DOE-NSF Review

Wesley H. Smith, U. Wisconsin

CMS Trigger Project Manager

February 14, 2007

Outline:
Calorimeter Trigger Status
Endcap Muon Trigger Status
M&O Plans
Upgrade R&D

This talk is available on:
L1 Trigger Hardware Overview

- US CMS Trigger (this talk)
- US CMS fully responsible
- US CMS partially responsible
- Groups: U. Florida
 Rice
 UCLA
 Wisconsin
• Operating fully functional trigger electronics
 • Used in tests & preparation activities
• Tests in Electronics Integration Center
 • Labs & row of racks for all electronics subsystems
 • Integration row of racks identical to underground counting room (USC55)
 • Testing interfaces & integration as much as possible before move to USC55
• Magnet Test & Cosmic Challenge (MTCC) in Surface Hall (SX5)
 • Simultaneous activities with testing 4T solenoid operation.
 • Tested multiple trigger components with multiple detector components
 • Verified trigger & interfaces w/detectors on surface
• Installation in USC55
 • Started with RCT, HCAL, TTC
 • CSC Track-Finder this month
Trigger Integration Progress
in Electronics Integration Center (Pr. 904)

- Large scale successful integration tests in central racks using common TTC system & trigger primitives, regional & global processing:
 - Calorimeter Trigger
 - Muon Trigger
 - Global Trigger
Trigger in MTCC

• Major success!
• 25 million events at a trigger rate of ~ 200 Hz
 • Mixture of DT, CSC, RBC, RPC-TB, HCAL-RCT trigs.
 • Trigger requirements easily configurable
• Stable operation
 • Stable run uptime > 1 hr many runs > 500K L1A.
• All subsystems synchronized
 • Tracker, ECAL, HCAL*, RPC*, DT*, CSC*
 • Readout & Trigger*
• Trig. throttling worked
 • Even when trigger problems or noise > 1 kHz
• Impressive teamwork!
 Regional Calorimeter Trigger & HCAL in MTCC

- Use RCT to create trigger with HCAL MIP bits
 - MIP bit uses upper and lower thresholds
 - Installed one full RCT crate and support
 - Receive 56 HCAL links to all inputs (448 towers)
 - Split cabling to create separate paths
 - HCAL top to HCAL inputs
 - HCAL bottom to ECAL inputs
- Send trigger out with JCC to Global Trigger
 - OR of towers in each half using HCAL MIP bit

- CERN, FNAL, Maryland, Wisconsin
Results from MTCC

- HCAL-RCT Trigger in time w/DT

Drift Tube Trigger vs. Calorimeter Trigger time in 25 ns bunch crossings (coincidence = 0 bx)
CSC Trigger in MTCC
-- Florida, Rice, UCLA

Green Barracks:

- **Chambers:**
 - 60 degree slice through + endcap
 - CSC sector 5 overlaps DT sectors 10,11
 - 36 chambers through ME1,2,3

10 M triggers w/
2 station coincidence +
large sample of ME1A singles

- **EMU TTC Crate**
- **MPC patch panel**
- **TF Crate**
- **NIM logic**
- **FED Crate**

- **YE3**
- **YE2**
- **YE1**

- **ME4**
- **ME3**
- **ME2**
- **ME1**

- **DT-17**
- **DT-10**
Selected MTTC Muon Trigger Results: Extrapolation of DT to CSC

Extrapolation from MB1 only: MB1 tracks matched with CSC tracks:

Validated!
(courtesy of Ugo Gasparini)

& Relative CSC ↔ DT timing checked
RCT Installation in USC55

- 13 (of 18 total needed) tested & fully operational sets of RCT Cards are at CERN.
 - More in shipment
- Crates, Fans, Power Supplies, Monitoring, Controls and other infrastructure installed, validated and passed safety
 - Timing & Global Calorimeter Trigger Crates installed also
 - Detector controls system operating
- 6 RCT Crates have cards installed
- Installation & cabling finished in March
 - Begin detailed integration tests with ECAL, HCAL, GCT
 - Timing studies/calibration
 - Trigger patterns
Trigger Installation Schedule

