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Abstract

Inclusive dijet and trijet production in deep inelastic ep scattering has been measured

for 10 < Q2 < 100 GeV2 and low Bjorken x, 10−4 < xBj < 10−2. The data were

taken at the HERA ep collider with center-of-mass energy
√
s = 318 GeV using the

ZEUS detector and correspond to an integrated luminosity of 82 pb−1. Jets were

identified in the hadronic center-of-mass (HCM) frame using the kT cluster algorithm

in the longitudinally invariant inclusive mode. Measurements of dijet and trijet differ-

ential cross sections are presented as functions of Q2, xBj, jet transverse energy, and

jet pseudorapidity. As a further examination of low-xBj dynamics, multi-differential

cross sections as functions of the jet correlations in transverse momenta, azimuthal

angles, and pseudorapidity are also presented. Calculations at O(α3
s) generally de-

scribe the trijet data well and improve the description of the dijet data compared to

the calculation at O(α2
s).
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Chapter 1

Introduction

The aim of the natural sciences is to observe, classify, measure and explain natural

phenomena. Physics is the branch of the natural sciences that deals with matter, time,

energy, and space, the understanding of which is important to all natural sciences, as

all phenomena are subject to the laws of physics. The history of human efforts towards

understanding fundamental natural processes is, of course, long and far too detailed

to encapsulate here, but one issue would eventually (after a few millennia) give rise

to the discipline of particle physics: what forms matter and what are the physical

laws which govern the formation and properties thereof?1 Among the studies of the

properties of matter is the study of the internal structure of the nucleons (protons

and neutrons), which are comprised of quarks and gluons, collectively known as par-

tons. The interactions of quarks and gluons is characterized by the theory of Quantum

Chromodynamics (QCD), which can be used in conjunction with perturbation theory

to predict the partonic content of a nucleon. Measurements of the energies and po-

sitions of the final-state particles in Deep Inelastic Scattering (DIS) interactions, in

which a lepton and proton collide, provide a good testing ground for predictions from

1Sources [1] and [2] were referenced for compiling this chapter.



2

the most commonly used pQCD (perturbative QCD) approach to characterize the

proton’s partonic content. This analysis examines the applicability of this approach

in a kinematic range relatively near the non-perturbative limit.

1.1 An Introduction to Particle Physics

The origins of particle physics can be traced to Democritus (born ca. 460 BC),

who postulated that everything in the universe falls into one of two categories: matter

comprised of fundamental, indivisible particles or atoms (“atomas” is Greek for “indi-

visible units”), and void. However, this theory of atoms was a philosophical construct

rather than a mathematically rigorous theory and at the time was not accepted as

the primary explanation for the fundamental constituents of matter. By 1758, when

Boscovich founded the basis of modern atomic theory, physics had evolved from a

philosophy to an empirical science with a mathematical formalism upon which pre-

dictions could be made, thanks to the contributions from people such as Galileo and

Newton. As early as 1829, scientists arranging the elements by their atomic weight

noticed a periodicity in the properties of the elements, and studies of this periodic be-

havior ultimately led to Mendeleev’s formulation of the Periodic Table in 1869. That

the elements could be classified in groups according to their similar properties was an

indication that the atoms themselves were comprised of smaller particles.

The modern origin of particle physics begins with Joseph Thompson’s discovery

of the electron in 1898, which confirmed that atoms themselves are comprised of

smaller particles and gave rise to the “plum pudding” model of the atom, which

described an atom as a positively charged extended object with negatively charged

electrons as points within the atom. This model was quickly supplanted in 1909, when
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Rutherford’s scattering experiment demonstrated that atoms contain small, dense,

positively charged nuclei at their center. This experiment led to the Bohr model of

the atom in 1913, which was soon followed the first evidence of the proton found by

Rutherford in 1919. In 1931, James Chadwick’s discovery of the neutron completed

the representation of the atomic nucleus used today, with the protons and neutrons

known collectively as nucleons.

With the discovery of the neutron, however, the mechanisms for nuclear binding

and nuclear decay remained unexplained. Subsequent experiments with observation

of cosmic particles and experiments using particle accelerators designed to probe the

structure of the atomic nuclei led to the discovery of both a particle with the same

properties as the electron, but 200 times heavier (the muon), and a proliferation of

new, briefly stable particles that interact via the strong nuclear force, collectively

known as hadrons. Early collider experiments also provided the first indications that

the nucleons themselves contain a charge structure. In 1964 Gell-Mann and Zweig put

forth the idea that hadrons are made from combinations of quarks. The strong inter-

action theory of quarks from Fritzsch and Gell-Mann, which explains nuclear binding,

and the electroweak theory [3], which explains nuclear decay, form the Standard Model

used in particle physics today.

1.2 The Standard Model

The Standard Model is currently the most complete theoretical framework to

describe the fundamental particles and their interactions. Within the Standard Model,

there are 3 types of particle: quarks, leptons, and force mediators (bosons). In addition

to the three types of particles, the Standard Model also describes three different forces
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acting on these particles: the electromagnetic force, the weak nuclear force, and the

strong nuclear force.

Quarks are spin-1
2

particles that have both a fractional electric charge and a

color charge of either red, green, or blue. Quarks are not observed as free particles

(see section 1.2.1 for an explanation of quark confinement). The six flavors of quarks

are divided into three generations, with each generation consisting of two quarks and

differing from the other generations only in flavor and mass. Quarks combine to form

colorless hadrons, which consist of baryons (e.g. protons), which are combinations of

three quarks or antiquarks, each with a different color charge (red, green, blue or anti-

red, anti-green, anti-blue), and mesons (e.g. pions, consisting of π0 and π±), which

are bound states of a quark and an antiquark of opposite color charge (e.g. a red and

an anti-red quark combination). Baryons and mesons are the only types of hadrons

observed2 and can be formed from all types of quarks except the top quark, which

decays before hadron formation can occur.

Leptons are spin-1
2

particles with a neutral color charge, which allows them

to be observed as free particles. As with the quarks, there are three known lepton

generations which differ from each other only in mass and flavor. Each generation

consists of a particle with a negative charge of one unit–the electron (e), the muon

(µ), and the tau (τ)–and a corresponding neutrino (ν) with a very small mass and no

electric charge. The generations of quarks and leptons and their important properties

are given in Table 1.1.

The interactions of the particles described above are mediated by a third class

2Five-quark bound states, or pentaquarks consisting of a baryonic and mesonic combination of
quarks have been posited, but conclusive evidence of these particles has not yet been found.



5

Quarks Leptons

Flavor Mass(Gev) Charge Flavor Mass(GeV/c2) Charge

u 0.003 2/3 νe < 10−8 0

d 0.006 -1/3 e 0.000511 -1

c 1.3 2/3 νµ < 0.0002 0

s 0.1 -1/3 µ 0.106 -1

t 175 2/3 ντ < 0.02 0

b 4.3 -1/3 τ 1.7771 -1

Table 1.1: The properties of the three generations of quarks and leptons. Each gener-
ation differs from other generations in mass and flavor only. The basic unit of charge
is -1, the charge of the electron. The antiparticle partners of these quarks and leptons
(not included in this table) have the same mass and opposite electric charge.

Boson Mass(GeV) Charge Force

γ (photon) 0 0 Electromagnetic

W± 80.4 ±1 Weak

Z0 91.187 0 Weak

g (gluon) 0 0 Strong

Table 1.2: Properties of the bosons in the Standard Model. The standard unit of
charge is that of the electron, also used in Table 1.1

.

of particle in the Standard Model: bosons, which are spin-1 particles that allow for

force and quantum number exchange. Each force described by the Standard Model

is mediated by a distinct boson or set of bosons. The types of interactions in which

a particle can participate is governed by the types of bosons it can exchange with

other particles. Neutrinos, for example, have neither a color charge nor an electric

charge, and therefore do not emit or absorb the bosons associated with the strong

or the electromagnetic force, and therefore interact with matter only via the weak

interaction.
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Table 1.2 lists the properties of the bosons responsible for mediating the forces

in the Standard Model. The electromagnetic force is mediated by the photon, which

has no mass or electric charge. The weak force is mediated by three particles: the

electrically charged W+ and W− particles, and the electrically neutral Z0 particle.

As mentioned previously, the electromagnetic and weak interactions are unified in the

Standard Model to form the electroweak interaction. The strong force is mediated by

gluons, which like the quarks carry a color charge that also prevents the observation

of gluons as free particles (see again the discussion of confinement in section 1.2.1).

Quarks interacting with each other through gluon exchange undergo a change in color

charge, which means that a gluon has both a color charge and an anti-color charge,

as color is a conserved quantum number. The three color charges and three anti-color

can form eight different combinations for the overall color charge of the gluon. The

Higgs boson, which has not yet been observed experimentally, is the final predicted

boson of the Standard Model and is needed for the breaking of the electroweak gauge

symmetry that results in the generation of particle mass.

Although the ability of the Standard Model to describe experimental result has

been exhaustively tested and verified, it fails to encompass all natural phenomena and

is therefore not regarded as a fundamental theory of physics. The most obvious omis-

sion from the Standard Model is the fourth fundamental force: gravity. Additionally,

the theory does not incorporate neutrino mass or oscillation. The theory also has

many input parameters, such as the masses of the particles and the units of charge, all

of which have been determined experimentally but not derived from first principles.

Addressing these issues and incorporating gravity into a fundamental model (a grand
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unified theory, or GUT) is one of the major goals of current physics research.

1.2.1 The Standard Model as a Field Theory

Quantum field theory, upon which the Standard Model is based, represents the

quantized particles as dynamical fields. The quantized treatment of the fields accounts

for multiparticle states, causality issues, transition between states with different num-

bers of particles, antiparticles, and the relation between spin and statistics. The

Standard Model is also an example of a gauge theory, which describes a system that

is invariant under local transformations (i.e. a phase rotation of φ(x) → eiα(x)φ(x)

applied in a certain space-time region, where φ(x) is an arbitrary field) as well as

global transformations. Gauge theories like the Standard Model can be described

mathematically using a group theory approach.

The field theory of Quantum Electrodynamics (QED) is described by the math-

ematical group U(1). The designation U(1) denotes that the generator matrix M

for the group is one-dimensional and is unitary (M †M = 1). As mentioned earlier,

electroweak theory is a combined description of electromagnetism and the weak inter-

action, the latter of which is described by the SU(2) mathematical group. In addition

to being unitary, a generator matrix for a special unitary group (like SU(2)) has a

determinant of 1. The SU(2) group is described by three two-dimensional generator

matrices, giving the combined electroweak theory 4 generator matrices, which corre-

spond to two neutral boson fields (γ and Z0) and two charged boson fields (W±).

The field theory of Quantum Chromodynamics (QCD) is described by the SU(3)

gauge group, which requires eight generators, corresponding to the eight types of gluon

described above. Unlike the electroweak portion of the Standard Model, QCD is non-
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Abelian, which means that the group generators are non-commutative and that the

gauge bosons associated with the group, the gluons, can interact with other gluons.

1.3 Quantum Chromodynamics

That QCD is based on a non-Abelian gauge theory gives rise the two most

important properties of QCD, which are confinement and asymptotic freedom.

1.3.1 QCD Confinement and Asymptotic Freedom

Unlike the other forces in the Standard Model, the potential describing the strong

interaction exhibits an approximately linear dependence on the distance between the

interacting particles. As a consequence of this property, known as QCD Confinement,

free quarks and gluons have not been experimentally observed. Conversely, partons3

that are close together behave, from the standpoint of the strong interaction, as free

particles, a property known as Asymptotic Freedom.

An analogy with the more familiar Abelian QED interactions, where the photons

do not interact with other photons, can give insight into these seemingly counter-

intuitive properties of QCD. A basic example of how these two theories differ can be

illustrated by describing a simple measurement of the charge of a lepton as opposed

to a measurement of the color charge of a quark. The measurement of the charge of

an electron in a vacuum is sensitive to charge screening, where the electron radiates

photons which then split into electron-positron pairs (see Fig. 1.1). Due to the charge

of the initial electron, the resulting electron-positron pairs will polarize, with the

positrons attracted to the original electron. The measured charge of the electron will

3Particles participating in the strong interaction. This term was coined by Feynman in 1969 to
describe the particles within the proton
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therefore be dependent on where in the “screening cloud” the probe measures, with

the measured charge increasing as the probe approaches the electron. The electric

field strength in the case of QED exhibits a well-known 1/r2 dependence.

In a similar manner, the measurement of a quark’s color charge will be affected

by gluons emitted by the quark, which can subsequently form both quark-antiquark

pairs, or, unlike in the case of QED, gluon-gluon pairs (see Fig. 1.2). The overall gluon

color charge is twice that of the quark, so the gluon production effectively spreads out

the measured color charge. Also unlike QED, the measured quark will be preferentially

surrounded by partons of like color charge. As the probe approaches the quark through

the like-color screen, the measured charge of the quark will be reduced, rather than

enhanced as in the case of QED screening. The anti-screening effect of QCD yields a

color field strength that increases approximately linearly with distance.

1.3.2 Perturbative Quantum Chromodynamics

The property of asymptotic freedom allows for a perturbative treatment for

calculations of QCD when the separation between partons is small, corresponding

to a high-energy probe. Perturbative QCD (pQCD) allows for the prediction of an

observable to be expressed in terms of a finite expansion power series in a coupling

constant αs, in which a simple system is “perturbed” by higher-order corrections:

f(αs) = f1 + f2αs + f3α
2
s + . . . (1.1)

The pQCD calculation of an observable associated with a given scattering process

is determined by a summation over the amplitudes of all Feynman diagrams associated

with the scattering. The power of the coupling parameter for a given Feynman dia-
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Figure 1.1: Electric charge screening in QED. The initial electron radiates a photon
which then produces subsequent electron-positron and further QED radiation. The
positrons are attracted to the initial electron, and creates a screening effect that re-
duces the measured charge of the electron.

gram, and therefore the term within the expansion to which the diagram contributes,

is determined by the number of vertices associated with quark-gluon or gluon-gluon

interactions, with each quark-gluon or gluon-gluon vertex contributing a factor of αs.

A Leading-Order (LO) prediction sums over only the lowest-order contributions to the

observable, which are Feynman diagrams for processes with a single gluon emission.

A Next-to-Leading order (NLO) calculation includes terms with an additional power

of the coupling constant, which corresponds to either the emission of a second gluon

or a virtual gluon loop (see Fig. 1.3).

Calculation of the virtual loop diagrams involve integration over the loop mo-

menta, and leads to divergences when the loop momenta are integrated to infinity (the

ultraviolet divergence). Because of this divergent behavior, it is necessary to introduce



11

q

q

q

q

q

q

q
g

g

g
g

g
q

g

g

g

g

g

g
g

g

g
g

g

Figure 1.2: Color charge screening in QCD. Similar to the photon emission in QED,
the initial quark radiates a gluon. The gluon then splits either into a qq pair, as shown
at left, or a gg pair, as shown at right.

a renormalization scale µR [4] which is a cutoff on the loop momenta. The strength of

the QCD interaction, which is given by the QCD coupling constant αs, then becomes

dependent on the renormalization scale µR:

αs(µ
2
R) =

12π

(11NC − 2NF ) ln(µ2
R/Λ

2
QCD)

(1.2)

where NC is the number of colors (NC = 3 in the Standard Model) and NF is the

number of quark flavors (NF = 6 in the Standard Model). Equation 1.2 also introduces
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Figure 1.3: Diagrams for LO, NLO, and NNLO processes in QCD, where each succes-
sive step in the perturbation series adds the emission of an additional gluon or, in the
case of the NNLO process shown at lower right, an internal gluon loop correction.
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Figure 1.4: The behavior of the QED coupling constant αEM (left) and the QCD
coupling constant αs (right) as a function of the energy of the energy transferred
between two interacting particles. At low energy, αs is large enough such that pQCD
techniques cannot be applied, which illustrates confinement. The coupling constant
αs decreases as the energy of the probe increases, which demonstrates asymptotic
freedom. Diagrams are based on those in [1].

the parameter ΛQCD, which is a cutoff scale that corresponds to the energy at which

the value of αs becomes too large for the pQCD expansions, and the treatment of

quarks and gluons as free particles rather than as bound states in hadrons is not

applicable. The variable ΛQCD has been determined from experimental results to be

approximately 0.1 − 0.5 GeV. Diagrams of the the behavior of the QED coupling

constant αEM and αs are shown in Figure 1.4.

Indications that nucleons themselves contain charge structure came from early

collider experiments, as mentioned previously. Subsequent experiments have charac-

terized the quark and gluon content of the proton for an extensive kinematic range;

however these experiments have an inherently limited kinematic coverage, which means

that pQCD techniques are needed to predict the content of the proton in a more gen-
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eralized kinematic range.
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Chapter 2

Parton Evolution in Deep Inelastic

Scattering

Many of the properties of the Standard Model were realized through scattering ex-

periments at colliders. In a scattering experiment, a beam of high energy particles

bombards a target, particles emerging from the interaction are measured and their

distributions compared to theoretical predictions, which provides an understanding

of the physics behind the interactions. Scattering experiments are divided into three

categories: elastic scattering, where both the target is left intact and in a non-excited

state; inelastic scattering, where the interaction disturbs or breaks up the target par-

ticle; and deep inelastic scattering (DIS), where the target particle is annihilated and

new particles are formed. In the case of elastic scattering, the distribution of the

deflection angles of the incident particles is described by the scattering cross section

described in section 2.1.2. For inelastic scattering and deep inelastic scattering, the

cross section and scattering amplitude also must take into account the structure of

the target, which is characterized by form factors.
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2.1 Deep Inelastic Scattering

Deep Inelastic Scattering experiments use high-energy leptons scattered off hadrons

to determine the structure of the hadronic targets. As mentioned in Chapter 1, inter-

actions between particles are mediated by bosons. Because leptons do not contain a

color charge, DIS interactions do not involve gluon exchange between the lepton and

hadron. The electroweak bosons therefore mediate DIS interactions, and the types of

DIS interactions fall into two categories: neutral-current DIS, which is mediated by

γ and Z0 exchange; and charged-current DIS, which is mediated by W± exchange.

A signature of a charged current DIS event is the incoming lepton changing flavor to

form a neutrino, which is not detected experimentally.

The wavelength of the boson exchanged between the lepton and hadronic target

is

λ =
~
Q

(2.1)

where ~ is Planck’s constant and Q is related to the 4-momentum of the exchange

boson. Equation 2.1 shows that the wavelength of the probe is inversely proportional

to the momentum of the probe. As shown in Figures 2.1 and 2.2, a probe in an

electron-proton (ep) interaction with a long wavelength “sees” the proton as a point

particle. At higher Q2, the probe resolves the valence quarks of the proton, and at

even higher Q2 the probe resolves the “sea” quarks and gluons within the proton.

Due to the Uncertainty Principle, the exchange boson itself does not obey the

law of conservation of energy and momentum, and instead, the lifetime of the boson

is related to its energy via ∆t < ~/∆E. A boson that does not conserve energy and
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Figure 2.1: An illustration of the relation between energy and wavelength of the probe.
A low-energy probe with a long wavelength resolves the proton as a point particle,
whereas a higher energy probe resolves the valence quarks of the proton.

Figure 2.2: As the energy of the probe becomes very large, the probe can resolve a
“sea” of quarks and gluons within the proton. The two illustrations used here are
courtesy of [5]
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Figure 2.3: A general diagram of a DIS interaction with a lepton with momentum k
scattering off a hadron with momentum p and exchanging a boson with momentum
q = k − k

′
.

momentum is termed a virtual boson. The virtuality of the boson, which is a measure

of how far off mass-shell the virtual boson is, is given by Q2.

