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Abstract

Exclusive radiative penguin B decays, B → (K∗0/K∗+)γ and B → (ρ/ω)γ, are
flavor-changing neutral-current (FCNC) processes. Studies of these decays are of
special interest in testing Standard Model (SM) predictions and searching for other
beyond-the-SM FCNC interactions. Using 89 × 106 BB pairs from BABAR, we mea-
sure the branching fraction (B), CP -asymmetry (A), and isospin asymmetry (∆0−) of
B → (K∗0/K∗+)γ as follows:

B(B0 → K∗0γ) = 3.92 ± 0.20(stat.) ± 0.24(syst.),
B(B+ → K∗+γ) = 3.87 ± 0.28(stat.) ± 0.26(syst.),
A(B → K∗γ) = −0.013 ± 0.36(stat.) ± 0.10(syst.),

∆0−(B → K∗γ) = 0.050 ± 0.045(stat.) ± 0.028(syst.) ± 0.024(R+/0).

The 90% confidence intervals for the CP -asymmetry and the isospin-asymmetry in the
B → K∗γ decay are given as:

−0.074 < A(B → K∗γ) < 0.049,
−0.046 < ∆0−(B → K∗γ) < 0.146.

We also search for B → (ρ/ω)γ decays using 211 × 106 BB pairs from BABAR. No
evidence for these decays is found. We set the upper limits at 90% confidence level for
these decays:

B(B0 → ρ0γ) < 0.4 × 10−6,
B(B+ → ρ+γ) < 1.8 × 10−6,
B(B0 → ωγ) < 1.0 × 10−6,

B(B → (ρ/ω)γ) < 1.2 × 10−6.

These results are in good agreement with the SM predictions. The branching fractions
of these decays are then used to constrain the ratio |Vtd|/|Vts|.
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1 Introduction

The world view of particle physics [1, 2] is that matter is made out of three generations

of leptons,
(

νe

e

)

,

(

νµ

µ

)

,

(

ντ

τ

)

,

three generation of quarks,
(

u
d

)

,

(

c
s

)

,

(

t
b

)

,

the antiparticles of the leptons and quarks, and the mediators of interactions between them,

photon, W± − bosons, Z0 − boson, gluons, and graviton.

These are called elementary particles. Other particles, such as baryons and mesons, are

composed of combinations of these elementary particles. For example, baryons consist of

three quarks or anti-quarks and mesons consist of a quark and an anti-quark.

Particles interact with each other through four basic interactions: gravity, electromag-

netic, weak, and strong interactions by exchanging graviton, photon, W ± and Z0 bosons, and

gluons, respectively1. In current understanding, charged leptons involve the electro-magnetic

and weak interactions, however, neutrinos involve only the weak interaction; quarks inter-

act through electro-magnetic, weak, and strong interactions. All these particles involve the

gravity interaction, which is much weaker than any other interaction and will be ignored in

the following discussion.

Many theories have been proposed to describe particles and their interactions. After

the 1950, it was generally assumed that quantum field theory was the form of the laws

of nature [3]. A local gauge field theory was used successfully to unify the electromagnetic

1Maxwell formulated the classical theory of electromagnetism. The weak interaction was first observed
in Beta decays. Yukawa proposed the strong interaction to explain the interaction between protons and
nucleons in 1934. A historical review of these interactions can be found in references [1, 2].
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interaction and the weak interaction among quarks and leptons, and is known as the Standard

Model (SM) [4, 5, 6].

1.1 Symmetries

Since the birth of modern physics, probing the behavior of a system under various trans-

formations has been important in understanding the underlying physical laws, and has special

importance in particle physics, e.g. gauge invariance in unification of the electromagnetic

interaction and the weak interaction. A symmetry transformation is a change of a system

that does not change possible experimental results. Noether’s theorem [7] states that for

any symmetry of a system there are some corresponding conservation laws, and vice versa.

Therefore, symmetries can be used as a probe of the underlying physics of a system. Symme-

try transformations naturally form groups2, “symmetry groups”; and group theories can be

used to study these symmetrical transformations systematically; e.g. by studying different

representations of the symmetry group.

The symmetries of particles can be divided into space-time and internal symmetries.

Different groups, such as the connected Lie group, are used to characterize these symmetrical

properties. For example, the most fundamental symmetry in physics is Lorentz invariance,

which forms the Poincare group. Other Lie groups, such as U(1) and SU(2), have special

importance in the construction of the SM, and are used to describe internal symmetries.

The symmetry of a system can be broken. For example, the space-inversion transforms

the coordinate of a particle ~r to −~r and was thought to be a good symmetry, called par-

ity (P ). This symmetry is broken when the weak interaction is introduced, called P -violation.

Another example, the CP -transformation, converts a particle into its anti-partner with in-

2Symmetry transformation A followed by symmetry transformation B, gives another symmetry transfor-
mation C, which can be defined as C = BA. With this definition of multiplicity, other requirements of a
group is trivial, e.g. the unit is a transformation to itself.
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verse momentum and was also thought to be a good symmetry. However, it is also broken

in the presence of electroweak interactions. There are several types of CP -violation. For

example, a decay i → f and its CP -conjugate decay i → f may happen with different decay

rates, represented by Γ in the following; this is the so-called “direct” CP -violation. Direct

CP -violation results from different strong and weak phases in a decay with many amplitudes.

The direct CP -asymmetry, defined as

A =
Γ(i → f) − Γ(i → f)

Γ(i → f) + Γ(i → f)
, (1)

can be used to quantify the magnitude of CP -violation. In addition to direct CP -violation,

other types of CP -violation are possible [8]. The mechanism of CP -violation is of special

importance in understanding our universe.

1.2 Gauge Symmetry and Gauge Fields

One of the key features in modern particle theory is gauge symmetry. In the Lagrangian

formalism, the Lagrangian of matter fields ui(x) (i = 1, 2, ..., n) is of the format L(ui, ∂µui).

A global gauge transformation3 takes the form, ui(x) → u′
i(x) = ui(x) + tkijεkuj(x) (k =

1, 2, ..., m), with tkijs group generators and εks infinitesimal parameters of the group. The

Lagrangian is invariant under this gauge transformation. Here ∂µui ≡ ∂ui/∂xµ with index

µ is used to indicate the space-time coordinates, and tk
ijεkuj(x) represents

∑

k,j tkijεkuj(x).

This convention will be used throughout the rest of this dissertation.

In today’s understanding, the Lagrangian of matter fields is also locally gauge invariant4.

Under a group of local gauge transformations, ui(x) → u′
i(x) = ui(x) + tkijεk(x)uj(x), a

globally invariant Lagrangian can be locally non-invariant. To be locally gauge invariant,

3This is called “global” because the group element has no time-space dependence.
4The local gauge invariance is one of the key features in modern physics, since it ensures the calculated

observables are finite
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a total of m vector fields5, Ai
µ (i = 1, 2, ..., m), are introduced into the Lagrangian. The

Lagrangian of these vector fields, L′, must meet a very specific condition,

∂L′

∂F a
µν

fbcaF
b
µν = 0, c = 1, 2, ..., m, (2)

with fbca structure constants and

F a
µν = ∂µAa

ν − ∂νA
a
µ − 1

2
fbca(A

b
µA

c
ν − Ab

νA
c
µ), a = 1, 2, ..., m; µ 6= ν. (3)

These are the so-called gauge fields. Interactions between matter fields and gauge fields are

then introduced in a predefined manner by making a replacement, ∂µui → ∂µui−T k
ijujA

k
µ, in

the Lagrangian of the matter fields, L. The simplest form of gauge fields is the Yang-Mills

field, which is

LY M = −1

4
Fµν

kFµν
k, (4)

with Fµν
k as defined in Eq. 3. This is the Lagrangian of the gauge fields introduced in

the SM.

1.3 Spontaneous Symmetry-Breaking

Local gauge invariance has been very attractive in building theories to unify electromag-

netic and weak interactions, where gauge fields are identified as mediators. These gauge

fields are massless particles, which apparently contradicts the experimental fact that the

mediators for the weak interaction are very massive. The Lagrangian of these gauge fields is

required to take a very constrained form, as shown in Eq. 2, which eliminates the possibility

of simple addition of mass terms. Instead, spontaneous symmetry-breaking is introduced to

give mass to these gauge fields.

5This is equal to the number of generators in the group.
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This symmetry-breaking mechanism can be best realized in the following example of a

complex scalar field φ(x) described by

L = (∂µφ∗(x))(∂µφ(x)) − m2φ∗(x)φ(x) − 1

4
f(φ∗(x)φ(x))2, (5)

with f > 0. The Lagrangian is invariant under the global U(1) transformation. When

m2 > 0, as shown in Figure 1 a), the vacuum state of the Lagrangian is non-degenerate, and

is also U(1) invariant; this is an exact symmetry. When m2 < 0, as shown in Figure 1 b),

there are an infinite number of degenerate vacuum states φV (x) =
√

2m/
√

f . Under a gauge

transformation, any vacuum state can be transformed into a different vacuum state. The

gauge invariance of vacuum states is broken; this is a spontaneous symmetry-breaking. In the

spontaneous symmetry-breaking, a vacuum state must be chosen to construct any theory;

e.g. φ(x) is given in terms of φ = (2m/
√

f + φ1(x) + φ2(x))/
√

2 as shown in Figure 1 c).

