The Proton Structure from HERA and the Tevatron

Anna Goussiou SUNY, Stony Brook

Topics

- $\bullet \ F_2, \ F_L, \ F_2^{c\bar{c}}$
- High Q^2 Neutral & Charged Current Cross Sections
- Gluon Momentum Density
- \bullet Inclusive Jet Cross Section at all η and Dijet Mass
- Ratio of Jet Cross Sections at Different \sqrt{s}
- BFKL vs DGLAP

2000 Aspen Winter Conference on Particle Physics

January 16-22, 2000

Some History

- powerful tool: Deep Inelastic Scattering of leptons off protons
- if virtual γ carries "large" 4-momentum transfer, it can probe internal p structure
- Structure Functions scale with momentum transfer, similarly to e scattering off μ
 ⇒ pointlike constituents of p
- 30 years of DIS experiments \rightarrow impressive understanding of p structure
- complimentary: $p\bar{p}$ collisions
- *p* structure understanding crucial for (new) physics in current and future colliders

Deep Inelastic Scattering at HERA

 $\begin{array}{c|c} \mathbf{e}(\mathbf{k}) & \mathbf{\psi} & \mathbf{x} \\ \hline \mathbf{e}(\mathbf{k}) & \mathbf{k} \\ \hline \mathbf{e}(\mathbf$ $Q^2 = -q^2 = -(k - k')^2$ fractional energy transfer

 $\frac{d^2 \sigma^{NC}(e^{\pm}p)}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \left[Y_+ F_2^{NC}(x, Q^2) - y^2 F_L^{NC}(x, Q^2) \mp Y_- x F_3^{NC}(x, Q^2) \right]$

$$F_2^{NC}(x,Q^2) = \sum_{i=1}^{n_f} A_i x \left[q_i(x,Q^2) + \bar{q}_i(x,Q^2) \right]$$
$$xF_3^{NC}(x,Q^2) = \sum_{i=1}^{n_f} B_i x \left[q_i(x,Q^2) - \bar{q}_i(x,Q^2) \right]$$

 A_i, B_i : electroweak quark couplings

 $xq(x,Q^2), x\bar{q}(x,Q^2)$: momentum distributions of (anti)quarks $F_L(x, Q^2)$: longitudinal S.F. (zero at LO, a few % at NLO) $Y_{\pm} = 1 \pm (1 - y)^2$

Cross Section at Moderate Q^2

$$\sigma_r(x,Q^2) = \frac{d^2\sigma}{dxdQ^2} \cdot \frac{xQ^4}{2\pi\alpha^2} \cdot \frac{1}{Y_+} = F_2(x,Q^2) - \frac{y^2}{Y_+}F_L(x,Q^2)$$

H1 96-97

X

$F_L(x,Q^2)$

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \cdot \left\{ [1 + (1-y)^2]F_2(x,Q^2) - y^2F_L(x,Q^2) \right\}$$

- at high y, $[1 + (1 y)^2]$ and y^2 comparable
- QCD fit to F_2 at low $y \rightarrow$ extract PDF's \rightarrow evolve in $Q^2 \rightarrow$ predict F_2 at high y
- subtract F_2 from $d^2\sigma/dx dQ^2$

 $F_2^{c\bar{c}}(x,Q^2)$

$F_2(x,Q^2)$ at very low Q^2

• F_2 still rises at $Q^2 \approx 0.1 \text{ GeV}^2$

High Q^2 Neutral Current

 $\frac{d^2 \sigma^{NC}(e^{\pm}p)}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \left[Y_+ F_2(x,Q^2) - y^2 F_L(x,Q^2) \mp Y_- x F_3(x,Q^2) \right]$

• SM predictions agree with data

• Parity-violating contribution from Z exchange visible for $Q^2 \geq M_Z^2$

High Q^2 Charged Current $\frac{d^2 \sigma^{CC}(e^{\pm}p)}{dx dQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \frac{[\bar{u} + \bar{c} + (1 - y^2)(d + s)]}{[u + c + (1 - y^2)(\bar{d} + \bar{s})]}$ H1 + ZEUS CC DATA $\begin{array}{ccc} d\sigma/dQ^2 & pb/GeV^2 \\ \hline 0 & 0 & 1 \\ \end{array}$ JS PRELIMINARY CC e⁻ p 98/99 DATA H1 PRELIMINARY CC e⁻ p (y < 0.9) 98/99 DATA STANDARD MODEL e⁻ √s=320 GeV STANDARD MODEL e Vs=300 GeV 10 10 ○ ZEUS 94-97 CC e⁺ p DATA H1 94-97 CC e⁺ p (y < 0.9) DATA **STANDARD MODEL** $e^+ \sqrt{s}$ **=300 GeV** 10 -* 10 10 10³ 10^{4} $O^2 GeV^2$

• SM predictions agree with data

- e^-p dominated by u, e^+p dominated by $(1-y)^2d$
- $M_W = 80.8^{+4.9}_{-4.5}(stat)^{+5.0}_{-4.3}(syst)^{+1.4}_{-1.3}(PDF)$ GeV agrees w/ direct determination of M_W at Tevatron

High Q^2 CC (and the d/u ratio)

ZEUS CC 1994-97

High Q^2 NC and CC (from e^+p)

- EM force stronger than weak for $Q^2 < M_W^2, M_Z^2$
- EM & Weak forces comparable for $Q^2 \ge M_W^2, M_Z^2$

$F_2(x, Q^2)$: Scaling Violations

- \bullet due to quark-gluon interactions, $\propto \alpha_s \log Q^2$
- as $Q^2 \uparrow$: gluons and sea quarks \Rightarrow more partons of smaller x
- Large scaling violations described by NLO DGLAP for $3 \cdot 10^{-5} < x < 0.65$ and $1 < Q^2 < 3 \cdot 10^4$ GeV²