2.1.1 DIS Kinematics

A DIS interaction illustrated in Figure 2.3 consists of a lepton with a momentum

vector k interacting with a proton with momentum p and scattering with a momentum

of k
′
. The center-of-mass energy of the system is denoted as

√
s and is given by

s2 = (p+ k)2 (2.2)

In the massless approximation used in high energy accelerators where p � mp and

k � me, the proton mass and lepton mass are taken to be zero, and s = 2p · k. The

4-momentum of the exchange boson is given by q = k − k
′
. The virtuality of the

exchange boson is defined kinematically as
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Q2 ≡ −q2 = −(k − k
′
)2 (2.3)

In addition to the center-of-mass energy and boson virtuality, the kinematic

description of a DIS event uses the scaling variable introduced by Bjorken in 1969 [6],

which describes to lowest order the fraction of the proton momentum carried by the

struck parton:

xBj =
Q2

2p · q
(2.4)

Also introduced by Bjorken was the inelasticity y, which is a measure of the lepton

momentum transferred to the proton:

y =
p · q
p · k

(2.5)

Combining the DIS kinematic variables listed above, one obtains the relation

Q2 = sxBjy (2.6)

2.1.2 DIS Cross Section and Structure Functions

In a scattering experiment, the differential cross section dσ is the probability of

observing a scattered particle in a given state per unit of solid angle

dσ

dΩ
=

Scattered flux / Unit of solid angle

Incident flux / Unit of surface
(2.7)

which can be integrated over the solid angle to obtain the total cross section σ. For

a generic interaction A + B → C +D with a transition rate per unit volume of Wfi,
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the cross section can also be expressed as

σ =
Wfi

Initial flux
(Number of final states) (2.8)

The cross section for lepton-lepton scattering can be written in terms of a product

of two leptonic tensors, which characterize the interaction with a summation over

initial and final state spins, for two arbitrary scattering leptons, A and B:

|M|2 =
e4

q4

dσ ∼ LA
µν(L

µν)B (2.9)

where |M| is identified as the spin-averaged scattering amplitude. As a similar treat-

ment for DIS interactions, a hadronic tensor W µν is used to characterize the structure

of the proton, which yields an expression of the cross section in the form of:

dσ ∼ LA
µν(W

µν)B (2.10)

The proton structure functions more commonly used in the expression of the

DIS cross section, Fi(x,Q
2), are obtained from the hadronic tensor in the kinematic

range where the exchange boson resolves the proton’s partonic constituents:

νW2(ν,Q
2) → F2(x,Q

2)

MW1(ν,Q
2) → F1(x,Q

2) (2.11)

where M is the proton mass and
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x =
Q2

2Mν
(2.12)

The proton structure functions Fi(x,Q
2) are expressed in terms of parton density

functions (PDFs) fi(x,Q
2), which represent the probability of finding a parton with

a momentum fraction in the interval [x, x+ dx] for an exchange boson with virtuality

Q2. The parton density functions themselves cannot be calculated from first principles

and must therefore be extracted from fits to structure function measurements. The

proton structure functions expressed in terms of the PDFs and parton charge ei are

as follows:

F1(x,Q
2) =

∑
i

1

2
e2i fi(x,Q

2) (2.13)

F2(x,Q
2) =

∑
i

e2ixfi(x,Q
2) (2.14)

FL(x,Q2) = F2 − 2xF1 (2.15)

The structure function F2 is the contribution to the cross section from transversely

polarized virtual bosons, while FL is the contribution from longitudinally polarized

bosons, and is relatively small compared to F2. The DIS cross section as a function of

x and Q2 expressed in terms of these structure functions and an additional structure

function F3, which comes from the parity violation from Z0 boson exchange and only

becomes important at Q2 ∼M2
Z (see also Table 1.1):

d2σ(e±p)

dxdQ2
=

4πα2
EM

xQ4
[Y+F2(x,Q

2)− y2FL(x,Q2)∓ Y−xF3(x,Q
2)] (2.16)

where Y± = 1± (1− y)2.
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2.1.3 Factorization and Parton Density Functions

The DIS cross section, as expressed in 2.16, is useful for the measurement of

the proton structure functions, from which the PDFs can be extracted. However,

the cross section is not calculable using pQCD techniques alone due to long-range

(soft) contributions where αs is sufficiently large such that these contributions are

non-perturbative and non-calculable. To separate the long-range (soft) processes from

the short-range (hard) processes that are calculable by pQCD methods requires the

introduction of a factorization scale µF , which represents an energy cutoff below which

pQCD is not applicable. The soft terms below the factorization scale are absorbed into

the PDFs, while the terms above the factorization scale are included in the calculation

of the partonic cross section. The factorization scale is therefore the scale at which

the PDFs are evaluated. The overall cross section can also be expressed both in terms

of 2.16 and as a convolution of the PDFs and hard processes.

dσ =
∑

a=qqg

∫
dxfa(x, µ

2
F )dσ̂a(x, αs(µ

2
R), µ2

R, µ
2
F ) (2.17)

2.1.4 Splitting Functions and Parton Evolution

Gluon radiation (QCD radiation) comes from a quark emitting a gluon, which

can subsequently form either a quark-antiquark pair or a gluon-gluon pair. The prob-

abilities of these processes are given by splitting functions, which are expressed per-

turbatively in z = x/y, and to first order are
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Figure 2.4: The leading order diagrams for the parton splitting functions representing
a quark radiating a gluon, and a gluon splitting into qq and gg pairs.

Pqq(z) =
4

3

(
1 + z2

1− z

)
Pgq(z) =

4

3

(
1 + (1− z)2

z

)
Pqg(z) =

1

2

(
z2 + (1− z)2

)
Pgg(z) = 6

(
1− z

z
+

z

1− z
+ z(1− z)

)
(2.18)

These splitting functions are illustrated in Figure 2.4.

As PDFs are typically written as functions of x and Q2 and must be extracted

from experimental structure function measurements that cover only a restricted kine-

matic phase space, PDFs are extrapolated to a general phase space via the DGLAP

equations describing parton evolution [7]:

∂g(x,Q2)

∂lnQ2
=

αs(Q
2)

2π

∫ 1

x

dz

z

[
Pgg

(x
z

)
g(z,Q2) + Pgq

(x
z

)
q(z,Q2)

]
∂q(x,Q2)

∂lnQ2
=

αs(Q
2)

2π

∫ 1

x

dz

z

[
Pqg

(x
z

)
g(z,Q2) + Pqq

(x
z

)
q(z,Q2)

]
(2.19)

For a PDF extracted at a given value of x and Q2, the x-dependence is parameterized

at the scale at which the PDF was extracted, Q2
0, and evolved in Q2 using these
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equations.

2.2 Parton Evolution Schemes at low xBj

The DGLAP equations cannot be analytically solved to all orders of αs. There-

fore, certain approximations are made to obtain solutions to these equations. These

approximations to the DGLAP equations are generally applicable only to limited kine-

matic regions. In addition to the two approaches for DGLAP resummation that will

subsequently be discussed (the Leading Log and Double-Leading Log approximations),

two alternative methods of parton evolution, BFKL and CCFM are based on different

treatments of the parton evolution equations or splitting functions and have different

regions of expected applicability. The focus of this analysis is testing the applicabil-

ity of the DGLAP approach at low xBj in DIS, and to determine if other forms of

resummation need to be introduced.1

2.2.1 DGLAP Leading Log Approximation

The Leading Log Approximation for resumming the DGLAP equations involves

the treatment of the soft divergences where z → 1, which ultimately leads to a re-

summation of terms contributing factors of lnQ2, while neglecting terms containing

factors of ln(1/x). Noting that z = x/y, this treatment is expected to apply to scat-

tering with sufficiently large Q2 and x such that the terms contributing ln(1/x) are

negligible.

Mathematically, the leading log approach involves the use of a Sudakov Form

Factor [9] expressed with the Mandelstam variable t, which for DIS is Q2:

1Reference [8] was useful in compiling this section.
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∆s = exp

(
−αs

∫
dz

z

∫ t

t0

dt
′

t′
P̃ (z)

)
(2.20)

where αs is the running coupling constant and P̃ (z) is the gluon splitting function

g → gg to all orders. By using the plus prescription defined by

∫ 1

0

f(z)

(1− z)+

=

∫ 1

0

f(z)− f(1)

1− z
(2.21)

to treat the soft divergences and including the Sudakov Form Factor, one can obtain

the integral equation

f(x, t) = f(x, t0)∆s(t) +

∫
dz

z

∫
dt

′

t′
· ∆s(t)

∆s(t
′)
f

(x
z
, t

′
)

(2.22)

Physically, the Sudakov Form Factors represent non-branching probabilities. In

Equation 2.22, the factor ∆s(t) in the term f(x, t0)∆s(t) represents the probability

that no branching (gluon emission) occurs between the initial scale t0 and the evaluated

scale t, while the fraction ∆s(t)/∆s(t
′
) in the integral represents the probability that no

branching occurs from t
′
to t. The integral in z of P̃ (z) gives the branching probability

at scale t. Equation 2.22 has the functional form of a Fredholf type integral

φ(x) = f(x) = λ

∫ b

a

K(x, y)φ(y)dy (2.23)

which is solved iteratively by a Neumann series of the form

φ(x) = lim
n→∞

∞∑
i=0

λiui(x) (2.24)

Using this form, equation 2.22 becomes
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f(x, t) = lim
n→∞

fn(x, t) = lim
n→∞

∑
n

1

n!
lnn

(
t

t0

)
An ⊗∆s(t)f

(x
z
, t0

)
(2.25)

with A =
∫
dz/zP̃ .

Setting t = Q2 for DIS gives the result that the leading log approximation to the

DGLAP equations resums to all orders in lnQ2. A diagram of parton emission in DIS

interactions is illustrated in Figure 2.5. The leading log resummation of the DGLAP

equations, as seen in Equation 2.25, imposes a strong ordering in virtuality, which also

gives rise to a strong ordering in transverse momenta: Q2 � k2
T,n � k2

T,n−1 � . . . �

k2
T,1, and an ordering in the fractional momenta of the proton momenta carried by the

partons: x1 > x2 > . . . > xBj.

2.2.2 Double Leading Log Approximation

At low xBj, approximations used in solving the DGLAP equations must take into

account the divergent behavior of the gluon splitting function Pgg from equation 2.18,

which contains a 1/z divergence as z = x/y → 0. In the low-x region, the gluon

contribution to the proton structure dominates (see Figure 2.6), which means terms

contributing factors of ln(1/x) corresponding to gluon emission are non-negligible.

The double-leading log (DLL) approach, which includes resummations of terms con-

tributing factors of lnQ2 ln(1/x), allows more phase space for gluon emission than

the leading log approach, and is expected to be more accurate than the leading log

approximation at low xBj. However, because the DLL approach does not include the

terms contributing factors of the single logarithm ln(1/x), the DLL approach might

not be applicable at sufficiently low xBj (see Figure 2.7).
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Figure 2.5: A “gluon ladder” diagram with a gluon cascade leading to the hard scat-
ter. The ordering of the transverse momenta of the gluons, k⊥, and the fractional
momentum of the proton carried by the gluons, x, depends on the evolution scheme
used.

The mathematical treatment of the DLL approach to the DGLAP equations

focuses on the gluon PDF, with a low-x approximation to its evolution of

dg(x,Q2)

d lnQ2
=
αs

2π

∫ 1

x

dz

z
g(z,Q2)Pgg

(x
z

)
(2.26)

Setting Pgg → 6/z from 2.18 for the case of z → 0, one can rewrite this equation as

xg(x, t) =
3αs

2π

∫ t

t0

d ln t
′
∫ 1

x

dz

z
zg(z, t

′
) (2.27)

An iterative technique for solving equation 2.27 is approximating the integral

as an infinite sum beginning with an initial constant gluon distribution at small t
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Figure 2.6: Proton PDF fits from CTEQ6, H1, and ZEUS as a function of x. Towards
low x the contributions from the sea, in particular the gluons become dominant as
gluon emission increases. Image courtesy of [8].

designated as C = xg0(x), which represents the initial gluon from the “bottom rung”

of the ladder diagram shown in Figure 2.5. As an infinite sum 2.27 is written as [8]

xg(x, t) =
∑

n

1

n!

1

n!

(
3αs

2π

1

2
ln

t

t0
ln

1

x

)n

C

xg(x, t) ∼ C exp

(
2

√
3αs

π
ln

t

t0
ln

1

x

)
(2.28)

Equation 2.28 is a resummation of terms contributing factors of lnQ2 ln(1/x). Like
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the leading log approximation, the DLL resummation imposes a strong ordering in

virtuality, but the DLL also imposes a strong ordering in the fraction of the proton

momentum x carried by each parton: x1 � x2 � . . .� xBj.

The approximations to the DGLAP equations, in particular, the DLL approach,

have been tested extensively in DIS experiments at HERA and were found to describe

the inclusive cross sections [10, 11] and jet production [12–15]. At low xBj, where

the phase space for parton emissions increases, terms proportional to αs ln(1/x) may

become large and spoil the accuracy of the DGLAP approach.

2.2.3 BFKL

At low xBj, a better approximation might be provided by the BFKL formal-

ism [16] in which the evolution equations resum over terms contributing factors of

ln (1/x)2. Unlike the DGLAP evolution, the BFKL treatment incorporates uninte-

grated parton densities defined by

F(x, k2
⊥) = x

dg(x,Q2)

dQ2
(2.29)

which yields a parton evolution equation of

∂F(x, k2
⊥)

∂ ln(1/x)
=

∫
dk2K(k2

⊥, k
2)f(x, k2) (2.30)

where the term K(k2
⊥, k

2) is the BFKL kernel, given as

K(k2
⊥, k

2) =
3αs

π

(
1

|k⊥ − k|2
− δ(k2 − k2

⊥)

∫ k d2q

πq

)
(2.31)

2For the BFKL section, [17] was also referenced
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which accounts for gluon emission (in the first term of the kernel) and virtual correc-

tions (in the second term).

As in the case of the DGLAP approximations described above, resummation

techniques are applied to the BFKL evolution equation, but in the case of BFKL non-

Sudakov Regge Form Factors are used [18]. Resummation techniques ultimately yield

an unintegrated gluon density at low x of

F(x, k2
⊥) ∼

(
1

x

)4αs ln 2

(2.32)

Because the resummation for BFKL is done for terms contributing factors of

ln(1/x), the BFKL approach imposes strong ordering in x, as is the case of the DGLAP

DLL approximation; but unlike the DLL approximation, an ordering in k⊥ is not

applied to the parton cascade.

2.2.4 CCFM

The CCFM approach [19], like BFKL, incorporates unintegrated parton densities

evaluated at the scale of k⊥. The kt factorization approach used by CCFM, which

allows for coupling of gluons to the photon and reproduces the collinear limit used

by the DGLAP factorization, interpolates between BFKL and DGLAP to describe a

larger range in x and Q2. A discussion of kt factorization can be found in [20].

The CCFM approach includes the aforementioned non-Sudakov form factors into

the splitting function itself:

P̃ (z, q, k⊥) =
αs

1− z
+
αs

z
∆ns(z, q, k⊥) (2.33)

with the non-Sudakov form factor given as
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∆ns = exp

[
−αs(k

2
⊥)

∫ 1

0

dz
′

z′

∫
dq2

q2
Θ(k⊥ − q)Θ(q − z

′
q⊥)

]
(2.34)

The CCFM approach applies color coherence via angular ordering: q > znqn, zn >

zn−1qn−1, . . . q1 > Q0 with zi = Ei/Ei−1, but like BFKL does not impose an ordering

in k⊥ for the parton cascade.

2.3 Jet Physics and QCD Evolution

The property of QCD confinement ensures that the individual partons from a

DIS interaction are not observed. Instead, the emitted partons form colorless hadrons,

which can result in collimated showers of particles, or jets. Studies of jets in DIS are

a useful means of testing the predictions of parton evolution schemes. In the case of

the DGLAP approximations, the strong ordering in transverse momentum, k⊥ of the

emitted partons means that the partons with the highest transverse momentum will

be the partons emitted from the hard scatter and will be emitted at a relatively large

polar angle from the proton beam. For events with more than one jet, the two leading

jets in transverse momentum should also be strongly correlated in azimuthal angle

due to energy and momentum conservation.

Unlike DGLAP, neither the BFKL nor the CCFM scheme imposes a strong

ordering in k⊥ of the emitted partons. Because the emitted partons are not necessarily

ordered in k⊥, it is possible for partons with a large fraction of the proton momentum

also to have a significant k⊥, an effect that gives rise to jets emitted at a low polar angle.

The experimental signature of non-DGLAP effects and the onset of BFKL or CCFM

effects is an excess of forward jets compared to predictions from either the leading
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Figure 2.7: An illustration of the kinematic ranges for which the parton evolution
schemes discussed are expected to be applicable. Towards very low x the gluon density
gets sufficiently large such that saturation from gluon overlap and multiple interactions
makes the pQCD approach non-applicable to this kinematic region.

log or DLL approximations. This also manifests itself in the form of jets produced in

the hard scatter that are not strongly correlated in transverse momentum. Figure 2.7

gives a rough indication of the kinematic range in which the DGLAP approximations

and the BFKL treatment are expected to be applicable, with low-xBj effects raising

the question of the accuracy of the DGLAP approximations at sufficiently low-xBj.

An understanding of this regime is of particular relevance in view of the startup

of the LHC, where many of the Standard Model processes such as the production

of electroweak gauge bosons or the Higgs particle involve the collision of partons

with a low fraction of the proton momentum. The information about cross sections,
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Figure 2.8: Leading order diagrams for QCD Compton (a) and Boson-Gluon Fusion
(b) processes.

transverse energy, ET , and angular correlations between the two leading jets in multijet

production therefore provides an important testing ground for studying the parton

dynamics in the region of small xBj.

In this analysis, correlations for both azimuthal and polar angles, and corre-

lations in jet transverse energy and momenta for dijet and trijet production in the

hadronic (γ∗p) center-of-mass (HCM) frame are measured in the kinematic region re-

stricted to 10 < Q2 < 100 GeV2 and 10−4 < xBj < 10−2. The results are compared with

DGLAP-based NLO pQCD calculations (described in chapter 5) at next-to-leading or-

der (NLO).3

2.3.1 Hadronic Center of Mass Frame

Jet production in DIS originates with the hard scatter, with the struck quark

evolving into a single jet in a quark-parton model (QPM) event. Dijet production in

DIS proceeds via two mechanisms, both illustrated in Figure 2.8: Boson-Gluon Fusion

3BFKL-based pQCD calculations, which would allow for a similar analysis of BFKL predictions
of the jet correlations, are currently unavailable.
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Figure 2.9: An illustration of the HCM frame for a QPM event (left) and a QCDC
event (right). The +z direction is taken to be the direction of the incoming photon.

(BGF) processes, where the exchange boson and a gluon within the proton interact to

produce a qq pair, and QCD Compton (QCDC) processes, where the boson interacts

with a quark within the photon, and the struck quark subsequently radiates a gluon,

which forms its own jet.

For this analysis, which examines the correlations between the two hardest jets

in a multijet event, it is desirable to suppress single jet events, which is accomplished

by selecting a frame such that the proton and the virtual photon on the same axis. The

Hadronic Center-of-Mass (HCM) frame is defined by ~p+ ~q = 0, where ~p and ~q are the

3-momenta of the incoming proton and virtual photon, respectively, with the +z axis

taken to be in the direction of ~q. For the purposes of jet finding, this reference frame

is equivalent to the Breit frame [21] defined by 2x~p+ ~q = 0 apart from a longitudinal

boost. A common feature of both frames is that for a QPM event, which is an event

with only a single jet coming from the interaction between the virtual boson and

the struck quark, the struck quark recoils along the +z direction and therefore has a

negligible ET in that frame. For BGF and QCDC dijet events at leading order, the

final state partons have equal and opposite transverse momenta (see Figure 2.9). By
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requiring a non-zero Ejet
T,HCM, events with at least two jets are selected, while QPM

events are rejected. This analysis therefore uses the HCM frame for jet finding.
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Chapter 3

Experimental Setup

The examination of QCD evolution in deep inelastic scattering using jet correlations

in transverse momenta and azimuthal angle requires experimental measurements to

test the predictions from the aforementioned evolution schemes. To examine multijet

physics at low-xBj DIS, measurements were taken at the Deutsches Elektronen Syn-

chrotron (DESY) laboratory using the ZEUS detector (described in Section 3.3) at

the HERA ep collider (described in Section 3.2).

3.1 The DESY Laboratory

The DESY laboratory, founded in 1959, is part of the Helmholz Association,

which is the largest scientific research organization in Germany, with a total of 15

research centers covering six different fields of research. DESY is a publicly funded re-

search center with two campuses–one in Hamburg, and one in Zeuthen (Brandenburg)–

dedicated to fundamental research in particle physics and to the study of synchrotron

radiation. DESY’s Hamburg campus is home to several particle accelerators: the

DESY accelerator, the linear accelerator (LINAC) the Positron-Elektron Tandem Ring

Anlage (PETRA), the Doppel Ring Speicher (DORIS), and the Hadron-Elektron Ring
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Figure 3.1: An aerial view of the DESY-Hamburg research center. Shown in the white
dashed lines are the accelerators PETRA and HERA, with the white circles showing
the locations of the HERA experiments.