With this choice of the vacuum state, the Lagrangian in Eq. 5 takes the form,

L =
1

2
(∂µφ1(x))2 +

1

2
(∂µφ2(x))2 − 1

2
m2

1φ
2
1(x) − . . . , (6)

with m1 =
√

2m. So as a consequence of the spontaneous symmetry breaking, a real scalar

field, φ1(x), with mass m1 and a massless scalar field, φ2(x), are seen. These massless

particles are called “Goldstone” bosons.

o φ

)φV(

>02a) m

o φ

)φV(

<02b)  m

o φRe

φIm

c)

1φ
2φ

Figure 1: Vacuum states: a) non-degenerate; b) degenerate; c) fixed. Here V (φ) =
m2φ∗(x)φ(x) + 1

4
f(φ∗(x)φ(x))2, defined in Eq. 5.
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Using the same mechanism, the breaking of a local gauge symmetry could give mass to

vector gauge bosons. For example, for a local U(1) gauge invariant scalar field,

L = −1
4
FµνFµν + (∂µφ∗ − igAµφ

∗)(∂µφ + igAµφ) − m2φ∗φ − 1
4
f(φ∗φ)2, (7)

after the same symmetry-breaking described above, the Lagrangian is

L = −1
4
(∂µBν − ∂νBµ)2 − 2g2m2

f
BµBµ + 1

2
(∂µφ1)(∂µφ1) − m2φ2 + . . . . (8)

A vector gauge field, Bµ, with mass 2gm/
√

f is seen. The massive scalar field, φ1(x), shows

up again. The massless scalar field, φ2(x), disappears, and is absorbed into the vector

gauge field, Bµ, to give mass to the vector boson. This is the so-called Higgs mechanism of

spontaneous symmetry-breaking.

1.4 The Standard Model

1.4.1 Introduction to the Standard Model

The Standard Model was first proposed by Glashow, Salam, and Weinberg to unify the

electro-magnetic and weak interactions among leptons [4, 5, 6]. It is a local gauge theory.

The construction of the theory starts from a global SU(2) × U(1) invariant Lagrangian,

L = L0 + LY + LH ,
where

L0 ≡
∑

j=e,µ,τ i · [Ljγµ∂µLj + Rjγµ∂µRj]

LY ≡ ∑

j=e,µ,τ i · [−hjLjφRj − hjRj φLj]

LH ≡ ∂µφ∂µφ + m2φφ − 1
4
f(φφ)2.

(9)

The invariant Lagrangian contains the Lagrangian of massless fermion fields (L0), a doublet

Higgs field (LH), and the interaction Lagrangian between the Higgs field and the fermion

fields (LY ), which are Yukawa terms with coupling constant hjs. In the Lagrangian of

the fermion fields, L0, only left-handed lepton SU(2)-doublets (L) and right-handed lepton

SU(2)-singlets (R) are involved.

L ≡ 1

2
(1 + γ5)

(

νl

l

)

, R ≡ 1

2
(1 − γ5)(l); l = e, µ, τ. (10)
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This combination of quark doublet or singlet is to take account of the fact that there are no

right-handed neutrinos or right-handed lepton doublets observed in experiments. The Higgs

field is an isotopic doublet of scalar fields, φ ≡
(

φ1

φ2

)

, with f and m2 larger than zero

to ensure the symmetry breaks spontaneously. The fermion mass term, LR + RL, is not

invariant due to the different transformation properties of L and R. The fermions acquire

mass by virtue of Yukawa couplings. The L is invariant when these fields transform under

the SU(2) and U(1) groups6, whose coupling constants are g and g1, respectively.

By requiring local gauge invariance, four massless gauge fields are introduced into the

above Lagrangian. In the SM, these gauge fields take the form of the Yang-Mills fields shown

in Eq. 4. Then making use of the spontaneous symmetry-breaking and selecting the vacuum

state at
√

2m/
√

f

(

0
1

)

, the Lagrangian L takes the following form7,

L = L0 + LI, where

L0 = −1
2
Wµν

∗Wµν + g2m2

f
Wµ

∗Wµ − 1
4
ZµνZµν +

m2(g2+g2
1)

2f
ZµZµ

−1
4
BµνBµν

+1
2
∂µσ∂µσ − m2σ2

+i
∑

l=e,µ,τ [lγµ∂µl −
√

2hlm√
f

ll + ν lγµ
1+γ5

2
∂µνl]

and,
LI = { gg1√

g2+g2
1

Jµ
e,l(x)Bµ}

+{− g

2
√

2
Jµ

+,l(x)Wµ
∗(x) + h.c.} + {− 1

2

√

g2 + g2
1[Jµ

n,ν(x) + Jµ
n,l(x)]Zµ(x)}

−∑

l=e,µ,τ
1
2
hσll + · · ·

(13)

6The transformation of these fields under SU(2) is

L(x) → exp(− i
2g~τ · ~ε)L(x) and R(x) → R(x),

φ(x) → exp(− i
2g~τ · ~ε)φ(x),

(11)

and under U(1) as

L(x) → exp(− i
2g1YLε4)L(x) and R(x) → exp(− i

2g1YRε4)L(x),
φ(x) → exp(− i

2g1ε4)φ(x),
(12)

with ~τ , the Pauli matrix, 1
2YL =

(

− 1
2 0

0 − 1
2

)

, 1
2YR = −1, and ~ε, ε4, infinitesimal group parameters.

7A detailed derivation and the complete format of the Lagrangian is described elsewhere [9]; here only
some of the terms are selected out to discuss some novel physics results in the SM.
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The Lagrangian, L0, comprises fields that can be identified with charged intermediate vector

boson fields , W (x), with mass gm/
√

f ; with a neutral intermediate vector boson field, Z(x),

with mass
√

g2 + g2
1m/

√
f ; with an electromagnetic field, B(x); with a real scalar field, σ(x),

with mass m (the Higgs boson); with lepton fields of mass mhl

√

2/f , l; and with left-handed

neutrinos, νl(x)s. The Lagrangian, LI , describes interactions among these fields, where the

Jµ
e,l(x), Jµ

+,l(x), Jµ
n,ν(x), and Jµ

n,l(x) take the following forms:

Jµ
e,l(x) =

∑

l=e,µ,τ l(x)γµl(x),

Jµ
+,l(x) =

∑

l=e,µ,τ ν l(x)γµ(1 + γ5)l(x),

Jµ
n,ν(x) = 1

2
[
∑

l=e,µ,τ νl(x)γµνl(x)],

Jµ
n,l(x) = (−1

2
+ ξ)[

∑

l=e,µ,τ l(x)γµ(1 + γ5)l(x)] + ξ[
∑

l=e,µ,τ l(x)γµ(1 − γ5)l(x)],

(14)

with ξ = g2
1/

√

g2 + g2
1.

The gg1/
√

g2 + g2
1Jµ

e,l(x)Bµ is identified as electromagnetic interaction with

e = − gg1
√

g2 + g2
1

. (15)

The weak decays originate from interactions with charged W bosons. In the low-energy

limit (q2 � m2
W ), the propagator of the weak charged current naturally takes the form of

Fermi’s weak theory, leading to G/
√

2 = g2/(8m2
W ). The most interesting property of the SM

is the occurrence of neutral weak currents, Jµ
n,ν(x) and Jµ

n,l(x). A number of consequences

of this prediction have been subjected to experimental tests, and verified in experiments.

The SM can be extended easily to include electroweak interactions among quarks. The

SU(2) × U(1) is assumed to be the gauge group of the electroweak interaction among the

quarks. The quarks are then grouped as left-handed SU(2) doublets,

(

u
d

)α

L

≡ 1

2
(1 + γ5)

(

u
d

)α

L

,

(

c
s

)α

L

≡ 1

2
(1 + γ5)

(

c
s

)α

L

,

(

t
b

)α

L

≡ 1

2
(1 + γ5)

(

t
b

)α

L

,

and right-handed SU(2) singlets,

uα
R ≡ 1

2
(1 − γ5)u

α, cα
R ≡ 1

2
(1 − γ5)c

α, tαR ≡ 1
2
(1 − γ5)t

α,
dα

R ≡ 1
2
(1 − γ5)d

α, sα
R ≡ 1

2
(1 − γ5)s

α, bα
R ≡ 1

2
(1 − γ5)b

α,
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with α color charges (red, blue, and green). A total of nine left-handed quark doublets and

18 right-handed quark singlets are included8. Similarly, the quarks obtain mass from Yukawa

couplings to the Higgs boson. Electromagnetic quark currents, Jµ
e,q(x), charged weak quark

currents, Jµ
+,q(x), and neutral weak quark currents, Jµ

n,q(x), can be identified in the same

way as was done for the leptons (Eq. 13). The most remarkable feature of this model is the

neutral weak quark current, which forbids flavor-changing neutral-current (FCNC) processes.

For example, the decay K0
S
→ µ+µ− is forbidden in the SM. The strong interaction among

the quarks is included in the SM by choosing SU(3) as the gauge group. The color states

of each quark are placed in a triplet of the SU(3) group. A total of eight massless gauge

fields, gluons, are introduced as mediators of the strong interaction. Unlike the photon in

the electroweak interaction, the gluons can interact with each other.

