Search for a Lepton Flavor Violating Higgs Boson Using the Compact Muon Solenoid Detector at the Large Hadron Collider

Aaron Levine
University of Wisconsin-Madison
Outline

- Theoretical Background
 - Standard Model
 - Higgs Boson
 - Lepton Flavor Violation
 - Signal and Backgrounds
- Experimental Background
 - Large Hadron Collider (LHC)
 - Compact Muon Solenoid (CMS)
- Analysis
 - Monte Carlo Generation
 - Selections
 - Results
 - Outlook
Standard Model (Particles)

- Theoretical framework that describes particle interactions

- Quarks
 - Six quarks in three generations
 - Quarks form hadrons (ex: proton, neutron)

- Leptons
 - Three generations
 - Each charged lepton has a neutrino partner

- Gauge Bosons
 - Force carriers

- Higgs Boson
 - Responsible for masses of quarks, leptons, and massive gauge bosons
Standard Model (Forces)

- **Strong Nuclear Force**
 - Mediated by gluon
 - Binds quarks within hadrons

- **Weak Nuclear Force**
 - Mediated by W and Z bosons
 - Responsible for beta decay of the neutron

- **Electromagnetic Force**
 - Mediated by photon
Massive Gauge Bosons

- Weak interaction has very short range
 - 10^{-17} m
- Requires massive mediators
 - W and Z bosons
- Weak interaction and electromagnetic interaction can be combined into Electroweak Lagrangian
 - Contains triplet of weak isospin currents with SU(2) symmetry and single hypercharge current with U(1) symmetry
 - W and Z mass terms of the form $M^2 W^\mu W_\mu$ are not SU(2) X U(1) gauge invariant
Standard Model Higgs Boson (Theory)

- **Higgs Mechanism**
 - Higgs field produces spontaneous symmetry breaking of Lagrangian in weak isospin x hypercharge space
 - Gauge transformation generates mass terms in Lagrangian for quarks, leptons, and massive bosons
 - SM Higgs has no charge, no spin, and is its own antiparticle

- **Discovery**
 - Discovery of Higgs Boson with a mass of 125-126 GeV announced on July 4th 2012
SM Higgs Boson (Major Production Mechanisms)

- **Gluon Gluon fusion**
 - Dominant at LHC
 - Higgs couples to virtual top quarks in loop
 - More than 10 times more likely than any other production mechanism

- **Vector boson fusion**
 - Second largest at LHC
 - Quarks in proton exchange virtual W or Z Boson
 - Higgs couples to virtual bosons

Source: Handbook of LHC Higgs Cross Sections: 3. Higgs Properties
Lepton Flavor Violation

• Lepton Number
 – 3 generations of leptons
 – Lepton number defined for each generation
 • #(leptons) - #(anti leptons)
 – Conserved in SM

\[
\begin{pmatrix}
 \nu_e \\
 e \\
 \nu_\mu \\
 \mu \\
 \nu_\tau \\
 \tau
\end{pmatrix}
\]

Lepton Number

Higgs

\begin{align*}
\mu^+ & \rightarrow W^- \nu_\tau \\
\tau^- & \rightarrow W^- \nu_\tau
\end{align*}

Lepton # conserved

Lepton # Violated

Lepton flavor violating Higgs

– Some beyond the standard model (BSM) theories predict flavor violating Higgs boson

– Search for Higgs decaying directly to a tau and a muon

Aaron Levine
Lepton Flavor Violating Higgs Decay

- SM process: $H \rightarrow \tau_\mu \tau_h$
 - τ_h denotes a tau decaying hadronically (hadrons and a tau neutrino)
 - τ_μ denotes a tau decaying to a muon (with a tau neutrino and an antimuon neutrino)
 - MET denotes missing energy
 - Neutrinos are not detected by CMS
 - $H \rightarrow \tau\tau$ Branching Ratio (BR) of 6.3 % at $M_H = 125$ GeV