Anglage (HERA). Synchrotron radiation studies are conducted at the Hamburg Syn-

chrotron Radiation Laboratory (HASYLAB), which uses the DORIS ring. The other

accelerators acted primarily for injection into the HERA ring (see Figure 3.2 for a

schematic view). In addition to these accelerators, the DESY Hamburg site is sched-

uled to house the European Free Electron Laser (XFEL). A research and development

program for the International Linear Collider (ILC) and a theory institute are also

located at DESY.

In total, the DESY facility has 1560 employees, including 365 scientists. DESY
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also hosts approximately 3000 scientists from 33 different countries, who perform re-

search with the HERA-based experiments or HASYLAB.

3.2 The HERA Accelerator

The HERA accelerator was the only lepton-nucleon beam collider with electron

and positron beams colliding with proton beams. The HERA ring is 6.336 kilometers in

circumference and at a depth underground of between 10 and 25 meters. The ring has

four 90◦ curves and four straight sections, where the experiments were located. HERA

was approved in 1984, and construction was completed on schedule in November 1990.

Luminosity operations at HERA began in 1992 and concluded on June 30, 2007. The

north and south halls housed the general purpose detectors H1 and ZEUS, which

studied lepton-proton interactions. Both ZEUS and H1 started operation in 1992 and

took data through 2007. The HERA-B experiment, which studied the interaction

between particles in the proton beam halo and a fixed wire grid, was proposed to

measured CP violation in the bb̄ system and took data from 1999 to 2003. The

HERMES experiment, which operated from 1995 to 2007, studied the spin structure

of the proton using the electron beam on a polarized gas target.

3.2.1 Proton Injection and Acceleration

The protons used in the HERA accelerator were obtained from negatively charged

Hydrogen (H−) ions, which are accelerated to 50 MeV in the LINAC. The ions were

then passed through a thin foil to strip the electrons from the ions, and then were

accelerated to 7.5 GeV in the DESY III ring. From the DESY III ring the protons

were fed into the PETRA ring and accelerated to 39 GeV before being injected into
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Figure 3.2: A schematic diagram of the accelerators at DESY-Hamburg. The figure
on the right is a closeup view of the HERA injection system.

the HERA ring. In the HERA ring, a series of superconducting dipole magnets with

a field strength of 4.65 T accelerated the protons further to their final interaction

energy. Up to 1997, the proton energy was 820 GeV. Beginning in 1998 the proton

energy was increased to 920 GeV. During the final months of operation, HERA also

used proton energies of 460 GeV and 575 GeV, which facilitated measurements of the

proton longitudinal structure function FL.

3.2.2 Lepton Injection and Acceleration

HERA used electrons and positrons for the lepton beam during operations (see

Section 3.2.3). The electrons were obtained from a hot filament, while the positrons
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were obtained from e+e− pair production from bremsstrahlung (“braking”) radiation

emitted by electrons passing through a tungsten sheet. The electrons1 were then

injected into DESY II, where they were accelerated to an energy of 7 GeV before

being fed into the PETRA II ring, where they were accelerated to 14 GeV. From the

PETRA II ring, the electrons were injected to the HERA ring and accelerated using

conventional dipole magnets with a field strength of 0.165 T to a final interaction

energy of 27.5 GeV.

3.2.3 Beam Circulation and Collisions

The proton and electron beams in HERA were circulated in opposite directions

in separate rings with two interaction points. Quadrupole magnets were used to focus

both beams, with sextupole magnets also used on the electron beam. During injec-

tion, the electron and proton beams were separated into bunches with a 96 ns spacing

between bunches. HERA could hold up to 220 bunches each of protons and electrons,

but not all bunch positions were filled during HERA operations. Approximately 15

consecutive bunches in both the proton and electron beams were left unfilled to allow

time for the kicker magnets responsible for dumping the beams to energize. In addition

to these “abort” gaps, both the proton and electron beam contained bunches inten-

tionally left empty such that each beam contained pilot bunches, bunches of electrons

or protons paired with an empty counterpart. The pilot bunches were used for studies

of beam-gas interactions, background caused by protons or electrons interacting with

residual gas in the 3× 10−11 Torr vacuum.

1From this point, the term “electron” is used interchangeably for both positrons and electrons,

unless stated otherwise.
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Near the interaction regions, guiding magnets directed the proton beam into the

electron beam path to allow for ep interactions. For a proton beam energy of 920 GeV

and an electron beam energy of 27.5 GeV, the center-of-mass energy is approximately

318 GeV2.

3.2.4 HERA Luminosity

Between 2000 and 2002, HERA underwent an upgrade in luminosity (number

of interactions per unit area per unit time), where additional focusing magnets were

installed to reduce the cross-sectional area of the beam profiles in the interaction

regions. Prior to the luminosity upgrade (the “HERA I” running period), the peak

luminosity was approximately 2×1031cm−2s−1. After the luminosity upgrade, the peak

luminosity delivered was 5.1×1031cm−2s−1. Figure 3.3 shows the integrated luminosity

for each year of HERA I and HERA II, while Figure 3.4 shows the complete integrated

luminosity delivered to the ZEUS experiment by HERA.

3.3 Detection of Particle Interactions

As particles pass through matter, they deposit energy through radiation, particle

production, or reactions with the medium through which they pass. The amount and

pattern of energy deposited by the particles depends on the particles and the medium,

which helps in the identification of the particles.

3.3.1 Electromagnetic Showers

High energy electrons passing through a medium lose their energy primarily

through bremsstrahlung radiation, while high energy photons lose their energy primar-
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Figure 3.3: The integrated luminosity delivered by HERA for each year of its opera-
tion. The figure on the left is the delivered luminosity from HERA I, and the figure
on the right is the delivered luminosity from HERAII.
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Figure 3.4: The combined integrated luminosity delivered by HERA over its entire
operation.
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ily through e+e− pair production, with the e+e− pairs then undergoing the bremsstrahlung

process. Subsequent energy deposits from bremsstrahlung and pair production result

in an electromagnetic shower. The depth of an electromagnetic shower in a medium

is a function of the energy of the incident particle and the properties of the medium,

and is usually expressed in terms of the Radiation Length, X0. For a high-energy

electron, X0 is defined as the average length it takes the electron to lose all but 1/e of

its original energy. For a high-energy photon, it is 7/9 of the mean free path for pair

production. Like the shower depth, X0 is a characteristic property of the medium and

depends on its atomic number and atomic weight. Quantitatively, the characteristic

depth for the electromagnetic shower maximum is given by

tmax ≈ log(E/ε)− a (3.1)

where tmax is expressed in terms of X0, a = 0.5 for photons and 1.0 for electrons, ε is

the critical energy of the medium–the point at which energy loss from bremsstrahlung

is equal to the energy loss from ionization of the medium–and E is the energy of the

incident particle. The depth at which 95 % of the shower is contained is

t95% ≈ tmax + 0.08Z + 9.6 (3.2)

The width of the electromagnetic shower is given as

R95% ≈ 14A/Z (3.3)

where A and Z are the atomic mass and atomic number of material, respectively.
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3.3.2 Hadronic Showers

Whereas the electromagnetic showers proceed via the electromagnetic force,

hadronic showers proceed via the strong interaction, where an incoming hadron, such

as a proton, pion, or neutron, undergoes an inelastic interaction with the medium. Be-

cause π0 particles are often produced in these interactions, hadronic showers generally

have an electromagnetic component as well. The characteristic length of a hadronic

shower is expressed in terms of the nuclear interaction length λ, which is the mean

free path of a particle before undergoing a non-elastic nuclear interaction. Like the

radiation length X0, λ is also a property of the medium traversed by the particle.

The shower maximum for a hadronic shower is

lmax ≈ 0.6 log(E)− 0.2λ (3.4)

Like the characteristic depth tmax for the electromagnetic shower, which is expressed

in terms of X0, lmax is expressed in terms of λ. The depth of 95% containment is

l95% ≈ lmax + 4Eaλ (3.5)

where a = 0.15 and E is the energy of the incident hadron. For most materials used

for particle detectors, λ ∼ 20X0, which means that hadronic showers are broader and

occur further into the medium than do the electromagnetic showers.

3.3.3 A Generic Particle Detector

Figure 3.5 shows a general template for a particle detector for an experiment

studying the interactions of colliding beams. The interaction point of the colliding
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Figure 3.5: A an x − y view of a generic particle detector shown with the most
important components and diagrams of the behavior of different types of particles in
the detector.

beams is usually at the center of the detector. The detector layer closest to the

interaction point is usually a tracking chamber and/or vertex detector. A tracking

chamber measures the path of a charged particle traveling through a magnetic field by

detecting the slight ionization created by the particle traveling through the chamber.

The transverse momenta of the particles can be measured from the deflection of the

particles by the magnetic field according to the cyclotron equation, pT = qBr. The

charge of the particle can be determined from the direction of curvature of the track

it leaves. Particles without electric charge, such as neutrons and photons do not leave

tracks.

The next layer in the detector is the calorimeter, which measures the energy and
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position of incident particles by absorbing the particles. Whereas the design goal of

the tracking chamber is to cause minimal disturbance to the particles, the calorime-

ter is designed to contain the particle and its resulting shower (electromagnetic or

hadronic) completely. Also unlike the tracking detectors, calorimeters detect neu-

trally charged particles. The accuracy of a calorimeter increases with the energy of

the incident particles, as the shower fluctuations decrease as the number of particles

in an electromagnetic or hadronic shower increases.

Calorimeters are usually segmented such that the maximum amount of informa-

tion about the the incident particle can be obtained. The first level of segmentation is

the separation of the calorimeter into two longitudinal components: the electromag-

netic calorimeter and the hadronic calorimeter. The depth of the electromagnetic and

portion of the calorimeter are chosen such that electromagnetic showers are contained

entirely within the electromagnetic portion of the calorimeter, and is therefore deter-

mined from the radiation length X0, while the depth of the hadronic calorimeter is

determined from the interaction length, λ. To ensure that incident hadrons deposit

the minimum amount of energy in the electromagnetic portion of the calorimeter, the

parameter λ/X0 should be maximized. Figure 3.5 shows different types of showers in

the calorimeter initiated by different types of particles. The next level of segmenta-

tion for calorimeters is the transverse subdivision into cells, in which radially projected

towers are created within the calorimeter, allowing for the measurement of latitudinal

and longitudinal shower profiles.

Unlike hadrons and electromagnetic particles, muons interact with the detector

components by leaving an ionizing track in all components. Muon chambers allow for
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identification of muons, as muons leave a track in the chambers that can matched to

the muon track through the tracking chamber and calorimeter.

3.4 The ZEUS Detector

The ZEUS collaboration, which is made up of approximately 350 physicists,

technicians, and staff from 37 institutes in 15 countries, performed studies of ep inter-

actions using the ZEUS detector, which was located 30 m underground in the southern

HERA experimental hall with dimensions of 12m × 10m × 19m and a weight of 3600

tonnes. It was one of the two general purpose detectors at HERA used to make preci-

sion physics studies of interactions by measuring the energies, direction of travel, and

momentum of particles produced in ep interactions. A schematic diagram of the ZEUS

detector is shown in Figure 3.7. The forward direction in the ZEUS coordinate system

is defined as the direction of the proton beam. ZEUS was a asymmetric hermetic

detector, covering the entire solid angle with the exception of the beam pipe. Because

of the imbalance in the energy of the protons and the electrons in HERA ep collisions,

most hadronic particles were emitted in the forward direction2. To account for this

effect, the sub-detector components in the forward region were larger and deeper than

their counterparts in the rear region.

The ZEUS detector was comprised of sub-detectors used for tracking, calorime-

try, and muon detection. The tracking measurements and vertex determination were

handled by the wire chambers comprising the Central, Rear, and Forward Tracking

Detectors (CTD, RTD, and FTD) [22]. For the HERA II running period beginning in

2The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the
proton beam direction, referred to as the “forward direction”, and the X axis pointing left towards
the center of HERA. The coordinate origin is at the nominal interaction point.
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Figure 3.6: A 3-dimensional cutout view of the ZEUS detector.
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Figure 3.7: A 2-dimensional x− y view of the ZEUS detector.
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2002, the silicon-based ZEUS Micro Vertex Detector (MVD) was installed to replace

the malfunctioning Vertex Detector (VXD, shown in the Figure 3.7), which was re-

moved in 1996. During the 1998 - 2000 running period, the tracking detectors were

the innermost subcomponents from the beam pipe. The tracking detectors were sur-

rounded by a solenoid that provided a magnetic field of 1.43 T, which allowed for

determinations of transverse momenta of and charge of charged particles by measure-

ments of the direction and radius of curvature of their deflections in the field.

The tracking detectors were encompassed by the hermetic depleted Uranium-

scintillator Calorimeter (CAL) [23]. Between the electromagnetic and hadronic por-

tions of the front and rear sections of the CAL was the Hadron-Electron Separator

(HES), which helped distinguish between electromagnetic and hadronic showers in

the RCAL, where most electrons from DIS interactions would deposit their energy.

Hadronic showers not fully contained by the CAL deposited their remaining energy in

the Backing Calorimeter (BAC), which consisted of proportional tube chambers used

with the magnetized iron yoke to record energy deposits in the yoke. The outer layer

of the ZEUS detector consisted of the limited streamer tube chambers used to identify

tracks from muons. The muon transverse momenta were measured both from the in-

formation from the tracking chambers and from the deflection of the muon traversing

the toroidally magnetized iron yoke, which had a magnetic field strength of up to

1.6 T. The forward muon (FMUON) chambers could measure highly energetic muons

with energy up to 150 GeV/c.

A thorough description of the ZEUS detector is found in the ZEUS bluebook [24].

The components most important to this analysis are detailed in the subsequent sec-



51

tions.

3.4.1 ZEUS Tracking Detectors

The ZEUS tracking system was designed to measure the momentum and charge

of particles and to determine the event vertex from the tracking information provided

by the CTD. During the 1998-2000 data taking period, the innermost components of

the tracking system were the CTD, RTD, and FTD.

The CTD was a cylindrical wire drift chamber filled with a gas mixture of

Ar:CO2:C2H6 of 85:13:2. A wire drift chamber contains multiple positively charged

signal, or sense, wires and negatively charged potential, or field, wires in a gas medium.

A charged particle passing through the gas ionizes the molecules. The electrons re-

leased by the ionization drift at a known speed towards the sense wires, while the ions

drift slowly towards the field wires. As the freed electrons travel towards the sense

wire, they further ionize the gas, which results in an shower of electrons reaching the

sense wire and producing a measurable current pulse in the sense wire (an example of

this process is shown in Figure 3.8). The position of the track in the cell is determined

by measuring the time of arrival of the electron shower.

The active length of the CTD was 205 cm and its active radius was 18.2− 79.4

cm. It was centered on the nominal interaction point. The 205 cm active length

allowed for a polar angle coverage of 15◦ < θ < 164◦, with θ defined with respect to

the +z-axis, which corresponds to a coverage in pseudorapidity of −1.96 < η < 2.03.

The structure of the CTD is shown in the x − y view of the CTD shown in

Figure 3.9. The CTD consisted of 9 concentric superlayers, with each superlayer

comprised of 32 - 96 drift cells, each cell containing 8 tungsten sense wires. In total,
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Figure 3.8: An example of a charged particle traversing a wire drift chamber. The
electron shower produced by the gas ionization is shown arriving at the sense wire at
center.

Figure 3.9: An x − y view of the ZEUS CTD. Shown are the 9 superlayers and 16
sectors. The cells in the CTD are numbered according to their superlayer position
(with superlayer 1 being the innermost) and their sector.
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the CTD contained 4608 sense wires. As shown in Figure 3.9, the drift cells were

rotated by a 45◦ Lorentz angle to the electric field. In 5 of the superlayers, the wires

were parallel to the chamber axis, while in the other 4 superlayers, the wires were

set at a stereo angle (angle from the +z axis) of approximately ±5◦ to ensure the

resolution in azimuthal and polar angles was roughly equal and to provide a good

accuracy in measuring the polar angle of tracks.

The transverse momentum resolution for tracks with pT > 150 MeV that have

passed through all superlayers is σ(pT )/pT = 0.0058pT ⊕0.0065⊕0.0014/pT [25], with

pT in GeV. The spatial resolution of a track passing through all superlayers is 180 µm

in the r − φ direction and 2mm in the z-direction. The first three axial superlayers

(superlayers 1, 3, and 5) were also equipped with a z-by-timing system [26], which

used the difference in the pulse arrival times at either end of the detector for a quick

determination of the z-position of a track within ∼ 3cm. The information from the

z-by-timing system was used in the first and second level trigger information (see

Section 3.4.7). The tracking system was also used to measure the interaction vertex

with a typical resolution along (transverse to) the beam direction of 0.4 (0.1) cm and

also to cross-check the energy scale of the calorimeter.

3.4.2 The ZEUS Calorimeter

As discussed in Section 3.3.3, a calorimeter is designed to provide accurate mea-

surements of the energy and position of incident particles and to distinguish hadronic

showers from electromagnetic showers. For measurements of the energy of incident

particles, the ZEUS CAL, shown in Figure 3.10, used alternating layers of depleted

Uranium absorber, encased in a thin foil of stainless steel, and plastic scintillator,
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Figure 3.10: An x− y view of the ZEUS CAL. The boundaries between the CAL sec-
tions are indicated by their approximate pseudorapidities from the nominal interaction
point.

which converted a fraction of the deposited energy into light, which was then converted

into a signal by photomultiplier tubes (PMTs). The uranium-scintillator sandwiches

were stacked repeatedly to form the individual cells of the calorimeter. Calorime-

ters that use different materials for absorption and detection are known as sampling

calorimeters, since only a fraction of the deposited energy is converted into a signal.

The ZEUS CAL, which used alternating layers of Uranium and scintillator, was also

termed as a sandwich-type sampling calorimeter.

Because hadronic and electromagnetic showers proceed via different processes,

the signal response from an electromagnetic shower differs from that of a hadronic

shower. Because hadronic showers proceed via nuclear interactions, some energy is
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lost in overcoming the nuclear binding potential, a process with a non-detectable

energy dissipation. As a result of this effect, the ratio of the average signal response

from an electromagnetic shower to that from a hadronic shower, e/h, is typically

between 1.1 and 1.35, depending on the absorber material used. A non-unity e/h

ratio is problematic because the average electromagnetic component of a hadronic

shower increases logarithmically with the energy of the initializing particle. A non-

unity e/h ratio therefore produces a non-linear overall response to a hadronic shower

and a resolution worse than that of a detector with an e/h ratio of 1.

To make the ZEUS CAL a compensating calorimeter (a sampling calorimeter

for which e/h = 1), detailed theoretical calculations and test measurements were

employed [24]. The energy from the fission of the 238U in the ZEUS CAL, primarily

in the form of neutrons and soft photons, compensated for the energy loss from the

nuclear binding energy [27]. The steel cladding of the 238U plates provided a small

signal attenuation from soft photons in the electromagnetic showers and from the

238U fission (thereby selectively boosting the signal of the hadronic component of the

hadronic showers3). The thickness of the scintillator was chosen based on the neutron

response of the scintillator–a thicker scintillator layer captures a larger portion of the

neutron energy from the 238U fission. For Uranium plates with a thickness of 1 X0,

which for 238U is 3.3 mm, a scintillator thickness of 2.6 mm was chosen based on

test measurements. The ZEUS CAL e/h ratio was 1.00 ± 0.05, thus making it a

compensating calorimeter.

Aside from its use in achieving a compensating calorimeter, Uranium has a

3For the ZEUS CAL, the effect of the steel cladding was a reduction in e/h of 0.03 [24]
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very high Z number, which means that particle showers form after traveling a short

distance through it. This allows for a compact calorimeter. The natural radioactivity

of 238U also provides a small constant uniform background radiation, which was used

for calibrating the CAL. The steel foil encasing the 238U plates served to adjust the

signal from the background radiation. Because of the well-understood background, it

was possible to calibrate the absolute energy scale of the CAL to a level of 1%.