1.4.2 Quark Mixing and the CKM Matrix

The charged quark current, Jµ
+,q(x), takes a form similar to its corresponding lepton

shown in Eq. 14,

Jµ
+,q(x) = u(x)γµ(1 + γ5)d(x) + c(x)γµ(1 + γ5)s(x) + t(x)γµ(1 + γ5)b(x). (16)

Therefore, transitions among different generations of quarks, e.g. s → u, are forbidden,

violating the experimental facts, e.g. decays like K+ → lνl are observed. This discrepancy is

due to the fact that the electroweak eigenstates of the quarks are not the same as the quark

mass eigenstates. The electroweak eigenstates of the quarks are a mixture of the quark mass

eigenstates. The mixing between the d and s quarks was first proposed by Cabibbo [10].

8The YL and YR in the U(1) transformation take the form of 1
2YL =

(

1
6 0
0 1

6

)

and 1
2YR =

(

− 2
3 0

0 1
3

)

,

respectively.
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a)

γ
β

α

*
cbV

cdV

*
tb

Vtd
V

* ub
V

ud
V

b)

γ β

α

0 1

|
*

cb
Vcd

|V *
tb

Vtd
V|

* cb
V

cd
|V

* ub
V

ud
V

ρ

η
Figure 2: The Unitary Triangle (UT). In b), each side of the UT is scaled by VcdV

∗
cb, and one

side is placed on the x-axis.

Conventionally, this mixing is assumed to happen among d, s, and b quarks, taking the form





d′

s′

b′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 ·





d
s
b



 . (17)

This parameterization was first proposed by Kobayashi and Maskawa [11] as a generalization

case of the Cabibbo matrix, and now is known as the Cabibbo-Kobayashi-Maskawa (CKM)

matrix.

The free parameters in the CKM matrix can be reduced by requiring its unitarity and

by a redefinition of quarks’ states. The total number of free parameters is four, including

a complex phase term9. This phase term is the only source for CP -violation in the SM. It

is interesting to note that mixing of only two generations of quarks would not allow CP -

violation. This led to the prediction of three generations of quarks before there was any

experimental evidence for the third generation.

The unitarity of the CKM matrix gives some important relations among the elements of

9For n-generation quark-doublets, the total free parameters of the mixing matrix is (n − 1)2: 1
2 (n − 1)n,

real parameters, normally known as “mixing angle” and 1
2 (n − 1)(n − 2), complex phase angles.
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the CKM matrix. The most important one is,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (18)

which forms a triangle, the Unitarity Triangle (UT), in the complex plane (See Figure 2)10.

The UT can be rearranged in the position shown in Figure 2 b) by dividing Eq. 18 by VcdV
∗
cb

and placing the two vertexes of the rescaled UT at (0, 0) and (1, 0). The third vertex is

conventionally denoted as (ρ, η) and the three inner angles are denoted by α, β, and γ. By

further defining λ = |Vus|, the Wolfenstein parametrization of the CKM matrix is realized11:

V =





1 − λ2

2
λ Aλ3(ρ − iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1



 + O(λ4). (19)

The elements of the CKM matrix are free parameters in the SM and have to be measured

in experiments. Under quark mixing, the charged weak current, Jµ
+,q(x), in Eq. 20 is

Jµ
+,q(x) = qi(x)γµ(1 + γ5)Vijqj(x) : i = u, c, t; j = d, s, b. (20)

Therefore, in principle, all the elements can be measured by the corresponding quark decays.

For example, the nuclear beta decay, which involves the d → u weak decay, was used to

determined the |Vud| [12]. Currently the allowed ranges of the CKM elements [13] at 90%

Confidence Level (C.L.) are




0.9741 to 0.9751 0.219 to 0.226 0.004 to 0.014
0.219 to 0.226 0.9732 to 0.9748 0.037 to 0.044
0.0025 to 0.0048 0.038 to 0.044 0.9990 to 0.9993



 , (21)

obtained by combining experimental results and utilizing the unitarity of the CKM matrix.

Only the |Vtd| and the |Vub| are poorly determined.
10Other unitarity relations, such as

VudV ∗
us + VcdV

∗
cs + VtdV

∗
ts = 0,

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0,

can be obtained.
11The one actually used is a slight variation of the standard Wolfenstein parametrization: the third vertex

(ρ, η) is redefined to be (ρ ≡ ρ(1 − λ2/2), η ≡ η(1 − λ2/2)), and this could improve the Wolfenstein
parametrization up to O(λ6).
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1.5 SM Limitations

The SM successfully explains all the current experimental results. However, it leaves

many questions unanswered [14]:

• In the SM, there are three gauge groups, associated with three arbitrary coupling con-

stants. The fermions are grouped into left-handed doublets and right-handed singlets.

However, the SM cannot predict anything about the origins of the coupling constants.

The choice of fermion representation is made purely to match the experimental facts.

It cannot predict anything about the choice of the hypercharges.

• The SM includes three generation of fermions; however, it tells nothing about why this

is so. It does not forbid more generations of fermions, either. The fermion masses

and the mixing parameters seem to exhibit a hierarchical pattern; e.g., mt, mb >>

mc, ms >> mu, md. The SM cannot explain this.

• The SM predicts the existence of at least one Higgs boson. This prediction has not

yet been confirmed experimentally. In addition to its existence, the mass of the Higgs

boson receives quadratically divergent quantum loop corrections.

• One of the biggest puzzles in the SM is that CP -violation in the SM is too weak to

explain the present matter-dominated universe.

And there are many other limitations that are not discussed here. We believe that the SM is

only valid up to a cut-off energy. Beyond that cut-off energy new physics phenomena must

exist. Many extensions to the SM have been proposed.

Models based on supersymmetry (SUSY) [15, 16] impose a symmetry transformation

between the fermions and bosons. As a consequence of this new symmetry the SM spectrum

of particles is doubled, with the introduction of new super-particles: scalars corresponding
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to each SM fermion, and fermions corresponding to each boson. The quadratic divergence

of the SM model Higgs mass correction is naturally avoided because contributions to it from

bosonic and fermionic loops occur with opposite sign and cancel each other out.

The Higgs sector in the SUSY models is more complicated than in the SM. For example,

in the Minimal Supersymmetric Standard Model (MSSM) [15], additional Higgs bosons are

predicted: a light Higgs (h0), a CP-even heavy Higgs (H0), a CP-odd heavy Higgs (A0), and

two charged Higgs particles (H±). The masses of the MSSM Higgs sector is governed by two

parameters, e.g. the ratio of the two Higgs field vacuum expectation values and the mass of

one of the Higgs particles. The Higgs particle h0 behaves much like the SM Higgs, and is

required to be lighter than Z-boson at tree-level. Higher order corrections allow this mass

to be somewhat higher than the present experimental search limits [17, 18].

Further, SUSY must be broken at low energies because there is no experimental evidence

for super-particles at such range. Several models of SUSY breaking, which predict new

super-particles at masses of the order of TeV, are currently allowed within the limitations of

experimental measurements [15, 16].

In SUSY models, many non-SM particles are introduced. These SUSY particles can

contribute significantly to some rare SM decays, e.g. the b → s(d)γ decays discussed in the

following. Studies of these decays can provide indirect evidence to the SUSY particles and

a discussion of searching for SUSY particles using b → sγ decays can be found here [19].

The SUSY theories provide not only necessary and testable improvements to the SM, but

also solutions to some cosmological problems. For instance, most SUSY models predict that

super-particles are only pair produced, and that the lightest super-symmetric particle (LSP)

is neutral and weakly interacting [20]. This LSP is a good candidate for dark matter that is

found to be abundant in our Universe.
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1.6 Experimental Motivation

The SM contains 19 parameters, which have to be determined from experiments12. Cur-

rently, many experiments have measured these parameters, to confine the SM and hopefully

to give some hints for beyond-the-SM physics.

One of the predictions of the SM is that CP -violation in all particles originates from

the single complex phase term in the CKM matrix. By studying CP -violation in different

particle systems, this prediction can be well tested. Experimental evidence of CP -violation

was first observed in the decay of kaons [21]. Large CP-asymmetries13 were predicted in some

rare b-quark decays. Measurements of these CP -parameters in the b-quark sector provide

a very important test of the mechanism of CP -violation in the SM. The long life-time of

B-mesons makes it experimentally possible to measure these CP -parameters. B-factories at

SLAC and KEK with the BABAR [22] and Belle [23] detectors, were designed specifically to

collect large samples of B-mesons and make precision studies of CP -violation in the B-meson

sector. With these data, other physics processes can also be studied and used to test many

other SM predictions14.

In addition to measuring the angles of the UT, the sides of the UT can be determined

from direct measurements and used to check the “unitarity” of the CKM matrix. Cur-

rently only the |Vub| and the |Vtd| measurements have large uncertainties. From Eq. 20,

we can see that measurements of these elements involve processes like b → u and t → d

transitions, which are rare. The high luminosity data available in BABAR make stud-

ies of these processes possible. The latest result15 on the |Vub| from BABAR is |Vub| =

12The 19 parameters include nine fermion masses (quarks and leptons); three coupling constants for
the electromagnetic interaction, weak interaction and strong interaction, respectively; four quark mixing
parameters; the masses of the two gauge bosons and the Higgs boson.

13which could be related to the opening angle β of the UT.
14Recently, BABAR has first discovered direct CP -violation in B → Kπ, which is also in good agreement

with the SM predication.
15The three errors are experimental error, the uncertainty in determining the fraction of the charmless
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Figure 3: The lowest order of b → s(d)γ decays.