- Similar BSM LFV process: $H \rightarrow \mu\tau_h$
 - No previous direct experimental searches
 - BR up to 13%
 - Based on analysis of ATLAS $H \rightarrow \tau\tau$ data by Harnik, Kopp, Zupan
 - Larger visible mass than SM process
 - Search Higgs Mass range of 125-126 GeV
 - Assume SM production modes
Important Backgrounds

- **Z+jets**
 \[\sigma = 3500 \text{ pb} \]

- **ttbar**
 \[\sigma = 130 \text{ pb} \]

- **W+jets**
 \[\sigma = 38000 \text{ pb} \]

- **WW**
 \[\sigma = 5.8 \text{ pb} \]

W decays hadronically or leptonically
Large Hadron Collider

- 14 TeV Center of Mass proton/proton collider
 - Currently operating at 8 TeV
- 27 km circumference
- Four experiments
 - CMS, ATLAS: General purpose high energy physics detector
 - LHCb: High energy B physics
 - ALICE: High energy heavy ion physics
LHC Collisions

- **Acceleration Process**
 - Electric field strips Hydrogen atoms of electrons
 - Linear accelerator accelerates protons to 50 MeV
 - Synchrotrons accelerate protons to 450 GeV
 - Protons then go to main LHC beam, accelerated to 4 TeV
- **Protons are guided by superconducting magnets cooled by liquid helium**
 - Dipoles accelerate protons
 - Quadrupoles focus protons along horizontal and vertical planes
- **RF system creates bunches of protons**
 - 25 ns design bunch spacing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energy (TeV)</td>
<td>7</td>
<td>3.5</td>
<td>3.5</td>
<td>4</td>
<td>6-7</td>
</tr>
<tr>
<td>Bunches/Beam</td>
<td>2835</td>
<td>368</td>
<td>1380</td>
<td>1380</td>
<td>2835</td>
</tr>
<tr>
<td>Protons/Bunch(1e11)</td>
<td>1.15</td>
<td>1.3</td>
<td>1.5</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Peak Luminosity(1e32cm⁻²s⁻¹)</td>
<td>100</td>
<td>2</td>
<td>30</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>Integrated Luminosity (fb⁻¹)</td>
<td>100/year</td>
<td>.036</td>
<td>6</td>
<td>19.71</td>
<td>50/year</td>
</tr>
</tbody>
</table>

$$\mathcal{L} = \frac{\#\text{Interactions}}{\text{Effective Flux}}$$
Compact Muon Solenoid (CMS)

- General background
 - Located 100 meters underground in Cessy, France
 - One of two general physics detectors at the LHC
 - Size
 - 21 meters long
 - 15 meters wide
 - 12500 tons

- Physics Goals
 - Study Higgs Boson
 - Search for BSM (Beyond the Standard Model) physics
Pseudorapidity (η) is a Lorentz invariant quantity that describes the position of a particle relative to the beam axis.

$$\eta = -\ln(\tan(\theta/2))$$

$\theta = \text{angle relative to z axis}$

Transverse mass (M_T) and momentum (P_T) correspond to the mass and momentum of a particle perpendicular to the beam axis.
CMS Tracker

- Measures P_T and charge of muons, electrons, and hadrons, using 3.8 T magnetic field
 - P_T determined by examining tracker hits to reconstruct the radius of curvature
- Extends to $|\eta| < 2.5$
- Resolution: $\left(\frac{\delta P_T}{P_T} \right)^2 = (15 P_T(\text{TeV})\%)^2 + (0.5\%)^2$
- Inner silicon pixel detector
 - High granularity
 - Pixels are 100 X 150 μm
 - Cylindrical layers at 4, 7, and 11 cm from beam
 - High flux (10 million particles per square cm per second)
- Outer silicon strip detector
 - 10 cylindrical layers with 4 endcaps
 - Extends 130 cm from beam
 - Lower flux than pixel detector (3e5 particles per square cm per second)
 - Allows cell size up to 25 cm x 180 μm
CMS Electromagnetic Calorimeter

