Location of Logfile

Log file for this test: /afs/hep.wisc.edu/cms/RCTlog/daffodil/RC_2004-08-26_
*.log***

** RC Test 4 - JTAG all ASICS *******
Test run on 2004-08-26_17:21:32
HOST computer is: daffodil
Run executable fault_library
**

Device to open: /dev/btp96
Device to open: /dev/btp160
Device to open: /dev/btp64
Enter command (help for usage)>

SBS successfully booted and talked to cards in the crate

Enter command (help for usage)>

RCT boot succeeded with 2 cards. Only the CCC and the RC to be tested should be plugged in

Enter command (help for usage)>

Starting to check the Phase to Adder
Device to open: /dev/btp96
Device to open: /dev/btp160
Device to open: /dev/btp64
Cards inserted 0080

Card R3 is inserted

Compare this number with the RC barcode

RC has barcode: f69c

Checking Phase 0 and 2 to Adder 0

Memory address 18440000
Had Memory address 18400000
Memory address 184C0000
Had Memory address 18480000
Memory address 18540000
Had Memory address 18500000
Memory address 185C0000
Had Memory address 18580000
Memory address 18640000
Had Memory address 18600000
Memory address 186C0000
Had Memory address 18680000
Memory address 18740000
Had Memory address 18700000
Memory address 187C0000
Had Memory address 18780000
Route OP 1 pin 0 OK!
Route OP 2 pin 0 OK!
Route OP 3 pin 0 OK!
Route OP 4 pin 0 OK!
Route OP 1 pin 1 OK!
Route OP 2 pin 1 OK!
Route OP 3 pin 1 OK!
Route OP 4 pin 1 OK!
Route OP 1 pin 2 OK!
Route OP 2 pin 2 OK!
Route OP 3 pin 2 OK!
Route OP 4 pin 2 OK!
Route OP 1 pin 3 OK!
Route OP 2 pin 3 OK!
Route OP 3 pin 3 OK!
Route OP 4 pin 3 OK!
Route OP 1 pin 4 OK!
Route OP 2 pin 4 OK!
Route OP 3 pin 4 OK!
Route OP 4 pin 4 OK!
Route OP 1 pin 5 OK!
Route OP 2 pin 5 OK!
Route OP 3 pin 5 OK!
Route OP 4 pin 5 OK!
Route OP 1 pin 6 OK!
Route OP 2 pin 6 OK!
Route OP 3 pin 6 OK!
Route OP 4 pin 6 OK!
Route OP 1 pin 7 OK!
Route OP 2 pin 7 OK!
Route OP 3 pin 7 OK!
Route OP 4 pin 7 OK!

Checking Phase 1 and 3 to Adder 0
Memory address 18440000
Had2 Memory address 18400000
Memory address 184C0000
Had2 Memory address 18540000
Had2 Memory address 18500000
Memory address 185C0000
Had2 Memory address 18580000
Memory address 18640000
Had2 Memory address 18600000
Memory address 186C0000
Had2 Memory address 18680000
Memory address 18740000
Had2 Memory address 18700000
Memory address 187C0000
Had2 Memory address 18780000
Route OP 1 pin 0 OK!
Route OP 2 pin 0 OK!
Route OP 3 pin 0 OK!
Route OP 4 pin 0 OK!
Route OP 1 pin 1 OK!
Route OP 2 pin 1 OK!
Route OP 3 pin 1 OK!
Route OP 4 pin 1 OK!
Route OP 1 pin 2 OK!
Route OP 2 pin 2 OK!
Route OP 3 pin 2 OK!
Route OP 4 pin 2 OK!
Route OP 1 pin 3 OK!
Route OP 2 pin 3 OK!
Route OP 3 pin 3 OK!
Route OP 4 pin 3 OK!
Route OP 1 pin 4 OK!
Route OP 2 pin 4 OK!
Route OP 3 pin 4 OK!
Route OP 4 pin 4 OK!
Route OP 1 pin 5 OK!
Route OP 2 pin 5 OK!
Route OP 3 pin 5 OK!
Route OP 4 pin 5 OK!
Route OP 1 pin 6 OK!
Route OP 2 pin 6 OK!
Route OP 3 pin 6 OK!
Route OP 4 pin 6 OK!
Route OP 1 pin 7 OK!
Route OP 2 pin 7 OK!
Route OP 3 pin 7 OK!
Route OP 4 pin 7 OK!
Checking Phase 4 and 6 to Adder 1
Memory address 18440000
Had Memory address 18400000
Memory address 184C0000
Had Memory address 18480000
Memory address 18540000
Had Memory address 18500000
Memory address 185C0000
Had Memory address 18580000
Memory address 18640000
Had Memory address 18600000
Memory address 186C0000
Had Memory address 18680000
Memory address 18740000
Had Memory address 18700000
Memory address 187C0000
Had Memory address 18780000
Route OP 1 pin 0 OK!
Route OP 2 pin 0 OK!
Route OP 3 pin 0 OK!
Route OP 4 pin 0 OK!
Route OP 1 pin 1 OK!
Route OP 2 pin 1 OK!
Route OP 3 pin 1 OK!
Route OP 4 pin 1 OK!
Route OP 1 pin 2 OK!
Route OP 2 pin 2 OK!
Route OP 3 pin 2 OK!
Route OP 4 pin 2 OK!
Route OP 1 pin 3 OK!
Route OP 2 pin 3 OK!
Route OP 3 pin 3 OK!
Route OP 4 pin 3 OK!
Route OP 1 pin 4 OK!
Route OP 2 pin 4 OK!
Route OP 3 pin 4 OK!
Route OP 4 pin 4 OK!
Route OP 1 pin 5 OK!
Route OP 2 pin 5 OK!
Route OP 3 pin 5 OK!
Route OP 4 pin 5 OK!
Route OP 1 pin 6 OK!
Route OP 2 pin 6 OK!
Route OP 3 pin 6 OK!
Route OP 4 pin 6 OK!
Route OP 1 pin 7 OK!
Route OP 2 pin 7 OK!
Route OP 3 pin 7 OK!
Route OP 4 pin 7 OK!