(3.94±0.25(exp)±0.37(fu)±0.19(theory))×10−3, from an analysis of semileptonic charmless

B-decays [24]. This dissertation focuses on performing a direct measurement of |Vtd|/|Vts|

using radiative penguin decays B → (K∗/ρ/ω)γ (here ρ = ρ0/ρ± and K∗ = K∗0/K∗±, and

this convention will be used throughout this disseration unless specified). This measurement

of the |Vtd|/|Vts| is complementary to other methods, such as using B-mixing16.

At the quark level, the decays B → (K∗/ρ/ω)γ are FCNC processes, b → (s/d)γ.

These processes are suppressed at the tree level in the SM, and the lowest order Feynman

diagram is a loop diagram, as shown in Figure 3, which is dominated by the transition of

the intermediate top-quark. The transition of t → s(d) is sensitive to the CKM matrix

elements Vts(Vtd), respectively. Therefore, the decay rates of these decays can be related

to these CKM elements. However, as you will see in the next section, the large theoretical

error in calculating the decay rates makes this attempt meaningless. This situation can be

improved by taking a ratio of the decay rates between the B → (K∗0/K∗+)γ decays and

the B → (ρ/ω)γ decays. This ratio can be related to the |Vtd|/|Vts| with less theoretical

uncertainty than by using the decay rate of B → (ρ/ω)γ decays. The following section

discusses the phenomenology of this approach. Note that other physics observables in these

leptonic decay used in the analysis, and the theoretical uncertainty, respectively.
16A brief discussion of the B-mixing is presented in Section 2.4



16

decays, such as branching fractions and CP -asymmetries, can be measured and are used to

test the SM or to probe for beyond-the-SM physics.



17

2 Phenomenology of B → V γ Decays

The diagram of B → V (Vector)γ decays at quark level is shown in Figure 3, which is

dominated by an electroweak penguin loop17. The amplitude of this electroweak transition

at the quark level can be calculated to a very accurate degree using a perturbative method.

However, there are a few difficulties to related the quark-level transitions to exclusive decays.

First, interchanges of gluons among the quarks shown in Figure 3 can significantly modify

the transition amplitude and complicate the calculation. A next-to-leading order (NLO)

calculation is necessary. Second, the s or d quarks from the electro-weak transition and the

light spectator quark in the B-meson fragment into the vector mesons. This process involves

interactions of soft gluons. The strong coupling constant αs has a Q2 dependence [25],

αs(Q
2) =

12π

(33 − 2nf) log (Q2/Λ2
QCD)

, (22)

with nf the number of quark flavors and ΛQCD a cut-off value in QCD (ΛQCD ∼ 0.1 GeV).

In low Q2 ranges, where the quarks and gluons interact strongly, the perturbative method

is no longer applicable. Furthermore, there are many other possible contributions; e.g., the

interchanging of gluons among the quarks in the B-meson before or after the electro-weak

transition.

2.1 Effective Lagrangian

Usually the starting point of theoretical calculations of these exclusive radiative decays

is from an effective Lagrangian18 obtained from the SM by integrating out the heavy de-

grees of freedom (the top quarks and the W±-bosons). With the help of Operator Product

17Here V represents K∗0, K∗−, ρ0, ρ−, or ω meson, and this notation will be used throughout this
dissertation unless specified.

18The effective Lagrangian is in the form of LI =
∑

Jµ
+Jµ

− +Jµ
nJµ

n at the low Q2, with Jµ the charged
(±) and neutral (n) currents shown in Section 1.4.
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Expansion (OPE) [26], the effective Lagrangian, Leff , can be written as follows:

Leff ∼ −4G√
2

∑

Ci(µ)Qi(µ), (23)

where µ is an arbitrary energy scale, G is the Fermi constant, Qi(µ)s are some local operators,

and Ci(µ) are corresponding Wilson coefficients.

In this expansion, the transition amplitude is then separated into two distinct parts, long

distance contributions (energy scale smaller than µ) contained in local operators, Qi(x), and

short-distance physics contributions (energy scale larger than µ) described by the Wilson

coefficients, Ci(µ). The matrix elements of the operators contain the long distance inter-

actions and have to be determined from some non-perturbative methods, such as lattice

QCD or QCD sum rules. One of many reasons that the OPE is so useful is that the Wilson

coefficients are independent of any final state. Therefore, these coefficients can be treated as

coupling constants. The µ-dependence of the Wilson coefficients is governed by the renor-

malization group expansion [26], so they can be determined at large energy scales using a

perturbative method and evolved down to the relevant energy scale. In principle, the choice

of the µ parameter is arbitrary, and the calculated physics quantities should be independent

of it. However, a too-small µ would spoil the perturbative method to calculate the Wilson

coefficients, and a too-large µ parameter would make it harder to calculate the operator el-

ements in some non-perturbative methods. Therefore, the choice of µ is a trade off between

these considerations. In B physics studies, the µ is normally chosen to have the approxi-

mately the same mass as the b quark. In reality, the theoretical calculation of the operator

matrix elements and the Wilson Coefficients are stopped at some point. The µ-dependence

is then introduced in physical quantities, but this dependence can be canceled out if a full

calculation is performed.

With this expansion, a systematic approach to analyzing B → V γ decays at the NLO
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in QCD was proposed by Stefan W. Bosch [27]. Following his discussion, the effective

Lagrangian, considered up to dimension six, is given by

Leff =
G√
2

∑

p=u,c

λq
p, {C1(µ)Qp

1(µ) + C2(µ)Qp
2(µ) +

8
∑

j=3

[Cj(µ)Qj(µ)]}, (24)

where λq
p = V ∗

pqVpb; q = s or d for b → sγ or b → dγ, respectively. The most important

operators are the four-fermion operators,

Qp
1(µ) = (qαγµ(1 − γ5)pβ)(pβγµ(1 − γ5)bα),

Qp
2(µ) = (qαγµ(1 − γ5)pα)(pβγµ(1 − γ5)bβ),

(25)

and the electromagnetic and chromomagnetic penguin operators,

Q7(µ) = emb/(8π2) · (qασµν(1 + γ5)bα)Fµν ,
Q8(µ) = gsmb/(8π2) · (qασµν(1 + γ5)T

a
αβbβ)Gµν

a,
(26)

where Fµν and Gµν
a are the electromagnetic and gluonic field strength tensors, respectively;

Tµν
a are the color SU(3) group generators; α and β are color indexes, and a is the gluonic

color index. Other operators related to these decays and the corresponding Wilson coeffi-

cients are described in Ref. [27, 28] and have almost no contribution to the NLO calculation

discussed below.

2.2 QCD Factorization

With the effective Lagrangian shown in Eq. 24, the calculation of the decay amplitude is

then turned into the calculation of the operator matrix elements. In the heavy quark limit,

QCD factorization can be used to guide the calculations of the relevant operators up to the

NLO of the αs and the leading order (LO) of ΛQCD/mb. In this factorization, an operator

matrix element is written as

< V γ|Qi(µ)|B >= {FV T I
i +

∫ 1

0

dξdν[T II
i (ξ, ν)ΦB(ξ)ΦV (ν)]} · ε, (27)
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where ε is the photon-polarization 4-vector [27]. Here the FV is a B → V transition form

factor, and ΦB and ΦV are the leading twist light-cone distribution amplitudes of the B-

meson and the vector meson, V , respectively [29]. The ΦB and ΦV are universal quantities,

non-perturbative objects. They describe the long-distance dynamics of the matrix element,

which is factorized from the the perturbative short-distance interaction expressed in the

hard-scattering kernels, T I
i and T II

i .

Within this framework, the operator contributions to the LO of ΛQCD/mb and the NLO

of O(αs) are identified, as shown in Figure 4. The LO contribution is from the magnetic

penguin operator, Q7, where the hard-scattering kernel T I
7 is a purely kinematic function

and T II
7 is absent. The matrix element is

< V (k, η)γ(q, ε)|Q7|B >= − e

2π2
mbcV FV × [εµνλρεµηνkλqρ + i(ε · kη · q − ε · kη · q)], (28)

where cV = 1, except that for V = ρ0, cV = 1/
√

2, FV is the form factor estimated at

q2 = 0, and ε0123 = −1. The NLO contributions illustrated in Figure 4 b) to 4 g) have

sizable corrections to the LO result, modifying the transition amplitude about 80%. The

weak annihilation, shown in Figure 4 h), was estimated in QCD factorization and was found

to contribute to the LO of ΛQCD/mb, which turns out to have an interesting effect on the

isospin breaking for B → (ρ0/ρ+)γ decays. However, this effect in B → (K∗0/K∗+)γ decays

is CKM suppressed and has a very small contribution. Summing all the contributions, the

decay amplitude of B → V γ can be written as following,

Γ(B → V γ) =
G√
2
[
∑

p=u,c

λq
pa

p
7(V γ)]· < V (k, η)γ(q, ε)|Q7|B >, (29)

where ap
7 (p = u, c) summarize the contributions up to the NLO of αs and the LO of the

ΛQCD/mb, including all the contributions shown in Figure 4, q = s, d.
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Figure 4: The contributions from the operators up to the leading order in O(αs) and leading
order in ΛQCD/mb: a) leading order contribution in αs; b)-c) O(αs) contributions to the hard-
scattering kernels T I

i from four-operators Qi; d)-e) O(αs) contributions to the hard-scattering
kernels T I

i from chromomagnetic penguin operator; f)-g) O(αs) contributions to the hard-
scattering kernels T II

i from four-quark operators and chromomagnetic penguin operators;
and h) weak annihilation contributions. The “×” sign indicates a photon is radiated.