- Measures energy deposited by electrons and photons
- Composed of lead tungstate scintillating crystals
 - Crystals have high density (8.28 g/cm3) and short radiation length (0.89 cm)
 - Allows fine granularity
 - 61,200 crystals in the barrel
 - 7324 crystals in each of the two endcaps
 - Emitted light detected by photodetectors
- 80% of light emitted in 25 ns
 - Same order as LHC design bunch crossing time
- Energy resolution: $\left(\frac{\sigma}{E} \right)^2 = \left(\frac{2.8\%}{\sqrt{E}} \right)^2 + \left(\frac{0.12}{E} \right)^2 + (0.30\%)^2$
CMS Hadronic Calorimeter

- Measures energy deposited by hadrons
- Barrel and Endcaps
 - Barrel (HB): $|\eta| < 1.3$
 - Endcaps (HE): $1.3 < |\eta| < 3.0$
 - Wedges of brass absorber and plastic scintillator
 - Wavelength shifting fibers bring scintillation light to electronics
 - Energy resolution: $(\frac{\sigma}{E})^2 = (\frac{115\%}{\sqrt{E}})^2 + (5.5\%)^2$
- Forward Calorimeter (HF)
 - $3.0 < |\eta| < 5.0$
 - Very high flux region
 - Quartz scintillating fibers
 - Steel shielding for electronics
 - Energy resolution: $(\frac{\sigma}{E})^2 = (\frac{280\%}{\sqrt{E}})^2 + (11\%)^2$
CMS Muon Chamber

- Muons are highly penetrating particles that are very important for new physics
 - Not stopped by Calorimeters
 - Need muon system
- Trajectory is bent by 2T magnetic field in return yoke
 - 4 muon stations interspersed with iron yoke
 - 610 resistive plate chambers
 - Redundant trigger system, provides time coordinate
 - 250 drift tubes track the muons in the barrel
 - Barrel covers $|\eta| < 1.2$ region
 - 500 cathode strip chambers (CSC) track the muons in the endcaps
 - Endcaps cover up to $|\eta| < 2.4$
 - Drift tubes and CSCs provide position of muon
 - Both use cathode strips and anode wires
 - Muons ionize gas, electrons drift to anode wires
CMS Trigger System

- Impossible to store all data produced via LHC collisions
- Trigger system must reduce rate from 1 GHz (LHC collisions) to 300 Hz (maximum output rate)
- Level 1 Trigger
 - High speed electronics
 - Basic selection and rejection
 - Rate limited by readout electronics
 - Tracker has 7 μs readout time, 8 event buffer
- High Level Trigger
 - Compute nodes
 - 20,000 cores
 - Defines object filters for physics analysis
CMS Level 1 Trigger

- Level 1 Trigger must analyze every bunch crossing
- Global trigger uses hardware algorithms to accept or reject each event it receives
- Calorimeter triggers sum energy over η/ϕ regions
 - 5X5 crystal block = trigger tower
- Regional Calorimeter Trigger (RCT)
 - Identify e/\gamma candidates
 - Sums transverse energy (E_T) in regions
- Global Calorimeter Trigger (GCT)
 - Jet identification
- Muon trigger system (RPC,DT,CSC)
 - Records energy and track geometry of muons
 - Global Muon Trigger combines information to determine well identified muon candidates
CMS Level 1 Trigger Upgrade

- Long Shutdown 1 (LS1) from 2013-2015
- Increase beam energy to 6-7 TeV
- Decrease bunch spacing from 50 ns to 25 ns
- Need to improve tau identification efficiency because taus couple strongly to Higgs boson
 - ID taus as taus, not as jets
- Example: change tau identification from 12X12 trigger towers to 2X1 ECAL+HCAL towers
 - Increases plateau efficiency from 0.3 to 0.7
 - Overall L1 Trigger rate remains below 100 kHz with upgrade algorithms

