cutting on:
 - ▷ longitudinal decay vertex position
 - ▷ proper lifetime
 - $\triangleright \pi^+\pi^-$ invariant mass

- ♦ During 1997 run:
 - \triangleright Input rate: $\sim 500~\mathrm{kHz~K_L}$ decays in detector
 - \triangleright Level 1 output rate: $\sim 100~\mathrm{KHz}$
 - \triangleright Level 2 output rate: $\sim 1.5 \text{ KHz}$
 - \triangleright Dead time $\sim 0.3 \%$ (monitored)

Charged trigger - Efficiency

 \diamond Combined $L1 \cdot L2$ efficiency:

$$\epsilon_{ChTr} = (91.68 \pm 0.09)\%$$

- ♦ Efficiency measurement limited by control sample statistics
- The net effect on R is due to the differential $K_{\rm S}-K_{\rm L}$ inefficiency:

$$\Delta R = \epsilon_{CT}^S - \epsilon_{CT}^{L(W)} = (-9 \pm 23) \cdot 10^{-4}$$

$K^0 \to \pi^0 \pi^0$ Reconstruction

- Vertex position along the beam line found by imposing the K mass $\sigma(Z_{VTX}) \approx 70$ cm
- Pairing of photons to get the best π^0 mass : $m_{ij} = \sqrt{E_i E_j} \cdot r_{ij}/D$
- Use pseudo- χ^2 variable

$$R_{ell} \equiv \left\{ \left(\frac{(m_1 + m_2) - 2m_{\pi^0}}{\sigma_{(m_1 + m_2)}} \right)^2 + \left(\frac{m_1 - m_2}{\sigma_{(m_1 - m_2)}} \right)^2 \right\}$$

$K \to \pi^+\pi^-$ event reconstruction

- ❖ Tracks from spectrometer using detailed field map including stray fields
- ♦ Small correction for residual magnetic field in decay region $(O(1 \cdot 10^{-3} \text{ T} \cdot \text{m}))$
- $\Leftrightarrow \approx 20\%$ of events are lost due to an *overflow* condition in DCH electronics for high multiplicity events (recorded and applied also to neutral events)
- ♦ Kaon energy computed from ratio of track momenta and opening angle ⇒ less sensitive to magnetic field knowledge
- ♦ Effective energy-dependent cut on center of mass decay angle \Rightarrow reduced K_S/K_L acceptance difference

Charged background - Method

- \bullet K_L 3-body decays are O(100) × signal
- $\star K_{e3}$ rejection O(500) by E/P requirement on tracks, with 5% K_S/K_L symmetric signal loss
- $\star K_{\mu 3}$ rejection O(500) by muon veto counter hits matching tracks in space and time, with 3% K_S/K_L symmetric signal loss
- \Leftrightarrow kinematical cuts reject $\pi^+\pi^-\pi^0$ background and $\Lambda(\bar{\Lambda})$ decays
- cut on rescaled transverse momentum ${P_T'}^2$ (similar K_S and K_L distributions) with $8 \cdot 10^{-4}$ K_S/K_L symmetric signal loss

Charged background - Measurement

♦ Check systematics by varying signal and control region

Averaged charged background fraction is:

$$B_C = (+23 \pm 2 \pm 4) \cdot 10^{-4} = -\Delta R$$

 $\$ Small fraction ($\approx 0.5 \cdot 10^{-3}$) of $\pi\pi$ events due to K_S regenerated on final collimator gives

$$\Delta R = (+12 \pm 3) \cdot 10^{-4}$$

Neutral background - Method

- $K_L \rightarrow 3\pi^0$ is $210 \times signal$
- \star $K_L \rightarrow 3\pi^0$ with 2 missing photons have larger reconstructed lifetime and non-peaked $\gamma\gamma$ mass
- ♦ Signal region: $R_{elli} < 13.5$ with $7\% \text{ K}_{S}/\text{K}_{L}$ symmetric signal loss (mostly γ conversions)
- ♦ Control region: $36 < R_{elli} < 135$

Neutral background - Measurement

- Use $K_S \to \pi^0 \pi^0$ decays to measure signal R_{elli} shape to account for non-gaussian tails
- * Extrapolate from large R_{elli} control region $36. < R_{elli} < 135$. using factor 1.2 ± 0.2 computed from MonteCarlo

Averaged background is:

$$B_N = (+8 \pm 2) \cdot 10^{-4} = \Delta R$$

DCH overflow condition

- ♦ Whenever the DCH plane hit multiplicity in a 100 ns window gets above 7, the front end buffers are flushed and the occurrence is recorded
- \bullet This has no effect on events outside a \pm 300 ns time window around that time
- \diamond The loss of events due to such a cut is $\approx 20\%$
- ♦ The same cut is applied to neutral events, and the K_L/K_S differential loss is estimated by studying side time intervals for $\pi^+\pi^-$ decays: $(0.02 \pm 0.03)\%$, and is directly measured for $\pi^0\pi^0$ decays: $(-0.02 \pm 0.06)\%$, in both cases being negligible