2.3 Physics Observables

In the following, we will follow Eq. 29, and discuss the decay amplitudes for the decays

B → (K∗/ρ/ω)γ in more details.

Branching fractions of B → (K∗0/K∗+)γ decays

In the B → (K∗0/K∗+)γ decays, the QCD penguin operators Q3, . . . , Q6 enter at O(αs),
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but are suppressed by small Wilson coefficients. The contribution from Q2 is zero because

of its color structure. The amplitude then contains the contributions from Q7, Q1, and Q8

only. The branching fraction is

B(B → K∗γ) = τB
G2αm3

Bm2
b

32π4
(1 − m2

K∗

m2
B

)3|
∑

p

λs
pa

p
7(K

∗γ)|2|FK∗|2, (30)

where the form factor, FK∗, summarizes strong interactions among quarks inside mesons, and

currently there is no reliable way to calculate it. The determination of this form factor must

rely on non-perturbative methods, such as, lattice QCD calculation or QCD sum rules, which

normally result in large theoretical uncertainties, about 30-50%. The NLO prediction [27] for

the branching fraction of B0 → K∗0γ decays is B(B0 → K∗0γ) = (7.09+2.47
−2.27) × 10−5, where

the systematic uncertainties are dominated by the form factor calculations19. This theo-

retical prediction is already higher than the previous experimental results from CLEO [30],

Belle [31], and BABAR [32]:

B(B0 → K∗0γ) = (4.3 ± 0.4) × 10−5 [CLEO],
B(B0 → K∗0γ) = (4.09 ± 0.21 ± 0.19) × 10−5 [Belle],
B(B0 → K∗0γ) = (4.23 ± 0.40 ± 0.22) × 10−5 [BABAR],

(31)

and

B(B− → K∗−γ) = (3.8 ± 0.5) × 10−5 [CLEO],
B(B− → K∗−γ) = (4.40 ± 0.33 ± 0.24) × 10−5 [Belle],
B(B− → K∗−γ) = (3.83 ± 0.62 ± 0.22) × 10−5 [BABAR].

(32)

There are other approaches used to calculate the form factor and predict the branching

fractions; e.g., using the Covariant Light-Front Quark Model (CLFQM) [33] or lattice

calculation [34]. These methods make better predictions of the branching fractions, e.g.

B(B → K∗γ) = (3.27 ± 0.74) × 10−5 from the CLFQM. The discrepancy in the predic-

tion of the branching fractions amongst these methods has not been understood. Even

19The branching fraction for the charged mode is B(B+ → K∗+γ) = (7.45+2.47
−2.27) × 10−5.
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with the best prediction, a 20-30% uncertainty still remains.

Branching fractions of B → (ρ/ω)γ decays

Similarly, the branching fraction of B → (ρ0/ρ+)γ decays reads,

B(B → ργ) = τB
G2αm3

Bm2
b

32π4
(1 − m2

ρ

m2
B

)3|
∑

p

λd
pa

p
7(ργ)|2c2

ρ|Fρ|2, (33)

with cρ = 1 for ρ± and cρ = 1/
√

2 for ρ0. Assuming the isospin relation between ρ0 (isospin 1)

and ω (isospin 0), to LO in the heavy-quark limit, and NLO in the αs, both the ρ0 meson

and the ω meson in the decays B → V γ are produced by a dd-pair. Therefore, the decay

amplitude can be obtained from B0 → ρ0γ with replacements for the vector constants, mass,

form factors, etc. The change of these parameters is proven to result in negligible differences

between these two decays. We assume the same branching fractions for these two decay

modes.

Problems similar to B → (K∗0/K∗+)γ decays remain here. The form factors bring

large uncertainties into the predictions. An NLO prediction of the branching fraction of

B+ → ρ+γ is B(B+ → ρ+γ) = 1.58−0.46
+0.53 × 10−6 [27]. The uncertainty of the form factor

dominates the error. Another theoretical prediction of this branching is B(B+ → ρ+γ) =

(1.35 ± 0.42) × 10−6 [35]. These are still well below the current world best 90% confidence

upper limit from BABAR [36]:

B(B0 → ρ0γ) < 1.2 × 10−6,
B(B+ → ρ+γ) < 1.0 × 10−6,
B(B0 → ωγ) < 2.1 × 10−6,
B(B → (ρ/ω)γ) < 1.9 × 10−6.

(34)

The branching fractions in Eq. 30 and Eq. 33 are related to the CKM elements |Vts|

and |Vtd|, respectively. In principle, those branching fractions can be used to measure these

elements. However the large uncertainties in the form factors make it impossible to give any
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competitive results on these quantities.

Ratio of branching fractions

The branching fractions of B → (ρ/ω)γ decays can be related to the |Vtd|. However,

the large theoretical uncertainty in the form factor makes it meaningless for determining

the |Vtd|. Note that some systematic uncertainties can be canceled in the calculation of the

ratio of the form factors, ξ = FK∗/Fρ. Therefore the ratio |Vts|/|Vtd| can be related to the

ratio of B(B → (ρ0/ρ+)γ)/B(B → (K∗0/K∗+)γ) with much less theoretical uncertainty. In

a QCD sum rule calculation, ξ = 1.31 ± 0.13 (LCSR) [29], and a preliminary lattice result

is ξ = 1.1 ± 0.1 [34]. Following Ref. [37], we define the following CP -averaged branching

fraction ratio,

R =
B(B → ργ) + B(B → ργ)

B(B → K∗γ) + B(B → K∗γ)
. (35)

More explicitly, R = R0 or R± for neutral and charged mode, respectively. From Eq. 30 and

Eq. 33,

R = cρ
|Vtd|2
|Vts|2

ξ−2rm
|ac

7(ργ)|2
|ac

7(K
∗γ)|2

∣

∣

∣

∣

1 + 2Re(δa)
η2 − ρ(1 − ρ)

(1 − ρ)2 + η2

∣

∣

∣

∣

2

. (36)

Here cρ = 1/
√

2 for ρ = ρ0; cρ = 1 for ρ = ρ±; rm = ((m2
B − m2

ρ)/(m2
B − m2

K∗))3 = 1.023,

calculated using values in the PDG book (2004) [38]; δa = [au
7(ργ) − ac

7(ργ)]/ac
7(ργ); (ρ, η)

is the coordinate of the third vertex of the UT on the complex plane (Figure. 2 b).

The Re(δa) reflects the different contributions from weak annihilations in B → V γ

decays, which is CKM-suppressed in B → (K∗0/K∗+)γ decays. The calculation shows that

Re(δa) = 0.0 ± 0.1 and Re(δa) = −0.4 ± 0.4 for the neutral modes and charged modes

respectively [37]. Following the same Ref. [37],

|ac
7(ργ)|

|ac
7(K

∗γ)| = 1.01 ± 0.02
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and
∣

∣

∣

∣

η2 − ρ(1 − ρ)

(1 − ρ)2 + η2

∣

∣

∣

∣

< 0.2

are given. From the estimation of the various constants contained in Eq. 36, using the

ratio of the branching fractions between B → (ρ/ω)γ and B → (K∗0/K∗+)γ could give a

measurement of the |Vtd|/|Vts| to approximately 15%, ignoring experimental uncertainties.

The constraint on the |Vtd|/|Vts| could be interpreted as a constraint on the |Vtd|, which lies

within the 90% confidence interval found from a global fit to CKM data of 0.0048 < |Vtd| <

0.014 reported here [13].

Due to the limitation of statistics for B → (ρ/ω)γ decays, an isospin-averaged branching

fraction of B → (ρ/ω)γ decays is more attractive experimentally than individual decays.

For example, among the decay rates of the B → (ρ/ω)γ decay modes, the following relation

is predicted, as discussed above,

Γ(B0 → ρ0γ) = Γ(B0 → ωγ) = 0.5 · Γ(B+ → ρ+γ). (37)

Applying this constraint, the isospin-averaged branching fraction [35] is

B(B → (ρ/ω)γ) =
1

2
· {B(B+ → ρ+γ) +

τB+

τB0

· [B(B0 → ρ0γ) + B(B0 → ωγ)]}, (38)

with the world average for B-meson lifetime ratio, τB+/τB0 = 1.086 ± 0.017 [39]. With

a similar definition for the B → (K∗0/K∗+)γ decays, the ratio B[B → (ρ/ω)γ]/B(B →

(K∗0/K∗+)γ) could be related to |Vtd|/|Vts| as follows [35, 40]:

B[B → (ρ/ω)γ]

B(B → (K∗0/K∗+)γ)
=

|Vtd|2
|Vts|2

· rm · ζ[1 + ∆R], (39)

where ζ = ξ−2 describes the SU(3) flavor-breaking between ρ/ω and K∗, and ∆R accounts

for annihilation diagrams. However, this would introduce larger theoretical uncertainties

since the weak annihilation in B+ → ρ+γ has a larger effect.
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CP and isospin asymmetries

Additional observables can be derived from the amplitudes of these decays, such as direct

CP -asymmetry and Isospin-asymmetry. The direct CP -asymmetry is defined as

A(B → V γ) =
Γ(B → V γ) − Γ(B → V γ)

Γ(B → V γ) + Γ(B → V γ)
. (40)

The Isospin-asymmetry for B → (K∗0/K∗+)γ and B → (ρ0/ρ+)γ decays is defined as

∆0−(B → V γ) =
Γ(B0 → V 0γ) − cV Γ(B− → V −γ)

Γ(B0 → V 0γ) + cV Γ(B− → V −γ)
, (41)

where cV = 1 for K∗ and cV = 1/
√

2 for ρ. The uncertainty due to form factors are largely

reduced in Eq. 30 and Eq. 33 because of taking ratios of decay rates.