Source: Level-1 Trigger Upgrade Technical Design Report
CMS High Level Trigger

- Processes events from L1 trigger
- Uses offline software algorithms to define filters for physics analysis
- Accepts events at up to 100kHz, outputs events at up to 300 Hz
 - Large reduction in rate
- Example: HLT filter used for this analysis:
 - Requires isolated, well constructed muon with $P_T > 30$ GeV
 - The terms “isolated” and “well constructed” will be defined in future slides
Analysis Summary

• Simulation techniques
 – Monte Carlo (MC) techniques used to simulate signal and background
• Object Identification and Reconstruction
 – Muons
 – Jets
 – Taus
• Initial Data/Monte Carlo Comparison
• Analysis Selections
• Results and Future Plans
Monte Carlo Generators

- **Madgraph**
 - Matrix element MC generator
 - Partonic interactions

- **Pythia**
 - Quarks allowed to radiate gluons
 - Hadronization, showering

- **Tauola**
 - Simulates Tau decay
 - Used in conjunction with Pythia
 - Takes into account tau polarization and spin
Monte Carlo Workflow

- Generate samples with Madgraph + Tauola and Pythia
 - Partonic level to hadronization and tau decay
- Use GEANT to simulate detector interactions
 - Software for simulating passage of particles through matter
 - Currently responsible for most of signal simulation
 - New signal monte carlo studies are ongoing
- Use CMSSW software to reconstruct MC events to be compatible with CMS analysis framework
- Scale MC samples to 19.71 fb\(^{-1}\) of data
 - 8 TeV dataset used in this analysis
Muon Reconstruction

- **Standalone Muons**
 - Offline reconstructed track segments in muon chambers
- **Global Muons**
 - Match standalone muons to tracks in silicon tracker
 - Fit and reconstruct path
- **Tracker Muons**
 - ID low PT muons that don't register as standalone muons
 - Reconstruct track with $P > 2.5$ GeV, $P_T > 0.5$ GeV matched with hit in muon chamber
Muon Isolation

- Muon from LFV Higgs decay should be isolated
- Define isolation cone around muon
 - $\Delta R = \sqrt{\phi^2 + \eta^2} < 0.4$
- Relative Isolation Definition
 - Tracker isolation: sum of PT of tracks in isolation cone
 - ECAL isolation: sum of ECAL energy deposited in isolation cone
 - HCAL isolation: sum of HCAL energy deposited in isolation cone

$$ISO_{Rel} = \frac{ISO_{HCAL} + ISO_{ECAL} + ISO_{Tracker}}{\mu P_T} < 0.12$$
Particle Flow Objects

- Reconstruct hadrons, photons, muons, and electrons
 - Used to identify jets, taus, and missing E_T (MET)
- Particle Flow Algorithms identify objects
 - Identify calorimeter clusters and tracker hits
 - Reconstruct path and identify particles
- Example:
 - Electron will have a curved path in tracker and will leave an energy deposit in ECAL
Jet Identification

• Particle flow jets
 – Reconstruct jets from energy deposited by particle flow objects
• Define distance measures d_{ij} and d_{iB}
 – d_{ij} = distance between particles i and j
 – d_{iB} = distance between particle i and beam
 – If $d_{ij} < d_{iB}$ then combine particles i and j
 – If $d_{ij} > d_{iB}$ then call particle i a jet
• Use Anti-kt jet algorithm ($p = -1$) with $R = 0.5$
• Anti-kt algorithm keeps jet cone well defined
 – Cone unaffected by soft radiation
 – Hard events within cone are combined based on energy and position
 – Collinear and infrared safe
• Find cones by identifying clusters of HCAL depositions
Tau Reconstruction

Use hadronic tau decays for identification
- 64% branching ratio

- Three primary decay modes
 - Single prong (π)
 - Single prong plus strip (π and π⁰ or π⁰π⁰)
 - Three prong (π π π)

- Hadron Plus Strips (HPS) algorithm
 - Photons from π⁰ decay may convert to electrons in tracker
 - Trajectory of electrons is bent by magnetic field
 - Use “strips” in ECAL to reconstruct π⁰ candidates
 - π⁰ candidates matched to tau signatures in particle flow jets
 - π candidates matched to HCAL depositions
Preselection Strategy