No significant effect on R

Accidental activity

- \bullet Simultaneous beams \Rightarrow K_S/K_L differential effects intrinsically small
- "Instantaneous" beam intensity is continuously monitored: K_S and K_L beam intensities are correlated to $\approx 1\%$
- \diamond Accidental activity for K_S and K_L measured to be the same at 1% level
- "Randomly" triggered events proportional to K_L and K_S beam intensities are overlaid onto $\pi\pi$ events to measure event gains and losses:
 - $\triangleright \pi^+\pi^-$: losses gains $\simeq 2\%$ (K_S/K_L symmetric)
 - $> \pi^0 \pi^0$: losses gains $\simeq 2.5\%$ (K_S/K_L symmetric)
- ☞ Net effect on double ratio:

$$\Delta R = (+2 \pm 14) \cdot 10^{-4}$$

- ♦ In-time activity from close K_S target measured in K_S only runs to be $< 3 \cdot 10^{-4}$
- Double ratio uncertainty:

$$\delta(R) < 3 \cdot 10^{-4}$$

which can be neglected.

Neutral energy and distance scales

- ♦ In neutral mode the longitudinal vertex distance and energy scales are related
- ♦ Absolute energy scale is set by adjusting the reconstructed position of the AKS veto counter in the $K_S \to \pi^0\pi^0$ vertex distribution, accounting for non-gaussian tails, with a conservative uncertainty of $5 \cdot 10^{-4}$

- Energy scale is stable in time within $5 \cdot 10^{-4}$
- Cross checks: reconstructed position of thin movable target in dedicated runs with π^- beam: consistent results with $\pi^0 \to 2\gamma$, $\eta \to 2\gamma/6\gamma$
- ❖ Transverse distance scale of e.m. calorimeter checked against spectrometer using K_{e3} decays to 0.3 mm/m
- R uncertainty from neutral scales:

$$\delta(R) = \pm 6 \cdot 10^{-4}$$

Calorimeter response

- Calorimeter response is equalized using K_{e3} decays during normal data taking and π^0 decays in special runs to $O(10^{-3})$
- Calorimeter non-linearity is studied using K_{e3} events, $\pi^0\pi^0$ decays and π^0 or η decays, and measured to be at the level of 0.3%
- ❖ Sensitivity to longitudinal development of e.m. showers is minimized by detector projectivity

Non-linearity, non-uniformity and other systematics on e.m. calorimeter response give a double ratio uncertainty:

$$\delta(R) = \pm 10 \cdot 10^{-4}$$

Lifetime weighting

- \bigstar K_S and K_L are collected in the same fiducial region
- Weighting K_L events as a function of decay proper time, according to expected ratio of $\pi\pi$ rates \Rightarrow very similar lifetime distributions
- \bigstar Accounts for small terms due to K_S and K_L interference and $K^0/\bar{K^0}$ production difference
- ♦ Increases statistical error

Acceptance correction

 $ightharpoonup Analysis in <math>K^0$ energy bins and lifetime weighting of K_L events minimizes corrections due to K_S/K_L energy spectra and acceptance differences, making the experiment almost indipendent from MonteCarlo simulation

- ♦ K_S/K_L beam halo differences minimized by wide centre of gravity cut
- ❖ Residual K_S/K_L acceptance difference (due to beam divergence) minimized for charged mode by energy-dependent cut on $\pi^+\pi^-$ momentum asymmetry

MonteCarlo acceptance correction

♦ Residual effect studied with a full simulation of the detector, including all known deficiences (faulty channels, etc.)

- \bullet MonteCarlo statistics $5 \times \text{data sample}$
- Averaged effect on double ratio:

$$\Delta R = (-29 \pm 11 \pm 5) \cdot 10^{-4}$$

where the first error is due to MC statistics and the second is systematic.

Statistics

1997 event statistics (Unweighted, tagging and background corrected)

$$K_{L} \rightarrow \pi^{0}\pi^{0}$$
: $0.49 \cdot 10^{6}$
 $K_{S} \rightarrow \pi^{0}\pi^{0}$: $0.98 \cdot 10^{6}$
 $K_{L} \rightarrow \pi^{+}\pi^{-}$: $1.07 \cdot 10^{6}$
 $K_{S} \rightarrow \pi^{+}\pi^{-}$: $2.09 \cdot 10^{6}$

Corrections to R and uncertainties

1997 Statistics (millions)				
$K_S \rightarrow \pi^+\pi^-$	2,09	$K_L \rightarrow \pi^+\pi^-$	1,07	
$K_S \rightarrow \pi^0 \pi^0$	0,98	$\mathrm{K_L} \ \rightarrow \pi^0 \pi^0$	$0,\!49$	

Unweighted, tagging and bkgr corrected

Corrections and systematic errors on R

Source	Corr.	Uncert.	Lim.
	(10^{-4})	(10^{-4})	
Ch. Tr. Eff.	+9	23	(stat.)
Reconstr. Eff.	_	3	
Tagging Dilut.	+18	9	(stat.)
Tagging Ineff.	0	6	(stat.)
En. scale/lin.	_	12	
Charged Vtx	_	5	
Acceptance	+29	12	(MC stat.)
Neutral Bkgr	-8	2	
Charged Bkgr	+23	4	
Beam Scatt.	-12	3	
Accid. Act.	-2	14	(stat.)