As shown in Figure 3.10, the CAL was divided into three sections: a forward

segment (FCAL), a barrel segment (BCAL), and a rear segment (RCAL). These seg-

ments were divided into modules, which were further segmented into towers with a

front surface dimension of 20 cm × 20 cm. The towers were longitudinally segmented

into an electromagnetic (EMC) section and either one (RCAL) or two (FCAL, BCAL)

hadronic sections (HAC). A diagram of a BCAL tower is shown in Figure 3.11. The

EMC section of a tower was comprised of 4 EMC cells in the FCAL and BCAL and

2 EMC cells in the RCAL. Each HAC section constituted a HAC cell. All EMC cells

had a depth of 1 interaction length, λ, which for 238U is equal to 25 radiation lengths

X0. The HAC cells of the FCAL and RCAL had a depth of 3λ, while the HAC cells

of the BCAL had a depth of 2λ. This asymmetric arrangement reflects the difference

in energy between the proton and electron beams, with final state particles in the

forward direction being greater in number and energy than particles in the rearward

direction. The depth of the CAL ensured 95% containment of 90% of the jets in all

parts of the CAL. Table 3.1 summarizes the characteristics of the CAL sections.

The light produced by the particles traveling through the scintillator was fed

through wavelength shifters into the PMTs, which in turn digitized the signal received
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Figure 3.11: A diagram of a BCAL tower. 4 EMC cells are stacked horizontally and
backed by 2 HAC cells. Unlike the cells in the FCAL and RCAL, the BCAL towers
were projective in η and φ.

FCAL BCAL RCAL

Angular Coverage (θ) 2.2◦ − 39.9◦ 36.7◦ − 129.1◦ 128.1◦ − 176.5◦

Angular Coverage (η) 1.01− 3.95 −0.74− 1.10 −3.49−−0.72

Number of Modules 24 32 24

Towers/Module 11− 23 16 11− 23

Number of Cells 2172 2592 1668

Depth (m) 1.5 1.07 0.84

Depth (λ) 7.1 5.1 4.0

Depth (X0) 181.0 129.0 103.0

EMC Front Face Dimensions (cm) 5 × 20 5 × 20 10 × 20

Table 3.1: Properties of the ZEUS CAL listed by section.
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Figure 3.12: The timing of various events in the ZEUS detector. Figure A shows the
timing for an event consistent with an ep interaction. Figure B shows the timing for
an event initiated by beam-gas interactions. Figure C shows the timing for a cosmic
muon event.

from the shifters and passed the information to the readout electronics. Each cell had

two PMTs, which allowed for averaging the signal in each cell for a more uniform

detector response. Having two PMTs per cell also provided a degree of redundancy,

as a single dead PMT would not create a dead cell. The use of scintillator and PMTs

for readout is suited to experiments with a high interaction rate. The pulses from

the PMTs were kept shorter than the 96 ns crossing rate to avoid pile-up effects, and

the quick rise time of the PMTs allowed for measurements of pulse timing to within

a nanosecond, which was important for suppression of background from beam-gas

interactions and cosmic rays (see Figure 3.12 and Section 3.4.5).

The CAL energy resolutions were measured under test-beam conditions to be

σ(E)/E = 0.18/
√
E for electromagnetic showers and σ(E)/E = 0.35/

√
E, with E in

GeVin both cases, for hadronic showers [24].

There were several other components which were, at some point during the ZEUS

operation period, part of the calorimeter system. These included the small-angle rear

tracking detector (SRTD), the beam-pipe calorimeter (BNC), the forward and rear
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presamplers (RPES) and barrel presampler (BPRES), the forward plug calorimeter

(FPC), the backing calorimeter (BAC), which surrounded the CAL and served to

correct or reject showers that leaked from the CAL and help identify muons, and the

hadron-electron separator (HES).

3.4.3 Luminosity Monitor

A measured cross section is the number of events per luminosity: σ = N/L.

For the absolute normalization of these cross sections to be accurate, an accurate

measurement of the luminosity is essential. To obtain a precise measurement of the

luminosity, HERA measured the rate of the well-understood Bethe-Heitler process

(ep→ e
′
γp), in which lepton-proton bremsstrahlung produces a lepton and photon at

small scattering angles [28]. Because the Bethe-Heitler cross section is well known for

photons emitted at a fixed angle and energy, measuring the rate of photon production

(Nγ) at a fixed angle and energy provides an accurate measurement of the luminosity:

L = Nγ/σBH .

The ZEUS luminosity system, shown in Figure 3.13, used a lead-scintillator

photon calorimeter located at z = −107 m and an electron calorimeter at z = −35

m. To filter out soft (0.01 MeV) photons produced from the synchrotron radiation, a

carbon-lead filter was placed in front of the photon calorimeter. The energy resolution

of the photon calorimeter with the filter was measured in a test beam to be σ(E) =

25%
√
E, while the resolution of the electron calorimeter was σ(E) = 18%

√
E, with E

in GeV. Events with coincident deposits in the photon and electron calorimeters were

used to calibrate the energy scale of the photon calorimeter, as the combined energies

of the detected photon and electron were equal to the initial electron energy.
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Figure 3.13: The layout of the ZEUS luminosity system.

3.4.4 Veto Wall and C5 Counter

The Veto Wall was an iron slab covered with scintillator on both sides. It

was located at z = −7m and measured 8 × 7.6 × 0.86m with square holes with a

width of 0.95m to accommodate the beam pipe and magnets. The Veto Wall shielded

the detector from particles produced in the proton beam halo, provided information

used to reject events with halo particles that passed the Veto Wall, and provided

timing information to reject beam-gas interactions. The C5 counter was a scintillator

attached to the C5 collimator at z = −3.15m that provided timing information used

to synchronize the HERA and ZEUS clocks and to reject events originating from

beam-gas interactions.

3.4.5 Trigger and Data Acquisition

During typical HERA operations, proton and electron bunches crossed every 96

ns, which gave a bunch crossing frequency of 10.4 MHz, with actual ep interactions

occurring at a frequency of about 10 Hz. The total background rate was roughly 100



61

kHz, which due to bandwidth and storage limitations was not written to tape. The

primary sources of background were from beam-gas interactions (the largest contri-

bution to the overall background), halo muon events, and cosmic rays. The signature

of a beam-gas event is a shower of particles entering the detector from upstream or

downstream, depending on which beam interacts with the gas, and leaving energy de-

posits in the calorimeter and tracking detectors. Halo muon events were a byproduct

of the proton beam-gas interactions and beam scraping, where the proton beam would

occasionally hit the quadrupole magnets, which produced muons via pion decay that

traveled approximately parallel to the proton beam and left energy deposits in the

calorimeter and muon chambers. Cosmic events, which were the smallest source of

background, came from cosmic rays, primarily protons and alpha particles, interact-

ing with the earth’s atmosphere and producing particle showers. The signature of a

cosmic event at ZEUS was muons entering the detector roughly perpendicular to the

z-axis.

To work within the storage and bandwidth limits of the Data Acquisition (DAQ)

system, ZEUS employed a 3-level real-time online trigger system to reduce the rate

from the 10.4 MHz crossing rate to a rate of 10 Hz written to tape. The goal of

the trigger system was to reject as much background as possible while keeping events

consistent with ep interactions that could contribute to a physics measurement. The

ZEUS trigger system was tiered such that the output rate of each level was lower than

the maximum possible input rate for the subsequent trigger level. Each subsequent

trigger level therefore increased the complexity of the triggering requirements because

of the larger amount of information and calculation time available per event.
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Figure 3.14: A diagram of the ZEUS trigger and DAQ system.
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3.4.5.1 First Level Trigger

Because the First-Level Trigger (FLT) could not make a decision within the

96 ns bunch crossing time, each component had a 5 µs pipeline, which stored the

complete information from that component and was synchronized with the HERA

clock on a 96 ns cycle. Most components also had their own FLTs, which used a

subset of the complete event information to perform triggering calculations and then

send their triggering information to the Global First Level Trigger (GFLT) within

1.0 - 2.5 µs after the bunch crossing. The GFLT combined the trigger information

from the components and sent the trigger decision to the front-end electronics of the

components. The GFLT reported a first level trigger decision every 4.4 µs. Because of

the 5 µs pipeline, the GFLT operated with minimal deadtime, instances where event

information was discarded rather than processed, which was normally 1 - 2% during

data taking.

3.4.5.2 Second Level Trigger

When an event was triggered at the first level, the full component information

was passed to each component’s Second-Level Trigger (SLT). Component SLTs were

transputer-based networks which sent their information to the transputer-based Global

Second Level Trigger (GSLT). Because of the larger computation time available at the

second level ( 10 ms), the SLT made more complex calculations, such as basic vertex

finding from the CTD SLT (later changed to the Global Tracking Trigger (GTT)

during the HERAII running period), and E − pz calculations from the information

from the CAL PMT timing and energy information. The GSLT further reduced the



64

event rate to 30 - 85 Hz.

3.4.5.3 Third Level Trigger

Events triggered by the GSLT were sent to the Event Builder (EVB), which

formatted the data and sent the complete event information to the Third-Level Trigger

(TLT). The TLT had about 100 ms to make a triggering decision, which allowed it to

use a reduced version of the full reconstruction software on a processor farm to increase

the accuracy of the tracking information and vertex finding as well as perform more

sophisticated electron finding and jet finding. Events were classified according to the

type of interaction (i.e. charged current DIS, photoproduction, neutral current DIS)

using software-based TLT filters. The typical TLT output rate was approximately 10

Hz.

Information from events accepted by the online ZEUS trigger system were passed

to offline reconstruction software (described in more detail in Chapter 6) and written to

data storage tapes. Each event was labeled with trigger bits according to the manner

in which the event was accepted, and with additional information calculated during

offline reconstruction. The combined online trigger information and offline quantities

were used to label events by Data Storage Tape (DST) bits, which provide a means of

selecting certain categories of events from the storage tapes for analysis. The overall

event section is discussed further in Chapter 7.
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Chapter 4

Event Simulation

For an experimental measurement to be useful, it should be compared to theoretical

predictions. To be comparable to experimental measurements, any theoretical predic-

tion of partonic final states should therefore include a hadronization step in which the

partons convert to colorless hadrons, and a step for simulating the detector response

and acceptance in order to remove any detector effects from the final result. Both of

these steps are handled by means of the Monte Carlo method of event simulation.

4.1 Monte Carlo Simulations

For pQCD calculations, the theoretical predictions are not analytically calcula-

ble to all orders in αs, which requires the simulation of higher-order effects. A method

employed extensively in HEP is the Monte Carlo (MC) method, which uses pseudo-

random numbers weighted in accordance with the underlying process being modeled.

Using the probability distributions as input, the MC programs use the random num-

bers to sample over the distributions to simulate events. This technique is applicable

when the probability distributions are well-understood and can be simulated accu-

rately, and is useful for probabilistic calculations based on pQCD.
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Figure 4.1: An illustration of the stages in the simulation of a HEP event.

A complete simulation of an event in ep collisions proceeds in several stages.

The first stage is the input of initial probability densities, which for this analysis are

the proton parton density functions (PDFs) introduced in section 2.1.3. The PDFs in

the initial state are then evolved according to the underlying model. The next stage

is a calculation the perturbative hard scatter, followed by a simulation of radiative

effects. The hadronization process then converts the final state partons into hadrons.

The simulated final state is then put through a simulation of the detector.

4.1.1 PDF and Hard Scatter

As discussed in section 2.1.3, the hard and soft terms in a scattering process

are separated by factorization, which absorbs the soft terms into the PDFs. The

overall PDF comes from a global fit of Leading-Order (LO) and Next-to-Leading-

Order (NLO) calculations at a given value of Q2
0. The quark and gluon distributions

are parameterized and predict the evolution of the partons as a function of x and Q2

(see Section 2.2). Commonly used proton PDF fits come from several groups, among
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which are the Coordinated Theoretical-Experimental Project on QCD (CTEQ) [29]

and Martin Roberts Stirling Thorne (MRST) [30]. The complete system after the

parton cascade has proceeded defines the “parton level” of a simulation.

Calculations from pQCD are used to calculate the ep DIS hard process to order

O(α2αs). Using the probability distribution and the available phase space the event

generator creates a partonic final state according to the model’s treatment of the

parton cascade.

4.1.2 Parton Cascade

Because the calculations from the hard scatter are only to a fixed order in αs, the

higher order terms are approximated by means of a parton cascade, which also serves

to connect the hard scattering process with the hadronic final state. The manner in

which the parton cascade is generated allows for the examination of the model used

to generate the parton shower. Examining the treatment of the parton shower is

important for multijet analyses at low xBj for two reasons: multijet measurements are

sensitive to terms beyond O(αs) and the sensitivity to low-xBj effects of the parton

evolution scheme used in the parton cascade should be understood.

4.1.2.1 Matrix Element Plus Parton Shower Approach

QCD radiation can occur in DIS both before and after the hard scattering,

as is shown in Figure 4.2. The Matrix-Elements plus Parton Shower (MEPS) [31]

approach treats the showers originating from QCD radiation before and after the hard

scatter separately. In both cases, however, the parton showers proceed via splitting

functions described by the DGLAP equations. The splitting process continues, with



68

Figure 4.2: A diagram of the MEPS treatment of the parton cascade. As seen in the
figure, the MEPS approach accounts for initial-state and final-state QCD radiation.

each emitted parton having a lower virtuality than its parent, until an arbitrary parton

virtuality cutoff, typically on the order of q ∼ 1 GeV2, is reached. Because the parton

shower evolves using the DGLAP evolution equations, the emitted partons are strongly

ordered in transverse momentum, kT , and ordered in the fractional proton momentum

carried by the parton, x, with the parton in the hard scatter having the highest kT

and lowest x.

4.1.2.2 Color Dipole Model

The Color-Dipole Model (CDM) [32] treats the proton remnant and the struck

quark as a color dipole from which a gluon radiates, which is equivalent to a QCD-

Compton (QCDC, see Section 2.3) process. Each radiated gluon forms a color dipole

with the struck quark and the proton remnant, which allows for further gluon radi-

ation. In contrast to the MEPS approach, which handles initial state and final state

QCD radiation separately, all radiation in the CDM approach comes from the initial

dipole between the struck quark and the proton remnant. Unlike the MEPS approach,
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Figure 4.3: A diagram of the CDM treatment of the parton cascade. For ep DIS
interactions, this model is modified to account for the extended proton remnant and
to include BGF processes.

the radiated gluons are not necessarily ordered in kT .

Because the CDM approach was originally developed for e+e− interactions, as

Figure 4.3 illustrates, two important adaptations have been applied to the model for

use in ep interactions. The first modification places a restriction on the fraction of the

proton remnant momentum used to generate the dipole, which reduces the available

phase space relative to e+e− interactions. The second modification is the addition of

the matrix elements of the boson-gluon fusion (BGF) processes, which do not occur in

e+e− interactions. To simulate BGF processes, the struck quark emits its antiquark

partner, which forms a separate color dipole with the proton remnant. These two

separate color dipoles then proceed via the process described above.
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Figure 4.4: Two commonly used hadronization schemes. The Lund string model (left)
is shown with qq pairs connected via color strings, which are modified by gluons, while
the Cluster model (right) shows the gluons separating into qq pairs, which are then
combined into clusters.

4.1.3 Hadronization

Because QCD confinement (see Section 1.2.1) prevents free colored partons in

the final state of an event, the partons produced in the simulations must evolve into

colorless stable hadronization that can be observed in a detector, a process known

as hadronization. Because hadronization is a non-perturbative effect, it is described

instead by phenomenological models. Two commonly used models are the Lund String

Model and the Cluster model, illustrated in Figure 4.4. The complete system after

the hadronization effects is referred to as the “hadron level.”

4.1.3.1 Lund String Model

In the Lund String Model [33] illustrated in Figures 4.4 and 4.5, the color field

between a qq pair is represented as a one-dimensional string with an energy per unit
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Figure 4.5: An illustration one possible string separation in the Lund String Model
which generates new qq pairs.

length determined by phenomenological methods to be κ ∼ 1 GeV/fm, with gluons

treated as “kinks” in the string. As the partons move apart, the potential energy

stored in the string increases until it is sufficient to create a new qq pair from the color

field between the initial qq pair, at which point the string is separated into two new

strings, as illustrated in Figure 4.5. The two strings formed by the splitting evolve

independently and continue the process of iterative splitting until only on-mass-shell

hadrons remain.

4.1.4 QED Effects

Any stand-alone simulation of ep interactions does not include in the simulation

QED effects from the incoming electron radiating a photon before the hard scatter

(initial-state radiation, or ISR) or after the hard scatter (final-state radiation, or
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Figure 4.6: An illustration of QED effects that can affect the result of an experimental
measurement. These effects include ISR(left), FSR(center), and a virtual photon loop
(right).

FSR). For this analysis, the MC programs used for event simulation are interfaced to

Heracles 4.5.2 [34] via Django 6.2.4 [35]. The Heracles program includes QED

effects up to O(α2
EM).

4.1.5 Detector Simulation and Reconstruction

In order to be compared to the experimental measurements, the hadron level

system must undergo a full detector simulation. The simulation of particles passing

through the ZEUS detector is simulated by the Monte Carlo for ZEUS Analysis,

Reconstruction, and Trigger (MOZART), which uses the GEANT [36] package. The

GEANT package takes as input from MOZART the geometry and material of the

detector components, and simulates the passage of particles through the components

and the dead material in the detector. The information for these simulations comes

from test beam studies of the components, which determine the energy resolutions and

component responses, and from dead material and geometry studies of the detector.

After the detector simulation, the event is processed by the Complete ZGANA Analysis

Routine (CZAR), which simulates the ZEUS online trigger (described in Section 3.4.5)
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Figure 4.7: An illustration of the processing of ZEUS data and MC events.

acting on the event.

After the detector and trigger information is simulated, the event is passed

through the ZEUS Physics Reconstruction (ZEPHYR) program, which is also used

for the data reconstruction described in Chapter 6. This program applies the recon-

struction code, including calibration constants to the event. The simulation of the

detector and trigger and the offline reconstruction yields the “detector level” event.

The event is then stored to tape and made available for offline analysis. The EAZE

(Easy Analysis of ZEUS Events) package is the standard ZEUS offline analysis pack-

age and produces Ntuples containing the event information. Figure 4.7 shows the

processing of ZEUS data and MC events.
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4.2 Monte Carlo Programs

For this analysis, neutral current DIS events were generated using the Ari-

adne 4.10 program [37] and the Lepto 6.5 program [38]. In the case of Ariadne,

events were generated using CDM whereas for Lepto, the MEPS method was used.

The CTEQ5L parameterizations of the proton parton density functions (PDFs) [39]

were used in the generation of DIS events for Ariadne, and the CTEQ4D PDFs [39]

were used for Lepto. For hadronization the Lund string model, as implemented in

Jetset 7.4 [40,41] was used for both models.
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Chapter 5

Next-to-Leading Order pQCD

Calculations

In addition to Monte Carlo simulations, which are based on phenomenological models

which simulate higher-order processes beyond O(αs), next-to-leading order (NLO)

calculations are obtained from a class of programs that calculate the partonic jet cross

section in DIS. One such program, NLOjet [42], is capable of providing calculations

in perturbative QCD (see section 1.2.2) up to O(α3
s). Unlike MC simulations, the

calculations from the NLO programs are not dependent on any phenomenological

model and are exact to the order in O(αs) calculated.