- Apply loose “preselection” cuts before applying full analysis cuts
- Allows data/MC comparison
 - More statistics than signal region
 - Allows testing of analysis strategies before implementation in signal region
- “Blind” portion of preselection region
 - Hide data events where the signal is non-negligible to prevent biased selection
- Require well reconstructed Muon
 - $P_T > 30$ GeV
 - $|\eta| < 2.1$
- Require well reconstructed Tau
 - $P_T > 25$ GeV
 - $|\eta| < 2.3$
- Eliminate events irrelevant to signal
 - Require Muon and Tau to have opposite sign
- Separate events into 0, 1, and 2 jet channels
 - 0 and 1 jet events correspond to gluon gluon fusion
 - 2 jet events correspond to VBF
Data approximately matches MC models

0 Jet

<table>
<thead>
<tr>
<th>Events: (80-140 GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal: 1700</td>
</tr>
<tr>
<td>Background: 26000</td>
</tr>
<tr>
<td>Signal/Background: 0.07</td>
</tr>
</tbody>
</table>
H→μτ_h 1 Jet Backgrounds

- Backgrounds are determined in the same way as the 0 jet backgrounds.
- Data approximately matches MC models within statistical uncertainty.

<table>
<thead>
<tr>
<th>1 Jet</th>
<th>Events:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(80-140 GeV)</td>
</tr>
<tr>
<td>Signal:</td>
<td>820</td>
</tr>
<tr>
<td>Background:</td>
<td>13000</td>
</tr>
<tr>
<td>Signal/Background</td>
<td>0.07</td>
</tr>
</tbody>
</table>
H→μτₜₜ VBF (2 Jet) Backgrounds

\[\sqrt{s} = 8 \text{ TeV} \quad L = 19.71 \text{ fb}^{-1} \]

Fakes: Includes QCD, W+jets
Determined by Fake Rate Method

Data/MC agreement suggests that systematic uncertainties should be increased. Studies are ongoing.

TT+Jets: Normalization and shape from Monte Carlo

WW: Normalization and Shape from Monte Carlo

MC and Fake rate statistical uncertainty

Z⁻→ττ: (embedded data samples for shape, DY + (1,2,3,4) jet samples for normalization

<table>
<thead>
<tr>
<th>2 Jet</th>
<th>Events: (70-120 GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal:</td>
<td>290</td>
</tr>
<tr>
<td>Background:</td>
<td>1600</td>
</tr>
<tr>
<td>Signal/Background</td>
<td>0.19</td>
</tr>
</tbody>
</table>
W+Jets and QCD Estimation Techniques

- Get W+jets shape from Monte Carlo
- Compute the appropriate normalization factor by scaling W+jets in region dominated by W+jets
 - \(M_T(\tau, \text{MET}) > 70 \text{ GeV} \)
 - Require \((W+jets \text{ events}) = (\text{data events} - \text{other background events})\)
 - Scale factor of 0.8 for 0 Jet
 - Scale factor of 1.0 for 1 Jet

- Determine QCD shape by inverting muon isolation in the data sample
 - Invert isolation to enter rich realm of QCD statistics
 - Compute normalization factor by requiring QCD to agree with data in same sign region
 - Same sign: muon and tau have same sign
 - High QCD statistics in this region
W+Jets Estimation Results

0 Jets, Preselection
Scaled for $M_T(\tau, \text{MET}) > 70$ GeV

No $M_T(\tau, \text{MET}) < 10$ cut
Check scaling close to signal region
H→μτ_h VBF Fakes Estimation

• The fake rate method is a way of improving W+jets and QCD background estimation in the 2 jet channel
• Select events with two muons and a tau
 – fake tau rich region
• Estimate tau fake rate (fTau) by computing the fraction of events that are identified as taus but are not isolated
• Invert tau isolation in data sample to enter rich region of tau fakes
• Weight events by a factor of fTau/(1-fTau)
 – Gives shape and yield of “fake” tau events
 – This group of events is dominated by W+jets and QCD