At the NLO of αs, the SM predictions of the inclusive b → sγ and the b → dγ CP -

asymmetries are [41]:

A(b → Xsγ) = +0.0044+0.0024
−0.0014,

A(b → Xdγ) = −0.102+0.0033
−0.0058,

(42)

where the theoretical uncertainties are dominated by the c-penguin correction and the scale

dependence (µ). Applying the quark-hadron duality, similar CP -asymmetries in exclusive de-

cays are expected. The isospin-asymmetry is mainly introduced at the LO of ΛQCD/mb by the

weak-annihilation. The SM prediction [42] of the isospin asymmetry for B → (K∗0/K∗+)γ

decays is (+0.080+0.021
−0.032). In the B → (ρ0/ρ+)γ decays, the isospin asymmetry shows strong

correlations with the angle α of the UT. After these decays are observed, they can be used

to provide supplemental information on this angle.

2.4 Physics Discussion

As discussed above, the ratio of the form factors can be determined with much less

theoretical uncertainty than the individual ones. Therefore, Eq. 36 can be used to give

a theoretically cleaner result for the |Vtd|/|Vts|. This ratio can be also determined from
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Bd,s mixing. In Figure 5, the dominant diagrams for Bd,s mixing are shown, where transition

of top quark dominates. A NLO calculation [43] gives the following relation between the

mass difference (∆mq) and the CKM elements Vtq,

∆mBq
∝ mBq

B̂qfBq
|Vtq|2, q = s, d, (43)

with fBq
form factor and mBq

mass. Therefore,

∆mBd

∆mBs

=
mBd

B̂dfBd

mBs
B̂sfBs

· |Vtd|2
|Vts|2

. (44)

So, |Vtd/Vts| can be measured from the Bd and Bs mixing. In this equation, the ratio
mBd

B̂dfBd

mBs B̂sfBs

is theoretically determined within a 10% uncertainty [44].

Due to large uncertainties in the determination of the form factors, the measurements

of the branching factions in the decays B → (ρ/ω)γ provide less competitive results for the

CKM elements. However, these results could be used to constrain the form factors, help-

ing the choice of various physics models to perform non-perturbative calculations. Other

quantities, such as the CP -asymmetry and the isospin asymmetry in these decays, are pre-

dicted theoretically at a very accurate level; e.g. less than 1% error for the CP -asymmetry

in B → (K∗0/K∗+)γ decays. Measurements of these quantities provide a very stringent test

of the SM [41].

b s,d

s,d b
a)

W

t,c,u
b s,d

s,d b
b)

W

t,c,u

Figure 5: Box-diagram describing the Bs,d-mixing.
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The decays B → (K∗/ρ/ω)γ mainly occur via a loop process. Therefore these decays

could be used to probe new physics beyond the SM. Some of the most attractive models

beyond the SM are the two-Higgs-Doublet Models (2HDM) [45]. In these models, charged

Higgs are introduced. As shown in Figure 6, in the penguin loop, new physics particles

(charged Higgs H± and super-symmetric particle chargino (χ̃)) can enter the penguin loop,

and modify the corresponding Wilson coefficients. These would modify the SM predictions

of the physics observables discussed above. So, a measurement of significant derivation of

these observables from the SM prediction would indicate a new physics contribution. For

example, the CP -asymmetry of the B → Xsγ decay in some supersymmetric models can be

up to 10% [41]. The isospin asymmetry in the B → (K∗0/K∗+)γ decays could have flipped

sign or be greatly enhanced in some new physics models [42].

a)

±W
t, c, u

d d

b s,d

γ b)

±H
t, c, u

d d

b s,d

γ

t, c, u

c)

χ∼

u~, c~, t~

d d

b s,d

γ

Figure 6: Possible new physics contributions to the radiative penguin decays are shown in
b) and c), where the W±-bosons are replaced by charged Higgs (H±) or chargino (χ̃).
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3 The PEP-II B Factory and the BABAR Detector

The best way to study CP -violation in B-meson system is with an asymmetric e+e−-

collider operating at Υ (4S) resonance. The designs of the PEP-II B factory [46] and the

BABAR detector [22] are optimized for such a physics study. However, it is also suitable for

many other studies; e.g. precision measurements of bottom or charm physics, searching for

rare B decays, or τ physics. A detailed description of the BABAR detector and the PEP-II

B factory are given elsewhere [8, 22, 46]. A brief summary of their design and performance

is presented in this chapter.

3.1 The PEP-II B Factory

The PEP-II B factory is an asymmetric e+e−-collider designed to operate with luminosi-

ties of 3 × 1033 cm−2s−1 at a center-of-mass energy of 10.58 GeV (the mass of the Υ (4S)

resonance). The Υ (4S) resonance decays exclusively to B0B0 and B+B− pairs, thus provid-

ing an ideal laboratory for the study of B mesons. In PEP-II, an electron beam of 9.0 GeV

collides head-on with a positron beam of 3.1 GeV. The center of mass has a Lorentz Boost

of βγ = 0.56 in the lab frame. This boost enables a separation of the decay vertexes of the

two B mesons, making it possible to measure the time-dependent CP -asymmetry in B-meson

system. This capability distinguishes PEP-II from previous B physics experiments.

Producing collisions since 1999, PEP-II has surpassed its original design goal and has

delivered more than 250 fb−1 of data by 2004. During the best day, it delivered an integrated

luminosity of 0.71 fb−1 data. The peak luminosity has reached 9.2 × 1033 cm−2s−1, which

is more than three times of the design luminosity. More than 99% of the Bs delivered by

PEP-II have been collected by the BABAR detector into one of the largest data sets in the

world. Many topics have been studied using this data set, including the establishment of

CP -violation in B-meson systems (angle β of the UT), other angles of the UT, the Vub
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Figure 7: BABAR detector longitudinal section.

measurement and the direct CP -violation in B → Kπ decays. In the coming two years, the

integrated luminosity delivered by PEP-II will reach 500 fb−1, pushing B-physics study into

new levels.

3.2 The BABAR Detector

The BABAR detector is designed to have high detection efficiency for the stable particles

e±, µ±, K±, π±, γ, and K0s produced in e+e−-collisions and to identify particle types for

many physics studies. Figure 7 shows a longitudinal section of the detector. The detector

surrounds the PEP-II interaction region. It is offset relative to the beam-beam interaction



31

580 mm

350 mrad520 mrad

ee +-

Beam Pipe

Space Frame 

Fwd. support

        cone

Bkwd.

support

cone

Front end 

electronics

Figure 8: SVT longitudinal section.

point (IP) by 0.37 m in the direction of the lower energy beam, to maximize the geometric

acceptance for the boosted Υ (4S) decays.

The inner detector consists of a silicon vertex tracker (SVT), a central drift chamber

detector (DCH), a ring-imaging Cherenkov detector (DIRC), and a CsI electro-magnetic

calorimeter (EMC). These detectors are surrounded by a superconducting solenoid that

provides a magnetic field of 1.5 T. The iron flux return is instrumented for muon and neutral

hadron detection. For convenience, the IP is chosen to be the origin and the beam line is

chosen to be the z-axis for all measurements.

3.2.1 Silicon Vertex Tracker

The charged particle tracking system of the BABAR detector is made of two components,

the Silicon Vertex Tracker (SVT) and the Drift Chamber (DCH). The primary physics goal

of PEP-II and BABAR is to perform measurements of time-dependent CP -asymmetries in

B decays. This requires very precise measurements of the momentum and angle of charged
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particles to determine of position of the decay vertex of the B-meson20. The SVT is designed

to satisfy these requirements.

Figure 8 shows the layout of the SVT. It is composed of five layers of double-sided silicon

strip sensors, which are organized in 6, 6, 6, 16, and 18 modules for layers 1-5 respectively.

The inner three layers are straight. The outer two layers are curved to increase the solid

angle, and to decrease the amount of silicon. The large radii of the outer two layers is needed

to link SVT tracks with DCH tracks. Strips on opposite sides of each sensor are oriented

orthogonally to each other (parallel (z strips) and transverse (φ strips) to the beam axis),

so that they provide φ measurements and z measurements, respectively. The SVT coverage

extends down to 350 mrad and 520 mrad in polar angle from the beam line in the forward

direction and in the backward direction, respectively.

SVT modules are divided electrically into two half-modules, which are read out at each

end. The z strips of the sensors in the same half-module are electrically connected with

wire bonds to form a signal readout strip. Signals from the z strips are brought to readout

electronics using fanout circuits. The total number of readout channels is approximately

15,000. The readout electronics are mounted completely outside the active region of the

detector to minimize materials within the acceptance. The SVT front-end custom electronics,

A Time-Over-Threshold Machine (ATOM), samples the readout at 15 MHz and stores it in a

193-location buffer. Upon the receipt of an “accept” trigger from the data acquisition system,

the output data are formatted, serialized, and delivered to the Readout Modules (ROM).