- Install/Commission Trig. Crates in USC55: July ‘06 - Mar ‘07 ← Underway but late*
 - Tested Trigger Crates installed, re-tested, interconnected, inter-synchronized
 - Regional & Global trigger subsystems integrated with each other & Global Trigger
 - USC55 infrastructure & advantages of MTCC & EIC setups*
- Integrate w/Detector Elect.: Jan ‘06 - May ‘07 + (as detectors connected) ← Slipping!
 - Phase 1 in USC55, Phase 2 in UXC55
 - Cal Trig connected to E/HCAL USC55 electronics
 - Muon Triggers connected to trigger data optical fibers from detector in UXC55
 - Global Trigger connected to TTC distribution system
 - Operation with Local DAQ
- Integrate w/Central Trig. & DAQ: Jan ‘06 - May ‘07 ← Slipping!
 - Subset of triggers available to detectors in UXC55
 - Dedicated testing with individual detectors
 - Detailed synchronization testing of all systems
 - Testing with Central DAQ
- System Commissioning: May ‘07 - Aug ‘07
 - Full capability of trigger system available
 - Tests with all detectors & trigger operating simultaneously together & partitioned
- Ready for CMS Commissioning Aug ‘07
Commissioning: M&O Tasks

- **Engineers:**
 - Revise firmware
 - Replace testing firmware with operations firmware
 - Monitoring
 - Implement & test voltage/temperature detector controls
 - Timing & Control
 - Build up timing & control signal distribution systems
 - Software
 - Develop APIs for integration with software

- **Physicists:**
 - Diagnostics, emulators, simulation code, interfaces and integration with other CMS systems.
 - Integration with Trigger Supervisor system
 - Development & Checking of Trigger Emulators
Operations: M&O Tasks

• Engineers & Technicians (salary & travel):
 • System maintenance
 • Diagnostics, repairs, firmware updates, hardware & software modifications
 • Intensive level of continuous support (typical of trigger systems)

• Physicists (COLA only):
 • Change trigger as beam conditions change
 • Study new trigger configurations
 • Test runs, Monte Carlo studies, data studies
 • Trigger Physics Analysis
 • Understand detailed impact of trigger on physics
 • Preparation for luminosity increases
 • Monte Carlo studies of new conditions, validate with present data
 • Respond to changing apparatus
 • Changes in material, configuration, etc. ⇒ changes in simulation
 • Operations - 24x7 support during running
 • Maintain & update bad channel list & run daily checking programs
 • Trigger data validation and calibration (on/offline rates & efficiencies)
 • Monte Carlo & data trigger simulation maintenance & validation
Trigger Software

• Trigger Software Roadmap:
 • Trigger Supervisor Integration: all trigger subsystems under TS central control
 • Trigger Configuration DB: all trigger subsystems w/Config Key defined in DB
 • Trigger Configuration integrated w/Run Control
 • Trigger Supervisor Monitoring available for all subsystems + Condition DB
 • Trigger Monitoring in Filter Farm available + Condition DB

• Trigger Supervisor Testing: Three types of dedicated tests:
 • Expert tests: detailed tests at board level available to experts
 • Self-test: check electronics board present & perform built-in-self-test (BIST) is available
 • Interconnection tests: 2+ components involved in test, exchanging data between them.
 • Framework controlled by Trigger Supervisor exists, integration underway in USC55

• Trigger Supervisor Monitoring
 • Trigger Counters and Statistics: Rates, Error counters, Sync histograms
 • Trigger HW error reports (logging & counting): synch loss, error in trigger or DAQ path, board failure

• Monitoring Infrastructure in Trigger Supervisor
 • Based on DAQ Online Monitoring Infrastructure, subset is stored in Trigger Conditions Database
 • Available now to trigger subsystems

• Trigger Configuration Data Base:
 • Stores trigger parameters configured by remote control: Hardware, software, firmware file links
 • Change frequently (versions) & different tags (e.g. depend on run type) → Config. Key
 • Each trigger subsystem responsible for schema in Config. DB → Schema available
 • Handling of Configuration Keys in TS Framework is already available
Trigger Personnel

• M&O
 • From Project Support:
 • 2.6/2.0 FTE Engineers in FY07/FY08
 • 0.8/0.5 FTE in FY07/08 ea. for cal. & mu trigger (designers)
 • 1 FTE (cost shared w/CERN) on TTC → HCAL & ECAL SLB M&O
 • 1.8/1.35 FTE Technicians in FY07/FY08
 • 1.2/0.6, 0.6/0.75 FTE for cal/mu in FY07,8
 • From Base Program Support:
 • 6 Ph.D. Physicists in FY07+
 • 3 physicists each for calorimeter & muon trigger
 • Spend 50% of time on M&O and 50% on physics research.
 • 12 Graduate Students by FY08
 • 6 students each for calorimeter & muon trigger
 • 25% (e.g. training, physics, thesis) of total tenure on trigger