As mentioned in section 2.1.2, the general form of the DIS cross section is given

as

dσ =
∑

a=qqg

∫
dx fa(x, µ

2
F ) dσ̂a(x, αs(µR), µ2

R, µ
2
F ) (5.1)

which is a sum of a convolution of the partonic cross section, dσ̂, and the PDFs,

fa(x, µ
2
F ). The inclusive trijet cross section has contributions from both 4-parton

final states and from virtual loop corrections to the 3-parton final states, examples
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Figure 5.1: An example of two types of corrections to a 3-parton final state, with a
real parton emission shown at left and a virtual loop correction shown at right.

of which are illustrated in Figure 5.1. Both types of contribution, however, lead

to divergent terms in the calculation. The contributions from the virtual loops are

negative and diverge as the 4-momentum of the virtual gluon loop is integrated to

infinity (ultraviolet divergence). On the other hand, the contributions from 4-parton

final state corrections are positive and diverge as the energy of the radiated gluon

approaches zero (soft divergences) or as the angle of the radiated gluon from its parent

parton approaches zero (collinear divergence; collectively soft and collinear divergences

are known as infrared divergence). To obtain a finite cross section, divergences from the

initial-state gluon radiation is factorized at scale µF into the PDFs, and the remaining

soft and collinear divergences are canceled with the virtual loop corrections [43]. The

two most common methods used to cancel the divergences are the phase space splicing

method [44] and the subtraction method [45].
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5.1 NLOjet Program

The NLO calculations were carried out in the MS scheme [4] for five massless

quark flavors with the program NLOjet. The NLOjet program allows a computa-

tion of the dijet (trijet) production cross sections to next-to-leading order, i.e. includ-

ing all terms up to O(α2
s) (O(α3

s)). In certain regions of the jet phase space, where

the two hardest jets are not balanced in transverse momentum, NLOjet can be used

to calculate the cross sections for dijet production at O(α3
s). It was checked that the

LO and NLO calculations from NLOjet agree at the 1-2% level for the dijet cross

sections with those of Disent [46], another program for NLO calculations that has

been used extensively for HERA analyses [47, 48]. This agreement was achieved by

using a fixed electromagnetic coupling constant αEM = 1/137 for NLOjet, rather

than using a Q2-dependent αEM . The strong coupling constant was set to the value

used for the CTEQ6 PDFs, αs(MZ) = 0.118, and evolved according to the two-loop

solution of the renormalization group equation.

5.1.1 Subtraction Method

Divergences in the subtraction method are handled by introducing a counterterm

of dσ̂local, which serves to make the real and virtual emission cross sections separately

integrable. The partonic cross section dσ̂ can be expressed as a Born-level cross section

with higher order corrections, i.e.

dσ̂ = d ˆσLO + d ˆσNLO (5.2)

The term dσ̂NLO is comprised of terms for real and virtual emission, dσ̂real and

dσ̂virtual, respectively. For a final state of m partons for which the NLO correction is
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being calculated, the counterterm dσ̂local is included in the NLO cross section in the

following manner:

dσ̂NLO =

∫
m+1

[dσ̂real − dσ̂local] +

∫
m

dσ̂virtual +

∫
m+1

dσ̂local (5.3)

The term dσ̂local is an approximation of dσ̂real that exhibits the same singular

behavior, thus allowing the first term on the right in equation 5.3 to be integrated

numerically in four dimensions. The other requirement of dσ̂local is that it should be

analytically integrable over the one-parton phase space containing the virtual loop

divergences. The poles associated with this integration can be combined with those

in the virtual term to yield a finite sum for all terms in 5.3. Combining all of these

terms yields a finite result of the NLO partonic cross section.

5.1.2 MS Renormalization scheme

The type of subtraction method used by NLOjet for the renormalization scheme

is the modified minimal subtraction, or MS scheme, which uses a dimensional regular-

ization approach to reduce the dimension of the logarithmically divergent momentum

integrals from d = 4 to d = 4 − 2ε and to subtract the resulting poles. The renor-

malization scale µR introduced in section 1.2.2 is used to keep the coupling constant

αs dimensionless. Taking the limit as ε → 0 separates the momentum integrals into

singular and finite terms. The singular terms are attributed to a renormalized charge,

while the finite terms modify the coupling constant, which gives the coupling constant

a dependence on µR. The renormalization scale µR is therefore the scale at which αS

is evaluated.
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5.2 Scale Dependence and Uncertainty

Calculations from pQCD to all orders in αS would yield results entirely inde-

pendent of µR; however, the results from fixed order calculations like the ones used

in this analysis do depend on µR, resulting in an uncertainty in the predicted cross

sections. The choice of µR is arbitrary, and is often chosen as either Q2 or the average

transverse energy, ET , of the two (three) highest ET jets in a given dijet (trijet) event,

E
2

T . Similarly, the choice of the factorization scale µF is arbitrary, and it is usually set

to the same value of µR. For this analysis the renormalization and factorization scales

were both chosen to be (Ē2
T +Q2)/4, which the previous ZEUS multijet analysis [12]

determined to be suitable for a multijet analysis in DIS, as it takes into account the

energies of the exchange photon and of the emitted partons in the evaluation of αs.

To estimate the theoretical uncertainty due to the choice of the renormalization

and factorization scales, the scales were varied simultaneously up and down by a

factor of two, which is the usual convention within HERA analyses. The magnitude

of variation in the predicted cross section arising from the variation of µR provides an

estimate of the higher order contributions to the calculated cross sections. As seen in

the previous ZEUS forward jet analysis [49], the renormalization scale uncertainty of

the fixed-order pQCD predictions increases dramatically at low xBj as the calculations

are generally performed near the non-perturbative limit, which therefore makes the

renormalization scale uncertainty the dominant contribution to the overall theoretical

uncertainty at low xBj.
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5.3 PDFs and PDF Uncertainty

The PDFs convoluted with the partonic cross section are obtained from fits to

data using the DGLAP parameterization. For the calculations used in this analysis,

the CTEQ6M [50] proton PDFs were used. Because the predicted cross sections are

convolutions of the partonic cross sections and PDFs, the uncertainty in the PDFs

also contributes to the overall theoretical uncertainty. The uncertainties in the proton

PDFs were estimated in the previous ZEUS multijets analysis [12] by repeating NLO

calculations using 40 additional sets from CTEQ6M, which resulted in a 2.5% con-

tribution to the theoretical uncertainty and was therefore neglected in this analysis,

where the contribution to the theoretical uncertainty from the PDF uncertainty is

expected to be far smaller than the renormalization scale uncertainty. Because the

PDF uncertainly is insignificant relative to the renormalization scale uncertainty, its

effect was neglected in this analysis.

5.4 Asymmetric Jet Cut

Along with the divergences arising from soft, collinear, and virtual loop correc-

tions, which are treated by the renormalization scheme, the NLOjet calculations are

sensitive to the defined jet phase space. Without any gluon radiation, a dijet event in

the HCM frame (see Section 2.3) consists of two jets with identical transverse energy,

Ejet
T,HCM, by conservation of energy and momentum. The additional gluon radiation

included in the NLO calculations results in an imbalance in Ejet
T,HCM of the two lead-

ing jets in Ejet
T,HCM. Therefore a symmetric cut on ET,HCM, where the requirement on

ET,HCM is the same for both jets, allows for unphysical behavior near the cut bound-
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aries by artificially restricting the phase space for gluon emission while still allowing

virtual loop corrections.

The unphysical behavior of a symmetric cut can be avoided either by using an

asymmetric cut on jet ET,HCM, in which the cut on the jet with the highest ET,HCM is

higher than the cut on the ET,HCM of the second jet, or by placing a requirement on

the invariant mass of the di(tri)jet system. To compare experimental measurements to

the NLOjet calculations, the jet selection used in selecting the data sample matches

that used in the calculations. The previous ZEUS multijets analysis [12] used a cut on

the invariant mass of the di(tri)jet system to avoid depleting the statistics of the trijet

sample, which was crucial for a precision measurement of the trijet cross section needed

for extracting αs. This analysis, on the other hand, examines the O(α3
s) correction to

the dijet cross section in the jet phase space where the jets are not strongly correlated

in transverse momentum. For the measurement of these cross sections, this analysis

uses an asymmetric cut on Ejet
T,HCM to avoid depleting the statistics of the dijet sample.

The cuts on Ejet
T,HCM are selected to match those used in the event selection described

in Chapter 7.
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Chapter 6

Event Reconstruction

Events that trigger are written to tape and undergo a precise reconstruction of the

event information. In the reconstruction process, the raw data are processed and

corrected to ensure that the fundamental information (e.g. CAL energies, tracking

information) is correct and accurate. The processed information from the ZEUS com-

ponents determines the kinematics of the event and the properties of any jets in the

event.

6.1 Track and Vertex Reconstruction

The information from the hits on the sense wires in the tracking detectors (see

Section 3.4.1) is used to reconstruct the tracks of individual charged particles and to

determine the event vertex where the ep interaction took place within the detector.

For the reconstruction of the tracks, and for the reconstruction of the primary and

any secondary vertices from particle decays or interactions with the beam pipe, ZEUS

uses the VCTRACK [51] program.

For offline reconstruction, the VCTRACK package incorporates tracking infor-

mation from all tracking detectors, with the primary tracking information coming from
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CTD. Track finding begins with CTD seeds, each of which is comprised of a hit in

each of the three outermost axial superlayers of the CTD. Each seed is extrapolated

iteratively towards the inner superlayers, with the longest tracks extrapolated first.

The trajectory parameters of each track are recalculated with each iteration, as the

information from the inner superlayers is added to the track. Tracks with more than

15% shared hits with other tracks are removed. This process continues until all tracks

that pass through the innermost superlayer are identified and included. The next

iteration covers tracks that do not reach the innermost superlayer. The z position of

the track is found initially from the z-by-timing information and then refined from the

information from the stereo superlayers.

The next stage in the track reconstruction is finding the trajectory of the tracks

using a 5-parameter helix model, illustrated in Figure 6.1. The fittings begin with

the hits in the innermost superlayer and work outwards. During this procedure, the

information about the beam location, z-by-timing information, information from the

stereo hits, and other details are incorporated into the fitting.

To find the primary vertex from the ep interaction and any secondary vertices,

the fitted tracks are used as the input. The vertex finding routine loops over the

input tracks, identifying the tracks consistent with a primary or secondary vertex.

The vertex is then determined by a χ2 minimization routine. Tracks assigned to the

primary vertex by the minimization routine are refitted using the primary vertex as

the point of origin for the track, which improves the accuracy of the reconstruction of

the track.
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Figure 6.1: An illustration of the five parameters used in the helix fitting of CTD
tracks.

6.2 Calorimeter Reconstruction

The information from the CAL used for the reconstruction of the position and

energy of a particle comes from the cell positions, from the pulse amplitude from the

two PMTs associated with each cell, and from the timing difference between the two

PMT pulses. To ensure that the information from the CAL is accurate, noise in the

CAL is suppressed and the energy scale of the CAL is corrected. The cells are then

grouped into clusters.
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6.2.1 Calorimeter Cell Removal

As mentioned in Section 3.4.2, the use of 238U for the absorbing material in the

CAL creates a small background signal that is treated as noise. To suppress the noise

from the 238U background, non-isolated EMC cells with E < 60 MeV and HAC cells

with E < 110 MeV are not considered in the reconstruction. Isolated EMC cells with

E < 80 MeV and HAC cells with E < 140 MeV are also removed.

Other calorimeter noise is identified by two features: a large imbalance, Icell,

between the pulses of the PMTs associated with a cell and higher than average cell

activity. A large imbalance between the PMT signals in a cell usually indicate that

a spark has traveled between a PMT housing and the PMT itself, which creates a

false signal. To remove noise created from sparks, cells with an energy imbalance of

Icell > 0.49E + 0.03, where E is the overall cell energy, are removed. The noise from

the 238U noise and PMT sparks are handled by the Noise96s routine [52]. Higher than

average cell activity (so-called “hot” cells) are often caused by a hardware failure.

The list of hot cells for a given event are used for corrections for offline analysis at the

EAZE level (see section 4.1.5).

6.2.2 Island Formation

Due to the segmentation of the CAL into cells, particles would often deposit

energy in more than one cell. To account for this granularity effect, adjacent cells

with energy deposits are combined using a clustering algorithm run separately over

the EMC and HAC cells. The resulting 2-dimensional cell islands are then combined

to form 3-dimensional cone islands using a probability function based on the angular

separation between the EMC cell-islands and HAC cell-islands. These islands are used
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Figure 6.2: An illustration of the clustering process used in finding CAL islands.

for both electron reconstruction and reconstruction of the hadronic system (sections

3.3 and 3.4).

6.3 Electron Reconstruction

The primary feature of a neutral current DIS event is a scattered electron that

deposits most of its energy in the electromagnetic portion of the calorimeter. Electro-

magnetic showers are first located in the calorimeter using the Elecpo routine [53],

which calculates the position of the particle initiating the shower by using an energy

weighted sum over the imbalance-corrected position of the deposits in the cells asso-

ciated with the shower. Electromagnetic showers are initiated by both the scattered

electron from a DIS event and by other particles (e.g. a π0 decaying into two pho-

tons). The difference between the shower profile coming from a scattered electron

and the shower profiles coming from other particles is used to identify the scattered

electron. Any algorithm used for electron identification must therefore maximize both

the acceptance of true DIS electrons (efficiency) and rejection of non-electron mimic
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particles (purity).

The electron finding program used in this analysis is the Sinistra [54] program,

which uses a neural network to identify and classify electron candidates. The input

parameters of the Sinistra program are the transverse and longitudinal profiles of

islands associated with electromagnetic showers. Islands within the CTD acceptance

region must have a corresponding track to be considered. Using these parameters,

Sinistra outputs a list of electron candidates with their associated probabilities,

which are based on how consistent their shower profiles are with that of a scattered

DIS electron. Candidates with a probability greater than 90% are considered viable

electron candidates. For a scattered electron candidate with a 90% probability and

energy greater than 10 GeV, Sinistra has an 80% purity and an efficiency of nearly

100% in electron finding [55]. For this analysis the electron candidate with the highest

probability of being the scattered DIS electron in the event is considered the scattered

electron.

The energy of the scattered electron is calculated initially from summing the

energy of the cells of the electron island. This energy is subsequently corrected for

calorimeter response and inactive material in the detector. The calculation of the

electron scattering angle depends on the location of the electron in the detector. For

electrons within the CTD acceptance region, the electron angle is given by the angle

of the corresponding CTD track. If an electron is outside the CTD acceptance region,

but has an SRTD hit, then the angle is reconstructed based on the vertex and SRTD

hit position. Outside the SRTD coverage, if the position of the electron in the HES

is available and the electron position given by Elecpo is further than 2 cm from a
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cell edge, then the HES position of the electron is used in the angle reconstruction.

Otherwise, the electron scattering angle is calculated using the Elecpo position of

the electron and the event vertex.

6.4 Energy Flow Objects (EFOs)

The reconstruction of the hadronic final state is obtained by combining the

calorimeter and CTD information, which provides a better description of the hadronic

final state than each component individually. The CTD has a better overall angular

resolution than the CAL and is less sensitive to dead material losses than the CAL. The

CAL, on the other hand, covers more of the solid angle and can detect neutral particles.

The combined information from the CAL and CTD is used to form ZEUS Unidentified

Flow Objects (ZUFOs) [56], as they are known within the ZEUS collaboration, and

are referred to as Energy Flow Objects (EFOs) in ZEUS publications.

The formation of ZUFOs, illustrated in Figure 6.3 begins with island formation

in the CAL, with the position of the island determined by means of a logarithmic

center of gravity of the hadronic shower. These islands are then matched to “good”

CTD tracks, with the criteria for a good track being a track associated with the

primary vertex with a transverse momenta of 0.1 < pT < 20 GeV and hits in at

least 4 superlayers. The upper cut on track pT is raised to 25 GeV for tracks passing

through 7 or more CTD superlayers. A track is matched to an island if the distance of

closest approach between the track and the island is less than 20 cm. In circumstances

where an island has no matching track, the particle is treated as a neutral particle,

and the energy is calculated from the CAL information. The CAL information is also

used when an island is associated with more than 3 tracks. In circumstances where a
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Figure 6.3: The formation of ZUFOs from CAL islands and tracks. The EMC cell
islands 2 and 3 are combined with HAC cell island 1 to form a tower island, which is
matched to the corresponding track to form a ZUFO. Also shown are EMC cell islands
for a charged particle (4) and a neutral particle (5).

track is not matched to an island, the particle is treated as a charged pion, and the

tracking information is used for determining the energy. In the case where there is a

1-to-1 track-island match, the CTD information is used if the momentum resolution of

the track is better than the energy resolution of the CAL island, and if the information

deposit in the island is associated with the track alone: ECAL

ptrack
< 1.0 + 1.2× δ(ECAL

ptrack
).

ZUFOs are sensitive to backsplash, which is energy deposited from showering

particles scattering into the opposite side of the detector, or by material scattering off

the dead material. At the EAZE level, the information from the uncorrected ZUFOs

and the ZUFOs corrected for backsplash effects are available for the description of the

hadronic system used for the jet finding. Because the backsplash is not well-modeled
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by the Monte Carlo, the uncorrected ZUFOs were used. Instead, to help account for

the effects of backsplash on the hadronic system, in particular the jets, the jet energy

was corrected using a procedure outlined in Section 8.2.

6.5 Hadronic Quantities

The reconstructed electron and the hadronic system obtained from ZUFOs are

used for the reconstruction of

δ = E − pz =
∑

i

Ei(1− cos θi) (6.1)

where the sum runs over all energy deposits and is reconstructed as

δ = E − pz = E
′

e(1− cos θ
′

e)
∑

i

Ei(1− cos θi) (6.2)

where the sum runs over all hadronic ZUFOs, and E
′
e and θ

′
e are the corrected en-

ergy and scattering angle, respectively, of the electron. The quantity δ is conserved

and is not sensitive to the proton remnant, as particles associated with the proton

remnant have similar energy and longitudinal momentum and therefore make a neg-

ligible contribution to δ. The constraint on δ is twice the incoming electron energy:

δ = 2Ee ≈ 55 GeV. Because δ is a conserved quantity, the final state δ should also be

≈ 55 GeV. Experimentally, limitations in detector resolution and energy losses due to

dead material lead to a large range of reconstructed δ. In the case of photoproduction,

however, where the electron escapes through the rear beampipe, or charged current

DIS, where the electron is converted to a neutrino, the reconstructed δ is significantly

less than 55 GeV. This experimental signature provides a means of differentiating
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between neutral current DIS and charged current or photoproduction events.1

Another important quantity in reconstructing the hadronic final state is the

polar angle of the hadronic system, which in the QPM model is the polar angle of the

struck quark. In reconstructing the hadronic angle, a ratio of ZUFO information is

used in order to minimize the systematic differences in energy scales between the MC

and data. The reconstructed hadronic angle γh is

cos γh =
(
∑
Px)

2 + (
∑
Py)

2 − (
∑
E − Pz)

2

(
∑
Px)2 + (

∑
Py)2 + (

∑
E − Pz)2

(6.3)

where the sum runs over all ZUFOs associated with the hadronic system.

6.6 Kinematic Reconstruction

For a full description of a DIS event, eight variables are needed: the 4-momentum

components of the scattered electron and the 4-momentum components of the hadronic

system. Energy and momentum conservation provides 4 constraints, while the fixed

electron mass provides a fifth constraint. With these five constraints, only three

independent variables are needed to provide a description of the final state in a DIS

interaction, which are typically chosen to be the Lorentz-invariant quantities Q2, xBj,

and y. The fixed center-of-mass energy s in HERA operations provides one more

constraint and reduces the number of variables needed to describe the system to two.

For reconstructing Q2, xBj and y, there are four quantities available: the energy

and polar angle of the scattered electron, and the E − pz and polar angle γh of the

hadronic system. Because only two are necessary, it is possible to choose which pair

1For the kinematic range used in this analysis (outlined in Chapter 7), charged current DIS events
are not a consideration.
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provide the best reconstruction of these variables for the kinematic range considered.

MC samples were used to test the reconstruction ofQ2 and x using the various methods

outlined below [57].

6.6.1 Electron Method

The electron method uses the scattered electron’s energy, E
′
e, and polar angle,

θe, for the reconstruction of the kinematic variables Q2 and y:

Q2
el = 2EeE

′

e(1− cos θe) (6.4)

yel = 1− E
′
e

2Ee

(1 + cos θe) (6.5)

xel =
Q2

el

syel

(6.6)

where Ee is the energy of the electron beam. The electron method produces a good

reconstruction of xBj and Q2 over the entire kinematic range, but underestimates the

generated Q2 and xBj at higher values of Q2 and xBj.

6.6.2 Double-Angle Method

The double-angle method [58] measures the kinematic variables using the polar

angles of the scattered electron and hadronic system, θe and γh:

Q2
DA = 4E2

e

sin γh(1 + cos θe)

sin γh + sin θe − sin γh + θe

(6.7)

xDA =
Ee

Ep

· sin γh + sin θe + sin γh + θe

sin γh + sin θe − sin γh + θe

(6.8)

yDA =
sin θe(1 + cos γh)

sin γh + sin θe − sin γh + θe

(6.9)
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The double-angle method has been shown to provide a good reconstruction of

Q2 and xBj at higher xBj and Q2 but has a worse resolution than the electron method

at lower xBj and Q2 [57]. Because this analysis examines QCD dynamics at low xBj

with a consequent restriction of Q2 to lower vales, the electron method was chosen for

reconstructing xBj and Q2.