\sqrt{s} = 8 \text{ TeV} \quad L = 19.71 \text{ fb}^{-1}
VBF Fake Rate Validation

\[\sqrt{s} = 8 \text{ TeV} \quad L = 19.71 \text{ fb}^{-1} \]

- Compare W+jets Monte Carlo and data driven QCD to fake rate method in fakes control region
 - Preselection cuts
 - Muon and tau have same sign
 - \(M_T(\mu,\text{MET}) > 70 \text{ GeV} \)
- Data/MC agreement within uncertainties

Calculate uncertainty in fake rate by shifting fake rate up and down by error bars from data (previous slide).
Z→ττ Estimation

- Low Z+jets MC statistics
 - Estimate shape from Z→ττ embedded samples
 - Normalization from Drell Yan + (1,2,3,4) Jet MC
 - Drell Yan: quark/anti-quark annihilation that produces Z boson
- Z+jets(other) negligible in VBF channel

- Examine method in VBF Z→ττ control region
 - Preselection Cuts
 - ΔR(μ,τ) < 2.0

Embedded Method

\[
\sqrt{s} = 8 \text{ TeV} \quad L = 19.71 \text{ fb}^{-1}
\]
H→μτ_h Signal Region Cuts:

Gluon Gluon Fusion (GGF)

- Selection optimized in 0 Jet GGF category by varying cuts to maximize \(\frac{signal}{\sqrt{background}} \)

0-Jet Category:
- Preselection
- 0 Jets \((p_T > 30 \text{ GeV})\)
- \(p_T(\mu) > 40 \text{ GeV}\)
- \(p_T(\tau) > 25 \text{ GeV}\)
- \(\Delta\Phi(\mu,\text{MET}) > 2.5\)
- \(\Delta\Phi(\tau,\text{MET}) < 0.3\)
- \(M_T(\tau,\text{MET}) < 10 \text{ GeV}\)

1-Jet Category:
- Preselection
- 1 Jet \((p_T > 30 \text{ GeV})\)
- \(p_T(\mu) > 40 \text{ GeV}\)
- \(\Delta\Phi(\tau,\text{MET}) < 0.3\)
- \(p_T(\tau) > 25 \text{ GeV}\)
- \(M_T(\tau,\text{MET}) < 10 \text{ GeV}\)

Sensitive to GGF

LFV Higgs process has low \(M_T(\tau,\text{MET})\) and \(\Delta\Phi(\tau,\text{MET})\) because the emitted tau and neutrino are roughly collinear
Signal Region: $H \rightarrow \mu \tau _h$ 0 and 1 Jet Channels

0 Jets

- Events: (80-140 GeV)
 - Signal: 620
 - Background: 1100
 - Signal/Background: 0.55

1 Jet

- Events: (70-140 GeV)
 - Signal: 290
 - Background: 890
 - Signal/Background: 0.33

S/B increase by factor of 7.9 from preselection

S/B increase by factor of 4.7 from preselection
$H \rightarrow \mu \tau_h$ Signal Region Cuts: Vector Boson Fusion (VBF)

- Selection optimized by varying cuts to maximize \[\frac{\text{signal}}{\sqrt{\text{background}}} \]

2-Jet Category:

Preselection
- 2 Jets ($p_T > 30$ GeV)
- $M_{jj} > 600$ GeV
- $|\Delta\eta(jj)| > 3.5$
- $p_T(\mu) > 45$ GeV
- $p_T(\tau) > 45$ GeV
- $M_T(\tau, \text{MET}) < 30$ GeV
- Central jet veto (30 GeV)

Sensitive to VBF

Central jet veto reduces $t\bar{t}$bar and QCD

VBF jets have pronounced separation in η

Heavy t quark may radiate gluons which produce hadronic showers (central jets)

Central jet veto eliminates jets with $P_T > 30$ GeV that are not either of the 2 leading jets
Signal Region: $H \rightarrow \tau_h \mu$ 2 Jet Channel