Only the SVT hits within 200 ns of an event time are included in track reconstruction.

Adjacent strips are grouped into a cluster and used in the tracking reconstruction as an SVT

hit (see Section 3.2.3). The SVT single-hit efficiency, which is the probability of linking an

20For example, for a fully-reconstructed B-meson, a 80 µm resolution or better on the decay vertex along
the direction of the beam line must be achieved for a time-dependent CP measurement.
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SVT hit with a DCH track, is around 97%, as measured on e+e− → µ+µ− events. For a

track at a 90◦ incidence, the hit resolution is 15-20 µm for the three inner layers, and 20-

40 µm for the outer two layers in excellent agreement with Monte Carlo (MC) simulations.

For tracks with non-zero incident angles, the resolution is slightly decreased. The energy

loss, dE/dx, of tracks in the SVT can be measured with a resolution of 14% for Minimum

Ionization Particles (MIP). A 2σ separation between kaons and pions can be achieved up to

a momentum of 500 MeV/c, and between kaons and protons up to 1 GeV/c.

3.2.2 Drift Chamber

The principal purpose of the DCH is to measure the momenta and angles of charged

particles precisely. These high-precision measurements enable exclusive reconstruction of B-

or D-mesons with minimum backgrounds. The DCH complements the measurements of the

impact parameters and the charged track directions provided by the SVT and provides the

only measurements for particles decaying or interacting outside the SVT volume21. The DCH

is also used to supply information for the charged particle trigger, and to provide particle

identification information for low-momentum charged particles using dE/dx.

Figure 9 shows a longitudinal cross-section of the DCH. The DCH is composed of 40

cylindrical layers of drift cells, providing up to 40 spatial and ionization loss measurements

for charged particles. Longitudinal position information is obtained by the wires placed at

small angles with respect to the z-axis. The DCH is asymmetrically located with respect to

the IP. The forward and backward length are chosen in such a way that particles emitted at

polar angles of 17.2◦ or 27.4◦ will traverse at least half of the 40 layers of the DCH before

exiting through endplates for the forward or backward direction respectively. Instead of the

commonly used argon-based drift chamber gases, a 80:20 mixture of helium:isobutane gas

21For example, K0
S

decay vertexes.
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is used to decrease multiple scattering. The 40 layers of drift cells are grouped into ten

superlayers, with the same wire orientation and equal numbers of cells in each layer of a

superlayer, as shown in Figure 9. The stereo angles of the superlayers alternate between

axial (A) and stereo (U, V) pairs. The total number of drift cells is 7104.

The DCH electronics system measures the drift time and the integrated charge for every

wire struck. The DCH amplifier and digitizer electronics are integrated into electronics front-

end assemblies (FEAs) that are mounted on the rear endplate. The assemblies are connected

to sense wires through service boards. A readout interface board in each FEA organizes the

readout of the digitized data. Then data I/O and trigger I/O modules multiplex serial data

from the FEAs to the readout modules.
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Figure 10: The drift time versus distance relation (left) and the position resolution as a
function of the drift distance (right).

The DCH is operated at 1960 V, except for a brief time at 1900 V. Figure 10 shows the

precise relation between the measured drift time and drift distance determined on e+e− →

µ+µ− events, and the position resolution as a function of the drift distance, separately for

the left and right side of the sense wire. The dE/dx for charged particles traversing the DCH

is derived from measurements of the total charge deposited in each drift cell. A resolution

of 7.5% is determined using Bhabha events. This resolution allows a π/K separation up to

700 MeV/c.

3.2.3 Performance of the Tracking System

Charged tracks are reconstructed by combining information from both the SVT and the

DCH. The track finding and fitting procedures make use of a Kalman filter algorithm [47, 48].

Starting from 4-hit track segments in the DCH superlayers, tracks are selected by performing

helical fits to the hits found by the track-finding algorithm. The resulting tracks are then
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extrapolated into the SVT and the matching SVT track segments are added. Remaining

SVT hits are passed to a stand-alone SVT track-finding algorithm. An attempt is made to

combine tracks found only by one of the two tracking systems to recover tracks scattered in

the material of the support tubes between the two detectors.

The absolute DCH tracking efficiency is defined as the ratio of the number of recon-

structed DCH tracks to the number of tracks detected in the SVT with the requirement that

they fall within the acceptance of the DCH. This efficiency is 98±1% for tracks with momen-

tum of above 200 MeV/c and polar angle larger than 500 mrad. The SVT extends charged

particle detection down to transverse momenta of 50 MeV/c, improving both tracking effi-

ciency and resolution. The SVT single hit efficiency is around 97%. Position and angular

resolutions of tracks near the IP are dominated by the SVT. The transverse decay position

of a fully reconstructed B-meson is determined to a resolution of 70 µm and the resolution

of the displacement of the decay vertexes on the z-axis is around 190 µm. The transverse

momentum resolution, which is measured mainly by the DCH, is well represented by

σpt
/pt = (0.13 ± 0.01)% · pt + (0.45 ± 0.03)%. (45)

These values satisfy the design requirement and are reproduced by Monte Carlo simulations.

3.2.4 Detector of Internally Reflected Cherenkov Light

For many analyses in BABAR, it is essential to provide particle identification (PID) of

the stable charged particles (e±, µ±, π±, K±, and p±) produced in the e+e− collisions to

determine the underlying b-quark flavor in time-dependent CP -asymmetry analyses. More

specifically, for the decays B → (K∗/ρ/ω)γ the separation between kaons and pions is one

of the keys to a successful measurement. The Detector of Internally Reflected Cherenkov

Light (DIRC) is designed to identify charged kaons and pions.
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The DIRC is a new kind of ring-imaging Cherenkov detector. Figure 11 shows a schematic

diagram of the DIRC geometry. The main components of the DIRC are 144 fused synthetic

silica bars with dimensions of 4.9 m long, 17.25 mm thin, and 35.00 mm wide. These

silica bars are arranged in a 12-sided polygonal barrel of 12 silica bars each, surrounding

the beam axis. When charged particles (β ≈ 1) pass through these silica bars, Cherenkov

photons radiated by the particle are reflected internally to the ends of the silica bars, travel

through a water-filled standoff box, and are detected by an array of 10,752 photomultiplier

tubes (PMT). To avoid instrumenting both ends of the silica bars with photon detectors,

a mirror is placed at the end of the forward end, perpendicular to the bar axis, to reflect

incident photons backward to the instrumented end. The PMTs are located at the rear of

the standoff box, and grouped into 12 sectors, each containing 896 PMTs.

Mirror

4.9 m

4 x 1.225m Bars

glued end-to-end

Purified Water

Wedge

Track

Trajectory

17.25 mm Thickness

(35.00 mm Width)

Bar Box

PMT + Base

10,752 PMT's

Light Catcher

PMT Surface

Window

Standoff

Box

Bar

{ {
1.17 m

8-2000

8524A6

Figure 11: Schematics of the DIRC fused-silica radiator bar and imaging region.
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The DIRC is intrinsically a three-dimensional imaging device, measuring the position

and arrival time of PMT signals. The emission angle of the Cherenkov photons is recon-

structed from the observed space-time coordinates of the PMT signals, then transformed

into Cherenkov angles (θ, φ with respect to the incident track direction). The measured ar-

rival time is mainly used to suppress background hits from beam-induced backgrounds and,

more importantly, to exclude photons from other tracks in the same event. The reconstruc-

tion routine currently provides a likelihood value for each of the five stable particle types

(e, µ, K, π, and p) for every track passing through the the DIRC active volume. These

likelihoods are calculated in an iterative process by maximizing the likelihood value for the

entire event while testing different hypotheses for each track. If enough photons are found,

a fit of θ and the number of the observed signal and background photons are calculated for

each track.

Figure 12 shows the resolution of the track Cherenkov angle in di-muon events and



39

expected π − K separation in the decays B0 → π+π−. The width of the fitted Gaussian

distribution indicates a 2.5 mrad resolution. From the measured Cherenkov angle and the

number of Cherenkov photons per track, a 4.2σ separation between kaons and pions at

3 GeV/c is expected in B0 → π+π− decays. The efficiency for correctly identifying a charged

kaon and the probability of wrongly identifying a pion as a kaon are determined using charged

kaons and pions in D0 → K−π+ decays, which are selected kinematically from inclusive D∗

decays. For a particular choice of particle-selection criteria, the mean kaon selection efficiency

and pion misidentification are 96.2±0.2% and 2.1±0.1%, respectively. A further discussion

of the different PID selectors used in B → (K∗/ρ/ω)γ decays follows in later sections.

3.2.5 Electromagnetic Calorimeter

The electromagnetic calorimeter (EMC) is designed to measure electro-magnetic showers

with excellent efficiency, energy and angular resolutions. This capability allows the detection

of photons from π0 or η decays as well as other electromagnetic and radiative processes, and
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Figure 13: A longitudinal cross-section of the EMC (only the top half is shown) indicating
the arrangement of the 56 crystal rings. The detector is axially symmetric about the z-axis.
All dimensions are given in mm.
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provides PID for electrons.