6.6.3 Calorimeter Energy Scale Corrections

To provide the most accurate measurement possible, differences between the

simulated calorimeter response and the real calorimeter response have to be taken

into account [59]. This is done by recalibrating the calorimeter response for the data

such that it matches the simulation. For the data, the cell energies in the FCAL are

unmodified, the BCAL cell energies are scaled by a factor of +5%, and the RCAL cell

energies are scaled by a factor of +2.2% unless more detailed calibration information

exists for an individual RCAL cell. RCAL cells closer to the beam pipe have detailed

calibration information and are scaled individually by factors that are typically ±2−

3% [60].

The calibration factors are obtained by using the kinematic-peak method and

the double-angle method. The kinematic peak method was used for events in which

the electron is scattered close to the RCAL beam pipe. These events are characterized

by a very low inelasticity, y, and a scattered electron energy to the electron beam

energy: E
′
e ∼ 27.5 GeV. The electron energy distributions for the data and MC are

therefore expected to peak near 27.5 GeV. The recalibration factor is obtained from

the ratio of the peak positions of the data and MC distributions. The double angle

method, which is used otherwise, calculates the electron energy using the angles of
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the scattered electron and the angle of the hadronic system. The recalibration factor

is obtained from the average difference between the measured electron energy and the

electron energy calculated from the DA method.

6.6.4 Jacquet-Blondel Method

The Jacquet-Blondel method [61] uses the reconstructed hadronic system exclu-

sively in reconstructing the kinematic variables:

yJB =

∑
iEi(1− cos θi)

2Ee

(6.10)

Q2
JB =

(
∑

i px,i)
2 + (

∑
i py,i)

2

1− yJB

(6.11)

where the sums run over the ZUFOs associated with the hadronic system. Placing a

minimum requirement on yJB ensures a good reconstruction of the hadronic system

(see also Section 7.2.2) as it requires a minimum hadronic E − pz, which in turn

requires a minimal hadronic energy not associated with the proton remnant and helps

to remove events from beam-gas interactions.

6.7 Jet Reconstruction

As described earlier, partons emitted in the hard scatter form showers through

QCD radiation. The partons then combine via hadronization to form colorless hadrons.

As the energy of QCD radiation is on the order of 1 GeV, the particles associated with

a parton emitted from the hard scatter are roughly collimated into an object known

as a jet. The 4-momentum of a jet is calculated, which is then used to calculate the

jet transverse energy (Ejet
T ), pseudorapidity (ηjet), and azimuthal angle (φjet):
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Ejet
T =

√
p2

x + p2
y

ηjet = − ln tan(θ/2)

φjet = tan−1(py/px) (6.12)

where θ = tan−1(Ejet
T /pz).

6.7.1 Jet Algorithms

Jets can be reconstructed from partons, hadrons, calorimeter cells, or ZUFOs;

but ultimately, the jet should reflect the properties of the hard scatter regardless of

the objects used as input. A jet finding algorithm applied to the partons, hadrons,

and ZUFOs from an event should therefore produce jets with comparable energies and

angles. In addition to this consideration, the jet finding algorithm should be insensitive

to soft or collinear particles, otherwise known as infrared and collinear safety. The

energy of a jet reconstructed by an algorithm that is not infrared safe changes as a

number of infinitely soft particles with an arbitrary directions are added, which in

turn can lead to soft divergences in pQCD calculations.

6.7.1.1 Cone Algorithm

The EUCELL [62] cone algorithm, which is used in some of the ZEUS third-

level-trigger logic, defines jets by the Snowmass Convention [63]. In the Snowmass

Convention, objects with an ET above a specified minimum value are treated as seeds,

which are treated as the center points for cones with a radius Rcone in η − phi space.

Objects within the cone radius are added to the jet, and the jet variables for the

candidate are reconstructed as follows:
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Ejet
T =

∑
i

ET,i

ηjet =
1

Ejet
T

∑
i

ET,iηi

φjet =
1

Ejet
T

∑
i

ET,iφi (6.13)

The process is repeated iteratively with each successive jet candidate treated as the

center of the cone until the distance between the input position and recalculated

position is less than a specified value, or until a maximum number of iterations (15 in

the case of the ZEUS implementation) is reached.

With the cone algorithm, some of the input objects might not be included in any

jet. For this reason, cone algorithms have been used extensively at hadron colliders,

where pp collisions typically produce more particles not associated with any jet. The

primary drawback to the cone algorithm is that soft radiation between two jets can

make the algorithm incorrectly merge them into one jet, which therefore makes the

cone algorithm infrared unsafe. Another problem with the cone algorithm is the lack

of a standardized treatment of overlapping jets, which means that two cone jet finders

with the same Rcone parameter can find different jets for the same event, depending

on the treatment of jet overlap.

The advantages of the cone algorithm are that it is conceptually simple and

computationally fast, which makes it suitable for fast jet finding in the ZEUS third-

level trigger. The ZEUS implementation of EUCELL has a seed threshold of Eseed
T >

1 GeV and associates energy shared by overlapping jets with the jet with highest Ejet
T



97

Figure 6.4: An illustration of the variables used by the kT algorithm. The distances
di and dij are in momentum space.

6.7.1.2 kT Cluster Algorithm

The kT algorithm, which was originally used in e+e− collisions, has been adapted

for use in ep collisions. With an input set of partons, hadrons, or ZUFOs, the KT-

CLUS [64] algorithm calculates the distance of each particle to the proton beam line

in momentum space (see Figure 6.4),

di = E2
T,i (6.14)

and the distance between two objects as

dij = min(E2
T,i, E

2
T,j)[(ηi − ηj)

2 + (φi − φj)
2] (6.15)

The quantities di and dij are calculated for all input particles, and the algorithm

finds the minimum value of all di and dij. If the minimum value in the set is a value

of dij, the algorithm then combines objects i and j into a new object k with
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E2
T,k = E2

T,i + E2
T,j

ηk =
ET,iηi + ET,jηj

ET,i + ET,j

φk =
ET,iφi + ET,jφj

ET,i + ET,j

(6.16)

If the minimum value in the set is instead a value of di, then the associated object is

classified as a jet and no longer merged. This process continues until all input objects

are merged into jets.

Unlike the cone algorithm, the kT algorithm is infrared and collinear safe. The

kT algorithm also does not have any ambiguity arising from overlapping jets, as each

input object is assigned to one jet during the merging process. This analysis therefore

uses the kT finder for jet finding.

6.7.2 Jet Energy Scale Uncertainties

As mentioned in section 6.2.2, the calorimeter response is recalibrated to match

Monte Carlo simulations. However, the methods for estimating the CAL energy scale

corrections used electrons to estimate the difference between the actual and simulated

CAL response. Because jets are multiparticle showers that are primarily hadronic

and therefore deposit energy in both the electromagnetic and hadronic sections of the

CAL, the energy response of a jet does not exactly match the energy response of an

electron.

The jet energy scale uncertainty has been estimated using an exclusive single

jet DIS sample [65], where the jet energy and the energy of the scattered electron are

expected to balance. The scattered electron energy was corrected for the calorimeter
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energy response, and the energy of the jet was predicted. The average difference

between the measured and predicted jet energy provides an estimate of the difference

in detector response for jets between data and MC samples. It was found that for jets

with Ejet
T,LAB > 10 GeV, the uncertainty in the calorimeter energy scale was reduced

from 3% to 1%.
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Chapter 7

Event Selection

The experimental measurements that are compared to both the Leading-Order MC

and Next-to-Leading Order pQCD calculations come from events that have triggered

and undergone the full event reconstruction described in Chapter 6. The final sample

used for the measurements must be selected online by the ZEUS trigger to ensure

that the event is well-reconstructed by all the components, and must also be selected

offline by more stringent criteria that make use of the full ZEUS reconstruction. The

two samples used for this analysis come from the 1998-2000 HERA running period

corresponding to an integrated luminosity of 82 pb−1 and are selected for low-xBj

inclusive dijet and trijet events, with the trijet sample as a subset of the dijet sample.

7.1 Online Event Selection

The dijet and trijet samples were selected online by requiring that events meet

the requirements of at least one of three trigger “chains” with requirements at all

three trigger levels. Each trigger chain consists of a third-level trigger (TLT) filter (see

also section 3.4.5), at least one second level trigger (SLT) filter required by the TLT

filter, and at least one first-level trigger (FLT) filter required by the SLT filter. The
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trigger chains used for this analysis are for both low-Q2 and medium-Q2 inclusive DIS

events (called “DIS01” and “DIS03”, respectively ), and for inclusive dijet production

(“HPP14”). A total of 1271045 events passed the online event selection.

7.1.1 First Level Trigger

Events consistent with DIS physics are selected at this level primarily by the

CTD first-level trigger (CTD FLT), which indicates if a good track is present, and the

Calorimeter First Level Trigger (CFLT). The CFLT takes 5% of the signal from the

PMTs in the calorimeter, shapes and digitizes the analog signal from the PMTs, and

computes global energy sums. The CFLT also performs basic pattern recognition for

isolated electrons and muons. The GFLT trigger decision is based on the coarse energy

and tracking information from the component FLTs, as well as information from the

SRTD, VETO, and C5, which provide timing information that helps reject beam-gas

interactions and halo muon events. As mentioned previously, the GFLT reduces the

event rate from 10.4 MHz to a few hundred Hz.

For this analysis, the following criteria from the FLT were used to select events:

• The total electromagnetic energy in the calorimeter exceeds 15 GeV (FLT40).

• The total transverse energy in the calorimeter exceeds 30 GeV (FLT41).

• The total energy in the calorimeter exceeds 15 GeV, the total electromagnetic

energy in the calorimeter exceeds 10 GeV, the electromagnetic energy in the

barrel calorimeter exceeds 3.4 GeV, or the electromagnetic energy in the rear

calorimeter exceeds 2.0 GeV. In addition to one of these calorimeter require-

ments, a good track must also be found (FLT42).
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• The total transverse energy in the calorimeter exceeds 11.5 GeV and a good

track is found (FLT43).

• The electromagnetic energy in the barrel calorimeter exceeds 4.8 GeV and a good

track is found, or if the electromagnetic energy in the rear calorimeter exceeds

3.4 GeV (FLT44).

• The CFLT locates an electron in the rear calorimeter and one of the following

requirements is satisfied (FLT46):

– The electromagnetic energy in the rear calorimeter exceeds 2.0 GeV.

– There is SRTD data for the event good track is found.

– There is a good track and the total transverse energy in the calorimeter

exceeds 18 GeV.

The inclusive low-Q2 and medium-Q2 trigger chains DIS01 and DIS03 require

that the event passes one of the FLT bits listed above, while the inclusive dijet trigger

chain HPP14 requires the event satisfies one of the slots FLT40-43.

7.1.2 Second Level Trigger

The SLT filter (DIS06) used for the two inclusive DIS trigger chain requires

E − pz + (2 ∗ Elumi
γ ) > 29 GeV, and also requires one of the following to increase

the likelihood of finding an event with both a well-reconstructed electron and a well-

reconstructed hadronic final state:

• The electromagnetic energy in the rear calorimeter exceeds 2.5 GeV.
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• The electromagnetic energy in the barrel calorimeter exceeds 2.5 GeV.

• The hadronic energy in the forward calorimeter exceeds 10 GeV.

• The electromagnetic energy in the forward calorimeter exceeds 10 GeV.

The SLT filter (HPP01) used for the inclusive dijet trigger chain takes the event

if the following criteria are met:

• The CTD-SLT reconstructs a vertex with |Zvtx| < 60 cm, or if the CTD-SLT

cannot reconstruct a vertex.

• A good track is found.

• E − pz < 8 GeV

• The sum of the transverse energy in all the calorimeter cells excluding those

within the first ring around the forward calorimeter beam pipe exceeds 8 GeV.

• E − pz > 12 GeV or pz/E < 0.95.

7.1.3 Third Level Trigger

The TLT event selection for this analysis is based on the reconstruction of elec-

trons and jets online in the TLT filters used. The filter HPP14 is a dijet photopro-

duction trigger that requires two jets found in the lab frame using the EUCELL jet

finding algorithm with Ejet
T,LAB > 4 GeV or 4.5 GeV, depending on the running period,

and |ηjet
LAB| < 2.5.



104

The medium-Q2 trigger bit DIS03 requires an electron found with an energy

exceeding 4 GeV found outside a circle centered on the beampipe with a radius of 35

cm. It also requires E − pz + (2 ∗ Elumi
γ ) > 30 GeV and E − pz < 100 GeV.

The low-Q2 trigger bit DIS01 also requires an found with an energy exceeding 4

GeV, but unlike the filter DIS03, it requires that the electron be outside a 12 x 6 cm

box around the beam pipe. Due to rate considerations, this filter was prescaled by a

factor of 1, 10, or 100 during the HERA I running period. Because of this prescale,

the events passing this filter have an overall luminosity of 11.35 pb−1. To account for

the prescaling, events passing DIS01 only are given a weight of 1/11.35pb−1, while

events that are taken by DIS03 or HPP14 are given a weight of 1/81.7pb−1 regardless

of whether they are taken by DIS01.

7.2 Offline Event Selection

In addition to the online trigger requirements, the Data Summary Tape bit DST9

was required. Like the DIS01 and DIS03 trigger chains, DST bit 9 requires an electron

found with energy greater than 4 GeV; however unlike the online trigger chains used,

the bit DST 9 uses the fully reconstructed event information rather than the TLT

information.

Events passing the online selection are reconstructed offline using the methods

described in Chapter 6. Additional offline cuts are placed on the sample to reject any

remaining background and photoproduction events and to avoid regions in which the

detector performance is limited.
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7.2.1 Background Rejection

• |Zvtx| < 50 cm, which selects events consistent with an ep interaction within a

well-understood acceptance region of the calorimeter and central tracking detec-

tor. Of the events selected by the trigger chain used in this analysis, 1218891

events pass this selection requirement.

• pT/
√
ET < 3

√
GeV, where pT is the sum of the vector transverse momentum of

the final state particles, and ET is the sum of their scalar transverse energy. In a

neutral current DIS interaction, momentum conservation requires that pT = 0;

however, due to the finite resolution of the calorimeter, which roughly scales with

the transverse energy, pT is often nonzero. Placing the restriction pT/
√
ET <

3
√

GeV eliminates mainly cosmic events. Of the remaining events, 1218795

events pass this requirement.

• In order to ensure a well-constructed electron consistent with a DIS interaction,

a scattered electron reconstructed by the Sinistra95 program with the following

criteria is required:

– |X| > 13 cm or |Y | > 7 cm where X and Y are the x and y coordinates

in the rear calorimeter of the scattered electron. This cut ensures that the

scattered electron falls outside the low-acceptance region around the RCAL

beam pipe. 1204825 events remain after this requirement is applied.

– Econe/E
′
e < 0.1, where Econe is the energy of deposits not associated with the

scattered electron within a cone with a radius of 1 in η − φ space centered

around the scattered electron. This cut selects electrons well-separated
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from the hadronic deposits. 1042772 events remain after this requirement

is applied.

– E
′
e > 10 GeV and Eprob > 0.9, where E

′
e is the corrected energy of the scat-

tered electron and Eprob is the probability of finding the electron. 856122

events remain after this requirement is applied.

– (E − pz)elec < 54 GeV, where (E − pz)elec is the E − pz of the scattered

electron. This cut eliminates electrons scattered at a low angle, which

are inaccurately reconstructed with a higher E − pz than is kinematically

allowed. Such electrons spoil the accuracy of the boost to the HCM frame.

828619 events remain after this requirement is applied.

• 40 <
∑

i(E−pz)i < 60 GeV, where Ei and PZ,i are the energy and z-momentum

of each final-state object. The lower cut removed background from photopro-

duction and events with large initial-state QED radiation, while the upper cut

removed cosmic-ray background. 789571 events remain after this requirement is

applied.

7.2.2 Kinematic Selection

The kinematic range of the analysis is

10 < Q2 < 100 GeV2, 10−4 < xBj < 10−2, and 0.1 < y < 0.6.

The cuts on Q2 and xBj ensure events with good acceptance in the ZEUS detector

in the low-xBj kinematic region. For the kinematic selection, the cuts were placed on

Q2 and xBj reconstructed by the electron method described in section 6.4.1.
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The requirements on y were as follows:

• yel < 0.6, where yel is y reconstructed by the electron method. This cut is

used to remove photoproduction background, mostly from energetic pions in the

FCAL decaying into photon pairs. 747688 events remain after this requirement

is applied.

• yjb > 0.1, where yjb is y reconstructed by the Jacquet-Blondel method described

in section 6.4.2. This cut requires a minimum hadronic energy in the calorimeter

and helps ensure an accurate hadronic reconstruction. 532596 events remain

after this requirement is applied.

After the kinematic selection, the sample consists of 308196 events.

7.2.3 Jet Selection

During the 1998-2000 running period the cut on Ejet
T,LAB by the TLT slot HPP14

trigger chain was raised from 4 to 4.5 GeV. In order to address this inconsistency and

to ensure well-defined jets in the final samples, the uncorrected Ejet
T,LAB is required to

be larger than 5 GeV for the jet to be included in the sample. The jet phase space for

the dijet(trijet) sample is defined by two(three) jets satisfying the following criteria:

• −1 < ηjet
LAB < 2.5, where ηjet

LAB is pseudorapidity of the jets found in the HCM

frame after a boost back to the LAB frame. This cut ensures the jets are con-

tained within in a well-understood region of the detector with good acceptance.

• An asymmetric cut on the corrected Ejet
T,HCM is applied to meet the require-

ments on the jet phase space imposed by the NLOjet calculations (see section
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5.4), with the jet with highest transverse energy required to have Ejet1
T,HCM >

7 GeV, and the other jet(s) comprising the dijet(trijet) sample required to have

E
jet2(,3)
T,HCM > 5 GeV. This requirement eliminates jets with low Ejet

T,HCM, which

are likely the result of soft partonic radiation, and ensures that the dijet(trijet)

system is comprised of jets from the hard ep scatter that are measured with

reasonable precision. These requirements result in a dijet sample consisting of

81645 events, and a trijet sample of 9734 events.
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Chapter 8

Analysis Method

The cross sections, which are the probabilities of certain types of interactions to occur

for an incident flux, are measured using the sample obtained by the selection methods

described in Chapter 7. The measured distributions of the sample were corrected for

dependencies on the performance and limitations of the ZEUS detector and then used

to produce the cross sections. Such corrections account for inactive material in the

detector, triggering efficiency, geometric acceptance, and limitations in the tracking

and calorimetry. Simulated Monte Carlo events were used to account for these effects

by obtaining and comparing dijet and trijet samples at the detector level (Section

4.5), and at hadron and parton levels. The detector-level samples were obtained by

applying the event selection criteria to the reconstructed kinematic and jet variables,

while the hadron and parton level samples were obtained by applying the selection

criteria to the generated kinematic values and the hadron-level and parton-level jets,

respectively.
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8.1 Comparison of Monte Carlo and Data

In order to measure the cross sections reliably the detector-level distributions

from the MC models must provide a reasonable description of the data. Too large

a disagreement between data and MC can result in a large systematic uncertainty,

which prevents a reliable measurement. The detector-level distributions from both

Ariadne and Lepto were therefore compared to the measured distributions for the

variables used to define the dijet and trijet samples, and with variables measured in

the cross sections used in the analysis. The agreement between the data and the

Monte Carlo distributions was examined both within the phase space used for the

analysis and in the regions just outside the phase space, where a large discrepancy

between the measured distributions and the Monte Carlo predictions can provide large

contributions to the systematic uncertainty.

8.1.1 Reweighting in Q2

In order to improve the Q2 dependence of the simulations for acceptance correc-

tions, the weight assigned to the events from the Monte Carlo samples were adjusted

as a function of Q2. To obtain the reweighting factor, the Q2 distribution from the

dijet sample was divided by the detector-level Q2 distribution from the Monte Carlo

dijet samples. The ratio was plotted as a function of Q2 and a linear fit was applied.