Checking Phase 5 and 7 to Adder 1
Memory address 18440000
Had2 Memory address 18400000
Memory address 184C0000
Had2 Memory address 18480000
Memory address 18540000
Had2 Memory address 18500000
Memory address 185C0000
Had2 Memory address 18580000
Memory address 18640000
Had2 Memory address 18600000
Memory address 186C0000
Had2 Memory address 18680000
Memory address 18740000
Had2 Memory address 18700000
Memory address 187C0000
Had2 Memory address 18780000
Route OP 1 pin 0 OK!
Route OP 2 pin 0 OK!
Route OP 3 pin 0 OK!
Route OP 4 pin 0 OK!
Route OP 1 pin 1 OK!
Route OP 2 pin 1 OK!
Route OP 3 pin 1 OK!
Route OP 4 pin 1 OK!
Route OP 1 pin 2 OK!
Route OP 2 pin 2 OK!
Route OP 3 pin 2 OK!
Route OP 4 pin 2 OK!
Route OP 1 pin 3 OK!
Route OP 2 pin 3 OK!
Route OP 3 pin 3 OK!
Route OP 4 pin 3 OK!
Route OP 1 pin 4 OK!
Route OP 2 pin 4 OK!
Route OP 3 pin 4 OK!
Route OP 4 pin 4 OK!
Route OP 1 pin 5 OK!
Route OP 2 pin 5 OK!
Route OP 3 pin 5 OK!
Route OP 4 pin 5 OK!
Route OP 1 pin 6 OK!
Route OP 2 pin 6 OK!
Route OP 3 pin 6 OK!
Route OP 4 pin 6 OK!
Route OP 1 pin 7 OK!
Route OP 2 pin 7 OK!
Route OP 3 pin 7 OK!
Route OP 4 pin 7 OK!

Checking the Adder to Adder routes!
All four pins from output wire 1 okay!
All four pins from output wire 2 okay!
All four pins from output wire 3 okay!
All four pins from output wire 4 okay!
All four pins from output wire 5 okay!
All four pins from output wire 6 okay!
All four pins from output wire 7 okay!
All four pins from output wire 8 okay!
All four pins from output wire 9 okay!
All four pins from output wire 10 okay!
All four pins 11 are tied to ground
All four pins from output wire 12 okay!
All four pins from output wire 13 okay!

Starting to check the memory to BSCAN Asic
Memories Mid 1 and Edge 0 to Bscan 0 and 1 OK!
Memory 3 to Bscan 2 Edge bit 3
Memory 3 to Bscan 2 Edge bit 4
Memory 3 to Bscan 2 Edge bit 5
Memory 3 to Bscan 2 Edge bit 6
Memories Mid 2 and Edge 3 to Bscan 2 and 3 OK!
Memory 4 to Bscan 4 Edge bit 3
Memory 4 to Bscan 4 Edge bit 4
Memory 4 to Bscan 4 Edge bit 5
Memory 4 to Bscan 4 Edge bit 6
Memories Mid 5 and Edge 4 to Bscan 4 and 5 OK!
Memories Mid 6 and Edge 7 to Bscan 6 and 7 OK!

######################## RC Test 4 End ########################