$\sqrt{s} = 8$ TeV $L = 19.71$ fb$^{-1}$

<table>
<thead>
<tr>
<th>2 Jets</th>
<th>Events:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>21</td>
</tr>
<tr>
<td>Background</td>
<td>3.9</td>
</tr>
<tr>
<td>Signal/Background</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Recall: S/B = 0.19 for Preselection Cuts
Improvement by factor of 28
Systematic Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common (Signal+Background)</td>
<td></td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.6%</td>
</tr>
<tr>
<td>Trigger</td>
<td>1-3%</td>
</tr>
<tr>
<td>Muon Trigger/ID/Isolation</td>
<td>2%</td>
</tr>
<tr>
<td>Tau ID/Isolation</td>
<td>6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Backgrounds</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Z → ττ Embedding</td>
<td>3%</td>
</tr>
<tr>
<td>WJets/QCD</td>
<td>20%</td>
</tr>
<tr>
<td>Tau Fakes</td>
<td>30%</td>
</tr>
<tr>
<td>WW+Jets (MC NLO)</td>
<td>15%</td>
</tr>
<tr>
<td>TTBar+Jets</td>
<td>10%</td>
</tr>
<tr>
<td>SingleTop</td>
<td>10%</td>
</tr>
<tr>
<td>SM Higgs</td>
<td>10%</td>
</tr>
</tbody>
</table>

- Small luminosity and trigger uncertainties are standard CMS values
- Object ID and Isolation uncertainties are from the respective particle object groups
- Tau fake uncertainty
 - Shift fake yield up and down by uncertainty on Z→μμ data
 - \(\frac{(Yield_{\text{up}} - Yield) / Yield}{Yield} = \frac{Yield - Yield_{\text{down}}}{Yield} = 30\% \)
- MC Backgrounds: estimate of 10-15% uncertainty on MC
- Systematic uncertainties used for the expected limit calculations
Sensitivity to Exclusion Limits

All numbers given are expected limits on branching ratio (BR) \((H \rightarrow \tau_h \mu)\)

95% Confidence Level (Blinded Analysis)

<table>
<thead>
<tr>
<th></th>
<th>0 Jets</th>
<th>1 Jet</th>
<th>2 Jets</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_{\text{had}} \mu)</td>
<td>BR: 1.69 +/- 0.86%</td>
<td>BR: 2.50 +/- 1.29% (not optimized)</td>
<td>BR: 2.12 +/- 1.08%</td>
<td>BR: 1.12 +/- 0.57%</td>
</tr>
</tbody>
</table>

Expected Limit: Limit that can be established after unblinding if signal is not detected.

Definition of 95% confidence level limit:

\[
\text{Probability}[\text{BR}(H \rightarrow \mu \tau_h) < 1.12\%] \geq 95%
\]

These limits are computed using the standard confidence level estimation procedure for CMS and ATLAS.
Future Plans

- Pre-upgrade analysis goals
 - Repeat limits with new signal MC
 - Pileup and tau decay with tauola
 - Add jet energy scale and tau systematics
 - Unblind analysis and compute BR($H \rightarrow \mu \tau$)
 - Will verify or put new constraints on BSM theories
- Planned LHC upgrade for 2015
 - Beam energy of 6-7 TeV
 - Gluon gluon Higgs production cross section will increase to 50 pb (at 14 TeV)
 - Increase by factor of 2.6
 - VBF cross section will increase to 4.2 pb (at 14 TeV)
 - Increase by factor of 2.7
 - Cross sections of major backgrounds expected to increase by factor of 2
 - Expected limit will improve by about a factor of 3
 - Expect 50 fb$^{-1}$ of new data in first year of upgrade to use for my thesis
Conclusions

- This analysis is currently sensitive to an expected limit of 1.12% +/- 0.57% for BR(H→μτ)
 - Improved sensitivity to come with LHC upgrade
- This analysis is well equipped to search for the BSM H→μτh process
- This is the first analysis to make a direct search for a Lepton Flavor violating Higgs boson