Each event in the Monte Carlo was then reweighted based on the generated Q2 of

the event according to the obtained linear fit. The reweighting for the Lepto and

Ariadne programs are as follows:
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fAriadne = 0.874 + (0.00302 · (Q2/GeV 2))

fLepto = 1.146− (0.00378 · (Q2/GeV 2))

(8.1)

Figures 8.1 and 8.2 show the comparisons between the dijet data and the predic-

tions from Ariadne and Lepto before and after the reweighting in Q2 was applied to

the Monte Carlo samples. In both cases, the agreement between the measured distri-

bution and the predictions from Ariadne or Lepto improved after the reweighting

was applied.

8.1.2 Detector-level Comparisons

The distributions in the reconstructed kinematic variables Q2
el, xel, yel, and yjb

compared to the predictions from Ariadne are shown in Figures 8.3 and 8.5, re-

spectively. The Ariadne predictions match the measured dijet distributions well

for the kinematic variables (Figure 8.3), especially the variables reconstructed with

the electron method, while providing a reasonable description of the trijet kinematic

distributions (Figure 8.4). The jet transverse energies in the HCM frame (Section

6.5.4), Ejet1
T,HCM, E

jet2(,3)
T,HCM, and the azimuthal separation of the two jets with the largest

Ejet
T,HCM, |∆φjet1,2

HCM|, are shown in Figures 8.4 and 8.6 for the dijet and trijet samples,

respectively. The level of agreement between the dijet and trijet samples and the

Ariadne predictions is similar to that seen in the previous ZEUS multijet analy-

sis [47], where the Ariadne distributions agree with the data at lower Ejet
T,HCM, but

overestimate the data slightly at higher Ejet
T,HCM . |∆φjet1,2

HCM| is better described at low

|∆φjet1,2
HCM| by the Ariadne predictions, which use the Color-Dipole Model (CDM) than

by the Lepto predictions, which use the DGLAP-based Matrix-Elements plus Par-
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ton Shower (MEPS) approach. Because the region of low |∆φjet1,2
HCM| is expected to be

sensitive to parton evolution scheme at low xBj, which is of primary interest to this

analysis, the Ariadne sample was used for correcting the data to the hadron level.

Before reweighting in Q2
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8.2 Jet Energy Corrections

The jet energies were corrected for energy losses from inactive material in the

detector by using the Monte Carlo to estimate the average fraction of jet energy lost by

a hadron-level jet due to the inactive material in the detector. Because the fractional

energy loss depends on the thickness of the material the jet passes through, it depends

on the polar angle of the jet in the detector. The measured range in pseudorapidity,

−1 < ηLAB < 2.5, was therefore divided into sectors with a width in η of 0.2, with one

sector, 2.2 < ηLAB < 2.5, having a width of 0.3.

To estimate the fractional energy loss in each segment of the detector, the

hadron-level jets were matched to their corresponding detector-level jets. To ensure

that the detector-level jets were highly correlated to their matching hadron-level jets,

each detector-level jet was matched to the hadron-level jet closest in η−φ space to it,

with the minimal requirement that the separation in η − φ space between a detector-

level jet and its corresponding hadron-level jet be less than 1 unit in η − φ space.

A profile histogram of detector-level Ejet
T,LAB vs. hadron-level Ejet

T,LAB was made for

each region in pseudorapidity, and bins with insufficient statistics were removed. The

estimated fractional jet energy lost by a jet in each region in η was then obtained

by performing a quadratic fit to that region’s profile histogram. The quadratic term

accounts for deviations from a linear correlation between the detector-level jet Ejet
T,LAB

and the hadron-level jet Ejet
T,LAB and provides a more accurate correction factor over

the entire range of Ejet
T,HCM than does a linear fit (see Fig. 8.7). Measurements of

correlations in jet transverse energy and momenta require a good level of agreement
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between the corrected detector-level jet energy and the hadron-level jet energy, as

a systematic difference between the hadron level and detector level distributions of

these correlations will result in a poor reconstruction of these events due to increased

smearing between bins. The corrected transverse energy of a reconstructed jet is then

parameterized as

Ecorr
T,HCM =

−A1 +
√
A2

1 − 4 · A2 · (A0 − Ejet
T,HCM)

2 · A2

(8.2)

where the factors A0, A1, and A2 are the intercept, slope, and quadratic correction

terms, respectively, obtained from the fit in the region corresponding to the recon-

structed jet’s measured pseudorapidity. A correction factor based on the ratio of the

corrected to uncorrected jet transverse energy was also applied to the jet 4-momenta:

Corr =
Ecorr

T,HCM

Ejet
T,HCM

(8.3)

Typical jet energy correction factors were 1 − 1.2, depending on the transverse

energy of the detector-level jet and the location of the jet within the detector.

8.3 Cross Sections and Corrections

With a measurement made with a specific binning, the “raw” cross section for

each bin is the number of data events divided by the measured luminosity, L:

σraw,i =
Ndata

events,i

L
(8.4)

To account for the limitations of the detector, a correction factor is applied to

each bin of the “raw” cross sections, giving the following definition of the cross section:
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tion of the profile by the quadratic fit is important for measurements of correlations
in jet transverse momenta.

σi = ci ·
Ndata

events,i

L
(8.5)

The correction factor ci for each bin is obtained from the Monte Carlo by using

the events passing the detector-level selection and events passing the hadron-level

selection:

c =
Number of events generated

Number of events reconstructed
(8.6)

The correction factors can be factorized into terms of the purity and efficiency:

ci = puri/effi. The purity for each bin is defined as the number of events generated

and reconstructed at the detector level divided by the number of events reconstructed

at the detector level:

pur =
Number of events generated AND reconstructed

Number of events reconstructed
(8.7)

The efficiency is defined as the number of events generated and reconstructed at
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the detector level divided by the number of events generated.

eff =
Number of events generated AND reconstructed

Number of events generated
(8.8)

Typical efficiencies and purities were about 50% for the differential cross sections,

with correction factors typically between 1 and 1.5. For the double-differential cross

sections, the efficiencies and purities were typically 20− 50%, with correction factors

between 1 and 2. Examples of typical purities, efficiencies, and correction factors are

shown in Figures 8.8 and 8.9; and all purities, efficiencies and correction factors are

included in Appendix B.

8.3.1 Calculation of the Statistical Error

Because the correction factor, c, as expressed in equation 8.6 is a ratio of cor-

related quantities, the correlations must be treated in the correct manner. For the

calculation of the correction factor for each bin, the quantities are broken up into their

uncorrelated components. Events in the correction factor fall into three uncorrelated

categories: those generated and reconstructed, those generated and not reconstructed,

and those reconstructed but not generated. Expressing 8.6 in these categories yields

c =
gen⊕ det+ gen⊕ det

gen⊕ det+ gen⊕ det
(8.9)

Expressing c in this manner allows for the usage of the standard error propaga-

tion treatment for a measurement x that can be expressed as a function of a number

of uncorrelated values, xi:

x = f(x1, x2, x3, . . .) (8.10)
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The error of the quantity x is given by the formula for error propagation:

∆x =

√
(∆x1 ·

∂f

∂x1

)2 + (∆x2 ·
∂f

∂x2

)2 + (∆x3 ·
∂f

∂x3

)2 + . . . (8.11)

The calculation of the uncertainty of c was handled in this manner by use of

an algorithm using the above procedure. To obtain the overall statistical error of the

cross sections, the uncertainty of the correction factor was then added in quadrature

to the uncertainty in the following manner:

∆σ =
√

(∆c · σraw)2 + (∆σraw · c)2 (8.12)

Bins in which gen ⊕ det = 0 from 8.9 were excluded, as the purities and the

efficiencies for such bins are zero, resulting in unreliable measurements.
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8.4 QED Corrections

Because the NLOjet calculations account for QED radiation only to leading-

order, whereas the data contain QED effects to all orders, the measured cross sections

were corrected to the QED Born level by applying an additional correction obtained

from a special sample of the Lepto MC with the radiative QED effects turned off. The

correction factors applied to each bin of the cross sections are given by NBORN/NRAD,

where NRAD is the number of events in the bin with the QED radiative effects included,

and NBORN is the number of events in the bin without the QED effects included. The

QED radiative effects, which are included in the tabulated results, were typically

2− 4%.

8.5 Hadronization Corrections

In order to make a meaningful comparison with the measurements that have been

corrected to the hadron-level, an extra correction factor is applied to the parton-level

predictions from NLOjet for the hadronization effects. The NLOjet calculations

were corrected using a bin-by-bin procedure using the hadron-level and parton-level

samples from the Lepto sample used for the QED corrections:

CHAD =
NHAD

NPAR

(8.13)

The hadronization correction factors, also included in the tabulated results, were

typically 0.7− 1.0.
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Chapter 9

Results

9.1 Systematic Uncertainty Estimates

A detailed study of the sources contributing to the systematic uncertainties of the

measurements has been performed. The main sources contributing to the systematic

uncertainties are listed below:

• the data were corrected using Lepto instead of Ariadne. This systematic

uncertainty was typically 5 − 10% for the single-differential cross sections, and

5 − 30% for the cross sections as functions of jet correlations. This systematic

uncertainty accounts for the treatment of the parton shower approach, where for

a certain kinematic and jet phase space, the predictions from Ariadne (CDM),

which i includes some BFKL-like effects, might differ greatly from those from

Lepto (MEPS), which is DGLAP-based. In this phase space, the ignorance of

how the parton cascade proceeds should be the largest systematic uncertainty.

• the jet energies in the data were scaled up and down by 3% for jets with trans-

verse energy less than 10 GeV and 1% for jets with transverse energy above 10
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GeV, according to the estimated jet energy scale uncertainty [66]. The system-

atic uncertainty from the jet energy scale was approximately 5− 15%.

• the cut on Ejet
T,HCM for each jet was raised and lowered by 1 GeV, corresponding

to the ET resolution, which resulted in a systematic uncertainty of 5 − 10%

for the cross sections as functions of jet correlations. Additionally, the cut on

Ejet3
T,HCM had a systematic uncertainty of 5− 10% for the trijet cross sections.

• the upper and lower cuts on η
jet1,2(,3)
LAB were each changed by ±0.1, corresponding

to the η resolution, which produced a systematic uncertainty of up to 10% for

the cross sections as functions of jet correlations;

• the uncertainties due to the selection cuts was estimated by varying the cuts

within the resolution of each variable. These systematic uncertainties were typ-

ically similar to or smaller than the statistical uncertainties.

The systematic uncertainties not associated with the absolute energy scale of

the jets were added in quadrature to the statistical uncertainties and are shown as

error bars. The uncertainty due to the absolute energy scale of the jets is shown

separately as a shaded band in each figure in this chapter, due to the large bin-to-bin

correlation. In addition, there is an overall normalization uncertainty of 2.2% from

the luminosity determination, which is not included in the overall uncertainty. The

systematic uncertainties for the measured cross sections are shown in Appendix C.

The theoretical uncertainty was estimated by varying the renormalization and

factorization scales simultaneously up and down by a factor of two, which estimates

the contribution from higher-order terms not included in the calculations. The un-
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certainties in the proton PDFs were estimated in the previous ZEUS multijets anal-

ysis [12] by repeating NLOjet calculations using 40 additional sets from CTEQ6M,

which resulted in a 2.5% contribution to the theoretical uncertainty and was therefore

neglected.

9.2 Single-differential Cross Sections dσ/dQ2, dσ/dxBj and Trijet-

to-dijet Cross Section Ratios

To examine the low-xBj limits of DGLAP applicability, the first test of the NLO-

jet calculations was to compare its predictions of the kinematic variablesQ2 and xBj to

the measured distributions. The single-differential cross-sections dσ/dQ2 and dσ/dxBj

for dijet and trijet production are presented in Figs. 9.1(a) and (c), and Tables A.1–

A.14. The ratio σtrijet/σdijet of the trijet cross section to the dijet cross section, as

a function of Q2 and of xBj are presented in Figs. 9.1(b) and 9.1(d), respectively.

The ratio σtrijet/σdijet is almost Q2 independent, as shown in Fig. 9.1(b), and falls

steeply with increasing xBj, as shown in Fig. 9.1(d). In the cross-section ratios, the

experimental and theoretical uncertainties partially cancel, providing a possibility to

test the pQCD calculations more precisely than can be done with the individual cross

sections. Both the cross sections and the cross-section ratios are well described by the

NLOjet calculations.
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Figure 9.1: Inclusive dijet and trijet cross sections as functions of (a) Q2 and (c)
xBj. Figures (b) and (d) show the ratios of the trijet to dijet cross sections. The bin-
averaged differential cross sections are plotted at the bin centers. The inner error bars
represent the statistical uncertainties. The outer error bars represent the quadratic
sum of statistical and systematic uncertainties not associated with the jet energy
scale. The shaded band indicates the jet energy scale uncertainty. The predictions of
perturbative QCD at NLO, corrected for hadronization effects and using the CTEQ6
parameterizations of the proton PDFs, are compared to data. The lower parts of the
plots show the relative difference between the data and the corresponding theoretical
prediction. The hatched band represents the renormalization-scale uncertainty of the
QCD calculation.
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9.3 Transverse Energy and Pseudorapidity Dependencies of

Cross Sections

The focus of this analysis is using jet correlations to test the accuracy of the

DGLAP approach. To ensure that the jets themselves are well-understood in this

kinematic region, the cross sections as a function of the jet variables are studied. The

single-differential cross-sections dσ/dEjet
T,HCM for two (three) jet events are presented in

Fig. 9.2. The single-differential cross sections dσ/dηjet
LAB for dijet and trijet production

are presented in Figs. 9.3(a) and 9.3(c). For this figure, the two (three) jets with

highest Ejet
T,HCM were ordered in ηjet

LAB. The measured cross sections are well described

by the NLOjet calculations over the whole range in Ejet
T,HCM and ηjet

LAB considered.

Also shown in Figure 9.3 are the measurements of the single-differential cross-

sections dσ/d|∆ηjet1,2
HCM |, where |∆ηjet1,2

HCM | is the absolute difference in pseudorapidity of

the two jets with highest Ejet
T,HCM (see Figs. 9.3(b) and 9.3(d)). The measurement of

|∆ηjet1,2
HCM | is a direct test of the correlation in polar angle of the two hardest jets, which

might be sensitive to the parton evolution scheme. The NLOjet predictions describe

the measurements well over the entire kinematic range considered, as shown in the

figure, and also when separated into bins of xBj given in A.2 (not shown).

9.4 Jet transverse energy and momentum correlations

Correlations in jet transverse energy are perhaps more sensitive to low-xBj ef-

fects than correlations in jet pseudorapidity, as the transverse energy Ejet
T,HCM is more

directly related to the jet transverse momentum. Correlations in transverse energy

of the jets have been investigated by measuring the double-differential cross-sections
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Figure 9.2: Inclusive dijet (a) and trijet (b) cross sections as functions of Ejet
T,HCM

with the jets ordered in Ejet
T,HCM. The cross sections of the second and third jet were

scaled for readability. Other details as in the caption to Fig. 9.1.

d2σ/dxBjd∆E
jet1,2
T,HCM, where ∆Ejet1,2

T,HCM is the difference in transverse energy between the

two jets with the highest Ejet
T,HCM. The measurement was performed in xBj bins, which

are defined in Table A.2, for dijet and trijet production. Figures 9.4 and 9.5 show the

cross-sections d2σ/dxBjd∆E
jet1,2
T,HCM for all bins in xBj for the dijet and trijet samples,

respectively.

The NLOjet calculations at O(α2
s) do not describe the high-∆Ejet1,2

T,HCM tail of

the dijet sample at low xBj, where the calculations fall below the data. Since these

calculations give the lowest-order non-trivial contribution to the cross section in the

region ∆Ejet1,2
T,HCM > 0, they are affected by large uncertainties from the higher-order
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Figure 9.3: The inclusive dijet (a) and trijet (c) cross sections as functions of ηjet
LAB

with the jets ordered in ηjet
LAB: ηjet1

LAB > ηjet2
LAB > ηjet3

LAB. The cross sections of the second
and third jet were scaled for readability. Figures (b) and (d) show the dijet and trijet
cross sections as functions of |∆ηjet1,2

HCM | between the two jets with highest Ejet
T,HCM.

Other details as in the caption in Fig. 9.1.
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terms in αs. A higher-order calculation for the dijet sample is possible with NLOjet

if the region ∆Ejet1,2
T,HCM near zero is avoided. NLOjet calculations at O(α3

s) for the

dijet sample have been obtained for the region ∆Ejet1,2
T,HCM > 4 GeV and are compared

to the data in Fig. 9.4. With the inclusion of the next term in the perturbative series

in αs, the NLOjet calculations describe the data within the theoretical uncertain-

ties. The NLOjet calculations at O(α3
s) for trijet production are consistent with the

measurements.

As a refinement to the studies of the correlations between the transverse energies

of the jets, further correlations of the jet transverse momenta have been investigated.

The correlations in jet transverse momenta were examined by measuring two sets of

double-differential cross sections: d2σ/dxBjd|Σ~p jet1,2
T,HCM| and

d2σ/dxBjd(|∆~p jet1,2
T,HCM|/(2E

jet1
T,HCM)). The variable |Σ~p jet1,2

T,HCM| is the transverse compo-

nent of the vector sum of the jet momenta of the two jets with the highest Ejet
T,HCM.

For events with only two jets |Σ~p jet1,2
T,HCM| = 0, and additional QCD radiation in-

creases this value. The variable |∆~p jet1,2
T,HCM|/(2E

jet1
T,HCM) is the magnitude of the vec-

tor difference of the transverse momenta of the two jets with the highest Ejet
T,HCM

scaled by twice the transverse energy of the hardest jet. For events with only two

jets |∆~p jet1,2
T,HCM|/(2E

jet1
T,HCM) = 1, and additional QCD radiation decreases this value.

Figures 9.6 – 9.9 show the cross-sections d2σ/dxBjd|Σ~p jet1,2
T,HCM| and the cross-sections

d2σ/dxBjd|∆~p jet1,2
T,HCM|/(2E

jet1
T,HCM) in bins of xBj for the dijet and trijet samples.

At low xBj, the NLOjet calculations at O(α2
s) underestimate the dijet cross

sections at high values of |Σ~p jet1,2
T,HCM| and low values of |∆~p jet1,2

T,HCM|/(2E
jet1
T,HCM). The

description of the data by the NLOjet calculations at O(α2
s) improves at higher
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Figure 9.4: Dijet cross sections as functions of ∆Ejet1,2
T,HCM. The NLOjet calculations

at O(α2
s) (O(α3

s)) are shown as dashed (solid) lines. The lower parts of the plots show
the relative difference between the data and the O(α3

s) predictions. Other details as
in the caption to Fig. 9.1.
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Figure 9.5: Trijet cross sections as functions of ∆Ejet1,2
T,HCM. The measurements are

compared to NLOjet calculations at O(α3
s). Other details as in the caption to Fig.

9.1.
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values of xBj. A higher-order calculation with NLOjet at O(α3
s) for the dijet sample

has been obtained for the region |Σ~p jet1,2
T,HCM| > 4 GeV, which is compared to the data

in Fig. 9.6; and for the region |∆~p jet1,2
T,HCM|/(2E

jet1
T,HCM) < 0.85, which is compared to the

data in Fig. 9.8. With the inclusion of the next term in the perturbative series in αs,

the NLOjet calculations describe the data well. The NLOjet calculations at O(α3
s)

for trijet production are consistent with the measurements.

9.5 Azimuthal distributions of the jets

Measurements of the double-differential cross-section d2σ/dxBjd|∆φjet1,2
HCM|, where

|∆φjet1,2
HCM| is the azimuthal separation of the two jets with the largest Ejet

T,HCM, for dijet

and trijet production are shown in Figs. 9.10 and 9.11 for all bins in xBj. For dijet and

trijet production the cross section falls with |∆φjet1,2
HCM|. The NLOjet calculations at

O(α2
S) for dijet production decrease more rapidly with |∆φjet1,2

HCM| than the data and the

calculations disagree with the data at low |∆φjet1,2
HCM|. A higher-order NLOjet calcula-

tion at O(α3
S) for the dijet sample has been obtained for the region |∆φjet1,2

HCM| < 3π/4

and describes the data well. The measurements for trijet production are reasonably

well described by the NLOjet calculations at O(α3
S).