• Upgrade R&D
 • Based on CMS Level-1 trigger R&D & Prototypes.
 • Personnel requirements
 • 1 FTE Engineer from Project in FY07+
 • Engineering Design: 0.5 FTE ea. cal. & mu
 • These are other "half" of engineer on M&O
 • Designers of the trigger system (institutional memory)
 • 1 FTE Ph.D. Physicist from base program in FY07+
 • Simulation & Design Studies
 • 0.5 FTE ea. calorimeter & muon trigger
Trigger M&S

- M&O:
 - Locations:
 - US (RCT & CSC) & UX (CSC only)
 - Test setups in Bldg. 904, and home institutes
 - Diagnostic equipment
 - Scopes & probes, logic analyzers, computers, interfaces, etc.
 - Construction of additional specialized test boards
 - Repair equipment & supplies
 - Soldering stations (BGA repair), Tools, Voltmeters, misc. supplies
 - Module repair/replacement costs
 - Power supplies, regulators, breakers, thermal sensors, crate CPUs, etc.
 - Replacement of broken cables, fiber optics, etc.
 - Vehicle lease for hauling back & forth
 - Shipping and/or contract repair Costs
 - Sending items back to US for major work
 - Either to FNAL, University, or manufacturer
 - FY07+ yearly cost of 80K$
 - 40K$ each for US CMS Cal. & Muon Trigger Efforts

- Upgrade R&D:
 - $40K/year for Prototypes
 - $20K ea. for cal. & mu trigger
 - ~ 2 proto. boards ($10K ea.) per year for cal. & muon
• CMS SLHC Proposal:
 • Combine Level-1 Trigger data btw. tracking, calorimeter & muon at Regional Level at finer granularity
 • Transmit physics objects from tracking, calorimeter & muon regional trigger data to global trigger
 • Implication: perform some of tracking, isolation & other regional trigger functions in combinations between regional triggers (possibly seed tracking trigger)
 • New “Regional” cross-detector trigger crates
 • Leave present L1+ HLT structure intact (except increase latency x 2 to 6 μsec)
 • No added levels --minimize impact on CMS readout

SLHC Trigger Upgrade

Trigger Primitives
- $e / \gamma / \tau$ clustering
- 2x2, ϕ-strip ‘TPG’

Tracker L1 Front End
- μ track finder
- DT, CSC / RPC

Regional Track Generator

Regional Correlation, Selection, Sorting

Jet Clustering

Missing E_T

Seeded Track Readout

Global Trigger, Event Selection Manager
SLHC Upgrade: near term

• **CSC Trigger**
 - Simulation of high occupancy SLHC muon trigger algorithms
 - Combined silicon + muon detectors track-finding processor studies
 - Testing high-bandwidth digital optical links (10Gbps+)
 - Testing asynchronous data transmission & trigger logic
 - Upgrade of ALCT & Sector Processor for increased complexity, occupancy & asynchronous operation

• **Calorimeter Trigger**
 - Simulation of high occupancy SLHC calorimeter trigger algorithms
 - Combined tracking trigger + calorimeter trigger processor studies
 - Develop new automated timing testing & distribution system (will use for present system as well)
 - Test new “mesh” & “star” commercial PCI-X backplane technology
 - Study more complex higher-resolution algorithms in new FPGAs
 - Evaluate short distance high bandwidth links, cables, connectors
Trigger M&O, R&D Plans

- Labor costs incl. minimum level of existing personnel who designed/built the system
 - Maintain the “long-term memory”
 - Not supported by base program
 - Engineers split between M&O & Upgrade R&D
- Physicists & student salaries not included
 - Project provides COLA support for physicists resident at CERN
 - Extremely important given limited resources of University base program

U.S. CMS Trigger M&O Resources

- Phys. based at CERN
- Eng/Tech based in US

Trigger M&O Cost Estimate
FY02-FY11 Total $4,927,430 AY$

- Labor
- M&S

US CMS Trigger M&O
FY02-FY11
$4,927,430 AY$

- 18%
- 82%
Trigger M&O Summary

• Good Progress on all fronts:
 • CAL & EMU Triggers finished production, at CERN, being installed
 • Operations at CERN underway
 • Integration tests complete or underway
 • Software is in use and development continues

• M&O in ‘07: Install, Commission & Operate:
 • Time is tight to accomplish the necessary tasks
 • Steps taken, planning established to meet schedule
 • Use of Electronics Integration Center helped/helps
 • Detailed plan of integration tests after installation

• Upgrade R&D:
 • Design work: build on evolving concepts for higher luminosity
 • Investigate enabling technologies to understand implementation