$xg(x,Q^2)$ from F_2 Scaling Violations

extract $xg(x,Q^2)$ from $dF_2/d\ln Q^2$

H1 96-97

$xg(x,Q^2)$ from $F_2^{c\bar{c}}$ and Dijets

H1 96-97

H1 96-97

$xg(x,Q^2)$ at high x

MRST: direct photons from WA70, range of k_T corrections from E706 CTEQ: inclusive jets from Tevatron

Jet Physics in $p\bar{p}$ collisions

 $q_{i,j}$: parton densities $\hat{\sigma}_{ij}$: partonic cross section $\hat{\sigma}_{ij}(x_1 P_1, x_2 P_2, Q^2, \mu_F^2, \mu_R^2)$

- Q: characteristic scale of the hard scattering
- Factorization scale μ_F : separates long- from short-distance
- Renormalization scale μ_R : to avoid divergent integrals in $\hat{\sigma}$
- scheme: $\mu_F = \mu_R = Q$
- Q of order jet- E_T
- probe perturbative QCD (hard scattering)
- test and use in PDF's
- search for quark substracture

Inclusive Jet Cross Section

- open question at high jet E_T 's
- new measurement at all rapidities \Rightarrow better discriminating power:
 - 4x data points
 - correlations (χ^2)
 - forward $\eta \Rightarrow$ higher x

Inclusive Jet Cross Section at All Rapidities

- NLO QCD describes the data over seven orders of magnitude
- trend at higher E_T 's?

Inclusive Jet Cross Section at All Rapidities

- enhanced gluon at higher x or other effects?
- what about prompt photon data? $(k_T, resummation)$

Dijet Mass

 $M \equiv \sqrt{(E_1 + E_2)^2 - (\vec{P_1} + \vec{P_2})^2} = \sqrt{2E_{T_1}E_{T_1}[\cosh(\Delta\eta) - \cos(\Delta\phi)]}$

Ratio of Inclusive Jet Cross Sections at $\sqrt{s} = 1800$ and 630 GeV

Scaling violations: at intermediate/high $x_T = 2E_T/\sqrt{s}$, cross section should decrease with $(Q^2) \sqrt{s}$

DGLAP vs BFKL

Dijets at Large Rapidity Intervals

- for $\Lambda_{QCD} \ll Q \ll \sqrt{s} \Rightarrow \text{large } \ln(s/Q^2)$ in σ_{dijet}
- $\hat{s} = x_1 x_2 s \Rightarrow$ for large $x_i \Rightarrow$ large $\ln(\hat{s}/Q^2) \approx \Delta \eta$ in $\hat{\sigma}$
- use BFKL to sum all powers of $(\alpha_s \Delta \eta) \Rightarrow$

$$\hat{\sigma} \sim \frac{e^{(\alpha_{\rm BFKL}-1)\Delta\eta}}{\sqrt{\alpha_s\Delta\eta}} \quad \text{with} \quad \alpha_{\rm BFKL} = 1 + \frac{4\ln 2\,{\rm N_c}\,\alpha_{\rm s}}{\pi} \simeq 1.5$$

- PDF's steeply falling at large $x \Rightarrow$ not possible to see exponential growth in σ_{dijet}
- take ratio at $\sqrt{s_A} = 1800 \text{ GeV}, \sqrt{s_B} = 630 \text{ GeV}$

• fix
$$x_1, x_2, Q^2 \Rightarrow \text{PDF's cancel} \Rightarrow$$

$$R = \frac{\sigma(x_1, x_2, Q^2, s_A)}{\sigma(x_1, x_2, Q^2, s_B)} = \frac{e^{(\alpha_{\text{BFKL}} - 1)(\Delta \eta_A - \Delta \eta_B)}}{\sqrt{\Delta \eta_A / \Delta \eta_B}}$$

- rise with $\Delta \eta \Rightarrow$ rise with s
- extract an effective value for $\alpha_{\rm BFKL}$

Dijets at Large $\Delta \eta$ (cont'd)

• R increases with $\Delta \eta \Leftrightarrow \sqrt{s}$: for $\Delta \eta > 2 \Rightarrow < \Delta \eta_{630} >= 2.4$ and $< \Delta \eta_{1800} >= 4.6$

$$<\sigma_{1800}/\sigma_{630}>=2.8 \pm 0.3 \,(\text{stat}) \pm 0.3 \,(\text{syst})$$

• effective BFKL intercept:

 $\alpha_{\rm BFKL}(20\,{\rm GeV}) = 1.65 \pm 0.05 \,({\rm stat}) \pm 0.05 \,({\rm syst})$

 \bullet difference in σ between different $\sqrt{s}~(\Delta\eta)$ increases w/ $\Delta\eta$

Summary

- proton structure function measured for $0.04 < Q^2 < 3 \cdot 10^4$ GeV² and $6 \cdot 10^{-7} < x < 0.65$
- \bullet DGLAP evolution describes data down to $Q^2 \sim 1 \ {\rm GeV^2}$
- c content of proton 10-30%
- d/u ratio uncertainty at high x
- high Q^2 CC and NC data agree with SM predictions
- xg(x, Q²) well constrained at low-x,
 but large uncertainties at high-x
- jet cross section from $p\bar{p}$ at forward $\eta \Rightarrow$ gluon at high-x
- sign of BFKL evolution at dijets with large $\Delta \eta$ in $p\bar{p}$
- await increased L, high Q^2 at HERA and high E_T jets at Tevatron Run II !