A further investigation has been performed by measuring the cross-section

d2σ/dQ2dxBj for dijet (trijet) events with |∆φjet1,2
HCM| < 2π/3 as a function of xBj. For

the two-jet final states, the presence of two leading jets with |∆φjet1,2
HCM| < 2π/3 can

indicate another high-ET jet or set of high-ET jets outside the measured η range.

These cross sections are presented in Fig. 9.12. The NLOjet calculations at O(α2
S)

for dijet production underestimate the data, the difference increasing towards low

xBj. The NLOjet calculations at O(α3
S) are up to about one order of magnitude
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Figure 9.6: Dijet cross sections as functions of |Σ~p jet1,2
T,HCM|. The NLOjet calculations

at O(α2
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s)) are shown as dashed (solid) lines. The lower parts of the plots show
the relative difference between the data and the O(α3

s) predictions. Other details as
in the caption to Fig. 9.1.
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Figure 9.10: Dijet cross sections as functions of |∆φjet1,2
HCM|. The NLOjet calculations

at O(α2
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s)) are shown as dashed (solid) lines. The lower parts of the plots show
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s) predictions. Other details as
in the caption to Fig. 9.1.
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Figure 9.11: Trijet cross sections as functions of |∆φjet1,2
HCM|. The measurements are

compared to NLOjet calculations at O(α3
s). Other details as in the caption to Fig.

9.1.
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larger than the O(α2
S) calculations and are consistent with the data, demonstrating

the importance of the higher-order terms in the description of the data especially

at low xBj. The NLOjet calculations at O(α3
S) describe the trijet data within the

renormalization-scale uncertainties.

9.6 Comparison with Other Results

9.6.1 H1 Dijet Azimuthal Correlations

Dijet azimuthal correlations have also been investigated by the H1 Collabora-

tion [67] by measuring the cross-sections d2σ/dxBjd∆φ
∗, where ∆φ∗ is the azimuthal

separation in the hadronic center-of-mass (HCM) frame between the two selected jets

closest to the scattered electron in pseudorapidity. The measurements of ∆φ∗ are well-

described by NLOjet calculations at O(α3
s), within theoretical uncertainties similar

to those seen in this analysis. To reduce the theoretical uncertainties, the measure-

ments were normalized to the visible cross section for ∆φ∗ < 170◦. With a reduced

theoretical uncertainty, the calculations are shown to predict a narrower ∆φ∗ spec-

trum than is measured, especially at very low xBj (see Fig. 9.13). The measurements

were also compared to predictions from two Rapgap [68] (DGLAP) samples, with one

sample using only direct photons, the other using both direct and resolved photons;

Lepto with CDM instead of MEPS; and two Cascade [69] (CCFM) samples with

different unintegrated PDFs. All models fail to describe ∆φ∗ over the entire range in

xBj covered.
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Figure 9.12: The dijet and trijet cross sections for events with |∆φjet1,2
HCM| < 2π/3 as

functions of xBj in two different Q2-bins. The NLOjet calculations at O(α2
s) (O(α3

s))
are shown as dashed (solid) lines. The trijet measurements are compared to NLOjet
calculations at O(α3

s). The lower parts of the plots in (a) and (b) show the relative
difference between the data and the O(α3

s) predictions. Other details as in the caption
to Fig. 9.1.
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Figure 9.13: Double-differential normalized (see text) cross sections as a function of
∆φ∗ as measured by H1 compared to NLOjet calculations for O(α2

s) and O(α3
s). For

this measurement, the cross sections were normalized to the visible cross section for
|∆φ∗ < 170◦ to reduce the theoretical uncertainty.

9.6.2 ZEUS Forward Jet Production

To examine the sensitivity of parton evolution to forward jet production, the

ZEUS collaboration has studied jet production in an extended pseudorapidity range

of 2 < ηjet
LAB < 4.3 by incorporating the ZEUS Forward Plug Calorimeter (FPC) [70]

used during the HERAI running period [71]. Measurements of cross sections as func-

tions of Q2, xBj, E
jet
T,LAB, and ηjet

LAB are underestimated slightly by calculations from

Disent [46], with large theoretical uncertainties at both low xBj and high ηjet
LAB. Pre-

dictions from Lepto (DGLAP); Ariadne [37] (CDM); and Cascade, with two sets

from the J2003 unintegrated gluon PDF used, were also compared to the measure-

ments. Overall, Ariadne provides the best description of the measured cross sections;

Lepto consistently underestimates the cross sections, and Cascade fails to consis-
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tently reproduce the shapes of the distributions.

In addition to inclusive forward jet production, the correlations in pseudora-

pidity for a forward jet + dijet sample were also examined. The jets were ordered

in pseudorapidity with ηjet1
LAB < ηjet2

LAB < ηfjet
LAB, and the cross sections as functions of

∆η1 = ηjet2
LAB − ηjet1

LAB and ∆η2 = ηfjet
LAB − ηjet2

LAB. The measurement of ∆η2 was also

performed for events with ∆η1 > 1 and for events with ∆η1 < 1. Predictions from

NLOjet at O(α3
s) underestimate the cross sections for small ∆η1 and ∆η2, a config-

uration where all three jets are in the forward region, which may not be accurately

predicted by DGLAP-based predictions (see Fig. 9.14). Predictions from a tuned

version of Ariadne provide better overall predictions of these cross sections, while

Cascade and Lepto fail to describe the cross sections.

9.6.3 Trijet Production and Correlations

Trijet cross sections and correlations were measured by the H1 collaboration as a

study of parton evolution at low xBj [72]. Cross sections were measured as functions of

xBj, jet pseudorapidity, scaled jet energies, and correlations in the jet angles θ
′
and ψ

′
.

The variable θ
′
is defined as the angle between the proton beam and the jet with the

highest transverse energy, while ψ
′
is defined as the angle between the plane defined

by the proton beam and the highest ET jet, and the plane defined by the two jets with

the highest ET . These measurements were made for three separate trijet samples:

an inclusive trijet sample, and two trijet samples with one and two forward jets,

respectively, with a forward jet having θjet
LAB < 20◦ and xjet = Ejet

HCM/Epbeam > 0.035.

For the inclusive trijet sample, NLOjet calculations provide a reasonable description

of the measured cross sections, but slightly underestimate the measurements in the



147

ZEUS

0

50

100

150

0 2 4

(a)

∆η1

dσ
/d

∆η
1 

 (
pb

)

NLO  (µR =µF= Q)
NLO Uncertainty
Had. Cor. Uncertainty

0

25

50

75

100

0 2
∆η2

dσ
/d

∆η
2 

 (
pb

)

Energy Scale Uncertainty
ZEUS 82 pb-1

(b)

0

10

20

30

40

0 2 4

∆η1<1 (c)

∆η2

dσ
/d

∆η
2 

 (
pb

)

0

20

40

60

80

0 2

∆η1>1 (d)

∆η2

dσ
/d

∆η
2 

 (
pb

)
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lowest bin of xBj. The agreement between the calculations and the measured cross

section in xBj is worse for the trijet sample containing two forward jets, with the most

noticeable disagreement observed at lowest xBj. The selection of two forward jets favors

events with forward gluon emission unordered in transverse momentum, which the

calculations at O(α3
s) do not predict entirely. Also seen in Fig. 9.15 is that the higher-

order terms in the NLOjet calculations are important for forward jet emissions. The

other cross sections for this sample are well-described by the calculations.

Predictions from Djangoh (CDM) and Rapgap LO MC models were also com-

pared to the measured cross sections. The cross sections for the inclusive trijet sample

are better described by CDM predictions, but both the CDM and Rapgap predictions

are inconsistent for the jet correlation angles θ
′
and ψ

′
; the Rapgap predictions fail

to describe the θ
′
distributions, and the CDM predictions fail to describe the ψ

′
cross

sections.

The results from the comparison of the measured cross sections to NLOjet

predictions from the ZEUS forward jets analysis, the analysis presented in this thesis,

and the two H1 analyses are overall consistent. For the three analyses with trijet

samples, some disagreement between the cross sections and the NLOjet predictions

is seen, but unlike the case of the dijet sample, the “NNLO” calculations for the trijet

sample are currently unavailable, though with the large theoretical uncertainties seen

in this kinematic range, the contribution of higher-order terms to the calculations may

be non-negligible.
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Chapter 10

Conclusions

Dijet and trijet production in deep inelastic ep scattering has been measured in the

phase space region 10 < Q2 < 100 GeV2 and 10−4 < xBj < 10−2 using an integrated

luminosity of 82 pb−1 collected by the ZEUS experiment [73]. The statistics available

from the 1998-2000 HERA running period have allowed detailed studies of multijet

production at low xBj for comparison to DGLAP-based NLOjet predictions. The

dependence of dijet and trijet production on the kinematic variables Q2 and xBj and on

the jet variables Ejet
T,HCM and ηjet

LAB is well described by perturbative QCD calculations

which include NLO corrections.

To investigate possible deviations with respect to the collinear factorization ap-

proximation used in the standard pQCD approach, measurements of the correlations

between the two jets with highest Ejet
T,HCM have been made. At low xBj, measurements

of dijet production with low azimuthal separation are reproduced by the perturbative

QCD calculations provided that higher-order terms (O(α3
s)) are accounted for. Such

terms increase the predictions of pQCD calculations by up to one order of magnitude

when the two jets with the highest Ejet1,2
T,HCM are not balanced in transverse momentum.

This demonstrates the importance of higher-order corrections in the low-xBj region for
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such events. With the higher-order terms taken into consideration, predictions base

on the DGLAP double-leading log approach are in agreement with jet correlations for

values of xBj as low as 10−4. Even without the higher-order terms, the DGLAP DLL

approach reproduces the cross sections for the kinematic and jet variables over the

same kinematic range.

For a complete study of parton evolution schemes in low-xBj DIS, the measure-

ments presented in this analysis should also be compared to predictions from BFKL

and CCFM in this kinematic range. As seen in the discussion of other current results

from ZEUS and H1, the predictions from CCFM-based Cascade program have been

shown to depend heavily on the unintegrated PDF used and provide an overall incon-

sistent description of forward jet data in kinematic range similar to the one used in

this analysis. Fixed-order pQCD calculations for the BFKL approach are currently un-

available, as the resummation involves an expansion near the non-perturbative limit.

Although the DGLAP DLL approach is still applicable to xBj ∼ 10−4, the predictions

from BFKL-based pQCD calculations may be less sensitive to higher-order terms.
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Appendix A

Data Tables
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Appendix B

Purities, Efficiencies, and Correction

Factors
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Figure B.1: Purities, efficiencies, and correction factors for Q2 and xBj for the dijet
sample.
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Figure B.2: Purities, efficiencies, and correction factors for the Q2 and xBj cross sec-
tions for the trijet sample.
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Figure B.3: Purities, efficiencies, and correction factors for the Ejet1
T,HCM, Ejet2

T,HCM, ηjet1
LAB,

ηjet2
LAB, and |∆ηjet1,2

HCM cross sections for the dijet sample.
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Figure B.4: Purities, efficiencies, and correction factors for the Ejet1
T,HCM, Ejet2

T,HCM,

Ejet3
T,HCM, ηjet1

LAB, ηjet2
LAB, and |∆ηjet1,2

HCM cross sections for the trijet sample.



180

 0.00017 < x < 0.0003jet 1,2
T,HCM

 E∆
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3
Purity

Efficiency

Correction Factor

 0.0003 < x < 0.0005jet 1,2
T,HCM

 E∆
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3
Purity

Efficiency

Correction Factor

 0.0005 < x < 0.001jet 1,2
T,HCM

 E∆
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3
Purity

Efficiency

Correction Factor

 0.001 < x < 0.0025jet 1,2
T,HCM

 E∆
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3
Purity

Efficiency

Correction Factor

 0.0025 < x < 0.01jet 1,2
T,HCM

 E∆
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3
Purity

Efficiency

Correction Factor

Figure B.5: Purities, efficiencies, and correction factors for the ∆Ejet1,2
T,HCM cross sections

for the dijet sample in ascending bins of xBj.
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Figure B.6: Purities, efficiencies, and correction factors for the ∆Ejet1,2
T,HCM cross sections

for the trijet sample in ascending bins of xBj.
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Figure B.7: Purities, efficiencies, and correction factors for the |∆~pjet1,2
T,HCM|/(2E

jet1
T,HCM)

cross sections for the dijet sample in ascending bins of xBj.
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Figure B.8: Purities, efficiencies, and correction factors for the |∆~pjet1,2
T,HCM|/(2E

jet1
T,HCM)

cross sections for the trijet sample in ascending bins of xBj.
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Figure B.9: Purities, efficiencies, and correction factors for the |∆~pjet1,2
T,HCM|/(2E

jet1
T,HCM)

cross sections for the dijet sample in ascending bins of xBj.
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Figure B.10: Purities, efficiencies, and correction factors for the |∆~pjet1,2
T,HCM|/(2E

jet1
T,HCM)

cross sections for the trijet sample in ascending bins of xBj.
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Figure B.11: Purities, efficiencies, and correction factors for the |∆φjet1,2
HCM| cross sections

for the dijet sample in ascending bins of xBj.
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Figure B.12: Purities, efficiencies, and correction factors for the |∆φjet1,2
HCM| cross sections

for the trijet sample in ascending bins of xBj.



188

| < 120 deg)
jet 1,2
HCMφ ∆ (|2 < 15 GeV

2
x, 10 < Q

10
-3

0

0.5

1

1.5

2

2.5

3
Purity

Efficiency

Correction Factor

| < 120 deg)
jet 1,2
HCMφ ∆ (|2 < 20 GeV

2
x, 15 < Q

10
-3

0

0.5

1

1.5

2

2.5

3
Purity

Efficiency

Correction Factor

| < 120 deg)
jet 1,2
HCMφ ∆ (|2 < 30 GeV

2
x, 20 < Q

10
-3

0

0.5

1

1.5

2

2.5

3
Purity

Efficiency

Correction Factor

| < 120 deg)
jet 1,2
HCMφ ∆ (|2 < 50 GeV

2
x, 30 < Q

10
-3

0

0.5

1

1.5

2

2.5

3
Purity

Efficiency

Correction Factor

| < 120 deg)
jet 1,2
HCMφ ∆ (|2 < 100 GeV

2
x, 50 < Q

10
-3

0

0.5

1

1.5

2

2.5

3
Purity

Efficiency

Correction Factor

Figure B.13: Purities, efficiencies, and correction factors for the cross sections in Q2

and xBj with |∆φjet1,2
HCM| < 2π/3 for the dijet sample in ascending bins of Q2.
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Figure B.14: Purities, efficiencies, and correction factors for the cross sections in Q2

and xBj with |∆φjet1,2
HCM| < 2π/3 for the dijet sample in ascending bins of Q2.
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Appendix C

Systematic Uncertainties

The points representing the systematic uncertainties in the following figures are num-

bered in ascending order from left to right. Table C lists all the systematics considered

in this analysis. The uncertainties associated with the cuts on Q2 and xBj were deter-

mined by scaling those variables by their resolutions to preserve the binning for the

mult-differential cross sections. The points representing the systematic uncertainties

in the following figures are numbered in ascending order from left to right.
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Systematic Number Variation

1 Q2 scaled +

2 Q2 scaled −
3 xBj scaled +

4 xBj scaled −
5 yJB cut −
6 yJB cut +

7 yel cut −
8 yel cut +

9 E − pz lower cut −
10 E − pz lower cut +

11 E − pz upper cut −
12 E − pz upper cut +

13 Ee cut −
14 Ee cut +

15 Ejet1
T,HCM cut −

16 Ejet1
T,HCM cut +

17 Ejet2
T,HCM cut −

18 Ejet2
T,HCM cut +

19 ηjet
LAB lower cut −

20 ηjet
LAB lower cut +

21 ηjet
LAB upper cut −

22 ηjet
LAB upper cut +

23 Ejet3
T,HCM cut − (trijet sample only)

24 Ejet3
T,HCM cut + (trijet sample only)

25 Lepto systematic (23 for dijet sample)

Table C.1: The systematic uncertainties considered in this analysis. Also considered,
but not appearing in the following figures is the uncertainty from the jet energy scale.
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Figure C.1: Systematic uncertainties for Q2 and xBj for the dijet sample.
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Figure C.5: Systematic uncertainties for the ∆Ejet1,2
T,HCM cross sections for the dijet

sample in ascending bins of xBj.
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Figure C.6: Systematic uncertainties for the ∆Ejet1,2
T,HCM cross sections for the trijet

sample in ascending bins of xBj.
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Figure C.7: Systematic uncertainties for the |∆~pjet1,2
T,HCM|/(2E

jet1
T,HCM) cross sections for

the dijet sample in ascending bins of xBj.
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Figure C.8: Systematic uncertainties for the |∆~pjet1,2
T,HCM|/(2E

jet1
T,HCM) cross sections for

the trijet sample in ascending bins of xBj.
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Figure C.9: Systematic uncertainties for the |∆~pjet1,2
T,HCM|/(2E

jet1
T,HCM) cross sections for

the dijet sample in ascending bins of xBj.
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Figure C.10: Systematic uncertainties for the |∆~pjet1,2
T,HCM|/(2E

jet1
T,HCM) cross sections for

the trijet sample in ascending bins of xBj.
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Figure C.11: Systematic uncertainties for the |∆φjet1,2
HCM| cross sections for the dijet

sample in ascending bins of xBj.
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Figure C.12: Systematic uncertainties for the |∆φjet1,2
HCM| cross sections for the trijet

sample in ascending bins of xBj.
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Figure C.13: Systematic uncertainties for the cross sections in Q2 and xBj with

|∆φjet1,2
HCM| < 2π/3 for the dijet sample in ascending bins of Q2.
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Figure C.14: Systematic uncertainties for the cross sections in Q2 and xBj with

|∆φjet1,2
HCM| < 2π/3 for the dijet sample in ascending bins of Q2.
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[41] T. Sjöstrand, Comp. Phys. Comm. 82, 74 (1994).

[42] Z. Nagy and Z Trocsanyi, Phys. Rev. Lett. 87, 082001 (2001).

[43] E. Mirkes and D. Zeppenfeld, Phys. Lett. B, 205 (1996).

[44] Fabricius, K. and Schmitt, I. and Kramer, G. and Schierholz, G., Zeit. Phys.
C11, 315 (1981).

[45] Ellis, R. Keith and Ross, D. A. and Terrano, A. E., Nucl. Phys. B178, 421 (1981).

[46] S. Catani and M. H. Seymour, Nucl. Phys. B 485, 291 (1997).

[47] N. Krumnack, Three Jet Events in Deep Inelastic Scattering. Ph.D. Thesis,
University of Hamburg, 2004.

[48] L. Li. Ph.D. Thesis, University of Wisconsin-Madison, 2004.

[49] Chekanov, S. and others, Phys. Lett. B632, 13 (2006).



209

[50] J. Pumplin et al., Preprint hep-ph/0201195, 2002.

[51] G. F. Hartner, VCTRAK Briefing: Program and Math (unpublished). Zeus-98-
058, internal ZEUS-note, 1998.

[52] A. Savin, Study of Calorimeter Noise in the 1996 Data (unpublished). ZEUS-98-
007, internal ZEUS-note, 1998.

[53] Ch. Amelung, Electron Position Reconstruction in ZEUS: Further Update of the
ELECPO Package (Based on 1995 Data) (unpublished). ZEUS-96-093, internal
ZEUS note, 1996.

[54] Abramowicz, Halina and Caldwell, Allen and Sinkus, Ralph, Nucl. Instrum.
Meth. A365, 508 (1995).

[55] M. Wodarczyk, Measurement of the F2 Structure Function of the Proton at HERA
from 1996 and 1997 ZEUS Data. Ph.D. Thesis, University of Wisconsin, 1999.

[56] N. Tuning, ZUFOs: Hadronic Final State Reconstruction with Calorimeter,
Tracking and Backsplash Correction (unpublished). ZEUS-Note-01-021, 2001.

[57] D. Chapin, A Measurement of Dijet Production in Neutral Current Deep Inelastic
Scattering with ZEUS at HERA. Ph.D. Thesis, Univeristy of Wisconsin, Madison,
2001. Unpublished.

[58] S. Bentvelsen, J. Engelen and P. Kooijman, Proc. Workshop on Physics at HERA,
W. Buchmüller and G. Ingelman (eds.), Vol. 1, p. 23. Hamburg, Germany, DESY
(1992);
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