Total
$$+57$$
 35

$$R = 1 - 6 \times Re(\varepsilon'/\varepsilon)$$

Averaging R

- \bullet The double ratio is avrgd over 20 K^0 En. bins btw 70 and 170 GeV/c using an unbiased estim.
- ♦ Data are plotted btw 65 and 180 GeV/c
- ♦ Bin by bin corrections include: stat. error and syst. errors on tagging, trigger, bkgr and acceptance
- $\star \chi^{\bar{2}}/\text{ndf} = 25.7/19$

 $R = 0.9889 \pm 0.0027(stat) \pm 0.0035(syst)$

Time dependence

Run period dependence (changes in trigger and magnetic field configuration) and time in spill dependence:

No systematic effect

Beam intensity dependence

 K_L beam intensity and K_S/K_L intensity ratio dependence:

No systematic effect

The result

$$\operatorname{Re}(\varepsilon'/\varepsilon) =$$

$$(18.5 \pm 4.5 \text{ (ev. stat.)} \pm 5.8 \text{ (syst.)}) \times 10^{-4}$$

Combining all errors in quadrature:

$$\operatorname{Re}(\varepsilon'/\varepsilon) = (18.5 \pm 7.3) \times 10^{-4}$$

The systematic error is dominated by its statistical contribution due to the size of the control samples.

Next Data Samples

- ♦ 1998 run: 135 days. Data analysis quite advanced.
 - \triangleright All HV blocking capacitors of e.m. calor. replaced \Rightarrow stable operation at 3 kV
 - \triangleright New carbon fibre beam pipe \Rightarrow reduced overflows in DCH (30% current reduct.)
 - \triangleright Ch. trigger upgrade \Rightarrow higher eff. $\approx 97\%$
 - \triangleright New DAQ \Rightarrow + 30% trigger rate
 - $ho \gtrsim 2 \text{ times more } \pi^0 \pi^0 \text{ statistics } (\approx 1.1 \ 10^6)$ $\gtrsim 4 \text{ times more } \pi^+ \pi^- \text{ statistics}$
 - \triangleright Statistical error on $\operatorname{Re}(\varepsilon'/\varepsilon) \approx 3 \cdot 10^{-4}$ Syst. error $\lesssim 4 \cdot 10^{-4}$
- ♦ 1999 run: 128 days. Checked quality of data.
 - ▷ Improved DCH readout and DAQ
 New muon veto counters
 - $ho \approx 2 \cdot 10^6 \ \pi^0 \pi^0$ candidates expected
- ♦ year 2000: systematic studies on neutral decays (SPSLC Meeting on Jan. 25)?
- ♦ year 2001: complement statistics and systematic studies (one year shift)?

$Re(\varepsilon'/\varepsilon)$ **Predictions**

• Theoretical predictions for $\text{Re}(\varepsilon'/\varepsilon)$ generally below $1 \cdot 10^{-3}$

♦ New prediction (BNL/RIKEN group) from lattice computation using domain wall fermion gives a large negative value: $-(122 \pm 68) \times 10^{-4}$

Conclusions

The preliminary NA48 measurement of $\text{Re}(\varepsilon'/\varepsilon)$ (18.5 ± 4.5 (ev. stat.) ± 5.8 (syst.)) ×10⁻⁴

based on the first data sample taken in '97, with a **new** technique, agrees with the previous NA31 result and with the recent KTeV one, establishing a non zero value of $\text{Re}(\varepsilon'/\varepsilon)$

The systematic error of the preliminary result is dominated by its statistical component

The data sample for this result is a small fraction ($\sim 10\%$) of the total expected amount which has been and (hopefully) will be collected by NA48 to reach its design error of 2 $\times 10^{-4}$

Conclusions

The world average before this measurement was

$$\operatorname{Re}(\varepsilon'/\varepsilon) = (21.7 \pm 6.1) \cdot 10^{-4}$$

(after rescaling of errors), with $\chi^2/\text{ndf} = 4.2$.

The grand average of experimental results is

$$\operatorname{Re}(\varepsilon'/\varepsilon) = (21.2 \pm 4.6) \cdot 10^{-4}$$

(after rescaling of errors), with $\chi^2/\text{ndf} = 2.8$, which firmly estabilishes direct CP violation in the K^0 system with 4.6 σ significance (Re(ε'/ε) > 13.6 · 10⁻⁴ at 95% C.L.) at a level higher than typically predicted within the standard model

In view of the unsatisfactory $\chi 2$ of the world average, it is important that NA48 and KTeV still improve their precision on $\text{Re}(\varepsilon'/\varepsilon)$, and that KLOE provides a new measurement, to settle better the value of this fundamental parameter