Figure 13 shows a longitudinal cross-section of the EMC, which consists of a cylindrical

barrel and a conical forward endcap. The EMC has full coverage in azimuth and extends in

polar angle from 15.8◦ to 141.8◦, corresponding to a solid-angle coverage of 90% in the center-

of-mass (c.m.) frame. The barrel contains 5760 thallium-doped cesium iodide (CsI(TI))

crystals, which are arranged in 48 distinct rings of 120 identical crystals. The endcap holds

820 crystals arranged in eight rings for a total of 6580 crystals. The crystals have a tapered

trapezoidal cross-section, and are supported at the outer radius, to minimize the amount of

material before the active detection region.

A typical electromagnetic shower spreads over many adjacent crystals, forming a cluster

of energy deposits. Pattern-recognition algorithms have been developed to identify these

clusters efficiently and to differentiate single clusters with more than one local energy max-

imum, which are referred to bumps. The position and energy of bumps are determined

iteratively in these algorithms. The shower shape of a bump is used to identify a signal

photon from a merged22 π0. Furthermore, the algorithms determine whether a bump is as-

sociated with any charged or neutral particle. For photon candidates, no association to any

charged track is required.

The energy resolution of the EMC is determined from the physics processes shown in

Figure 14. A fit to the energy-dependence results gives

σE

E
=

(2.32 ± 0.30)%
4
√

E(GeV)
⊕ (1.85 ± 0.12)%, (46)

where ⊕ represents sum of the first term and second term in quadrature. A measurement of

the angular resolution is based on π0 (or η) decays to two photons of approximately equal

22When the open angle between the daughters of a π0 is small, the bumps produced on the EMC largely
overlap with each other, and the pattern recognition algorithms cannot differentiate them and treat them
as a single bump, called a merged π0. The second Fox-Wolfman moment of a bump tends to have a larger
value if this bump is a merged π0. This can be used to distinguish a single photon from a merged π0.
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energy. The result is shown in Figure 14. The resolution varies between about 12 mrad

at low energies and 3 mrad at high energies. An empirical parameterization of the energy

dependence is

σθ

θ
= (

3.87 ± 0.07)%
√

E(GeV)
) + (0.00 ± 0.04) (mrad), (47)

where the first term and the second term is summed linearly. The PID of electrons relies

mainly on the EMC, using shower energy, lateral shower moments, and track momentums to

differentiate electrons from pions and kaons. Among those, the shower energy to the track

momentum ratio (E/p) is the most important variable. In addition, the dE/dx energy loss

in the DCH and the DIRC Cherenkov angle are also used. The performance of electron

PID is checked using radiative Bhabha events, e+e− → e+e−e+e− events, and K0
S
→ π+π−

events. For a specific electron selector, the electron efficiency is 94.8% in the momentum

range 0.5< p <2.0 GeV/c, and the probability of mis-identifying a pion as an electron is on

the order of 0.3%.
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3.2.6 Instrumented Flux Return

The Instrumented Flux Return (IFR) was designed to identify muons with high efficiency

and good purity, and to detect neutral hadrons (primarily K0
L and neutrons) over a wide

range of momenta and angles. The detection of muons is very important in several physics

analyses, for example tagging the flavor of neutral B-meson, or studying the semileptonic

and rare decays involving leptons from B and D mesons. The detection of K0
L
s allows the

study of some exclusive B decays, particularly decays to some CP -eigenstates. In addition,

the IFR can help in vetoing charm decays and improve the reconstruction of neutrinos by

detecting K0
L
s.

The IFR uses the steel flux return of the magnet as a muon filter and hadron absorber.

Single gap resistive plate chambers (RPCs) with orthogonal strip readouts were chosen as

the detectors. Figure 15 shows an overview of the IFR. The steel is segmented into 18 plates,

increasing in thickness from 2 cm for the inner nine plates to 10 cm for the outermost plates.

Barrel

342 RPC

Modules

432 RPC

Modules

End Doors

19 Layers

18 Layers
BW

FW

3200

3200

920

1250
1940

4-2001

8583A3

Figure 15: Overview of the IFR: Barrel sectors and forward (FW) and backward (BW) end
doors: the shape of the RPC modules and their dimensions are indicated.
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The nominal gap between the steel plates is 3.5 cm in the inner layers of the barrel and 3.2 cm

elsewhere. RPCs are installed in these gaps, as illustrated in Figure 15. There are 19 RPC

layers in the barrel and 18 in the endcaps. Additionally there are two layers of cylindrical

RPCs installed between the EMC and the magnet cryostat to detect particles exiting from

EMC. The IFR detectors cover a total active area of about 2000 m2, and contains 806 RPC

modules, 57 in each of the six barrel sectors, 108 in each of the four half end doors, and 32

in the two cylindrical layers. The size and the shape of modules are matched to the steel

dimensions with minimal dead spaces. Due to the size limitation on the RPC modules, two

or three RPC modules are joined to form a gap-size chamber, indicated in Figure 15. A

mixed gas of 56.7% argon, 38.8% freon134a, and 4.5% isobutane is used to fill in all the

RPCs.

The RPC hits are read out through front-end-electronics (FEE). The reconstruction of the

IFR events starts with the grouping of individual hits into one- or two-dimensional clusters.

The efficiency of the RPCs has been evaluated for both normal collision data and cosmic ray

muons. After the installation and commissioning of the IFR system, all RPC modules are

tested with cosmic rays, and more than 90% of the RPC has an efficiency above 90%. The

muon PID has been tested using muons from µ+µ−γ events and pions from three-prong τ

and K0
S
→ π+π− decays. For a specific muon selector, the muon detection efficiency can be

close to 90% in the momentum range of 1.5< p < 3.0 GeV/c with a pion fake rate of about

6-8%. K0
L

and other neutral hadrons interact in the steel of the IFR and can be identified as

clusters which are not associated with any charged track. No information of the energy can

be obtained, but the polar angle of particles can be determined with an angular resolution

of 60 mrad. The K0
L

efficiency increases roughly with the momentum, varying between 20%

and 40% in the momentum range from 1 to 4 GeV/c.
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3.2.7 BABAR Trigger System

The BABAR Trigger System (TRG) is designed as a two-level hierarchy, a Level 1 trig-

ger (L1) implemented in hardware and a Level 3 trigger (L3) implemented in software. The

L3 receives the output from L1, performs a second stage rate reduction for the backgrounds

associated with the main physics sources, and identifies and flags the special categories of

events needed for luminosity determination, diagnostic, and calibration purposes. During

normal operation, the output rate is about 2 kHz for L1 and around 300 Hz for L3.

The L1 trigger consists of four major components: the DCH trigger (DCT), the EMC

trigger (EMT), the IFR trigger (IFT) and the global trigger (GLT). The trigger decision is

based on charged tracks in the DCH, showers in the EMC, and tracks detected in the IFR.

The DCT, EMT, and IFT generate the trigger primitives, summarizing the position and

energy of particles, which are sent to the GLT every 134 ns. The GLT processes all trigger

primitives to form specific triggers and then delivers them to the Fast Control and Timing

System (FCTS). The FCTS can optionally mask or prescale any of these triggers. If a valid

trigger remains, an L1 accept is issued to initiate event readout. The L1 trigger efficiency

for e+e− → bb, cc, ee, and µµ is almost 100%, with less than 0.4% efficiency loss; the trigger

efficiency for uu, dd, and ss events and τ+τ− events is slightly less, around 94-98%.

The L3 trigger software comprises event reconstruction and classification, a set of event

selection filters, and monitoring. The filters have access to the complete event data for

making their decisions, including the output of the L1 trigger processors and FCTS trigger

scalers. In principal, L3 operates by refining and augmenting the selection methods used

in L1. For example, the L3 DCH tracking algorithm performs fast track finding and fitting

to extract the helical track parameters with improved track resolutions, further rejecting

background tracks. The L3 trigger efficiency is about 99% for bb, cc, ee, and µµ events, and

about 92-95% for uu, dd, ss, and τ+τ− events.
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3.3 Data Set

During normal data-taking, the electron beam energy and the positron beam energy are

fixed to 9.0 GeV and 3.1 GeV, respectively. In the c.m. frame of the e+e− system, the beam

energy is at the peak of the Υ (4S)-resonance, as shown in Figure 16 a). B-mesons are then

produced via e+e− → Υ (4S) → BB decays, forming the “on-resonance” data set. For the

majority of the running time, PEP-II produces on-resonance data. For a small fraction of

the running time, the beam energy is adjusted to be 40 MeV below MΥ (4S) as indicated in

Figure 16 a). This data is called the off-resonance data set. In BABAR, 10% of the total data

is off-resonance.

There are some advantages to studying B physics with a B-factory like PEP-II, compared

to other hadronic colliders. The most important one is high signal-to-background ratio. The

cross-sections for fermion-pair production are shown in Figure 16 b). About 28% of the

hadronic pairs are bb pairs. In the off-resonance data, all but the bb pairs shown in Fig-

a)

e+e− → Cross-section (nb)

bb 1.05
uu 1.39

dd 0.35
ss 0.35
cc 1.30

τ+τ− 0.94
µ+µ− 1.16
e+e− ∼40

b)

Figure 16: Υ (4S) energy scan is shown in a), where the red arrow and the blue arrow
indicate the beam energy for “on-resonance” data-taking and “off-resonance” data-taking,
respectively. Production cross-sections at

√
s = MΥ (4S) for fermion pairs are shown in b).



46

ure 16 b) are produced. These processes are the major background (continuum background)

for many BABAR analyses. The off-resonance data can be used for background studies in

these analyses. Figure 17 shows the integrated PEP-II–delivered and BABAR-recorded lumi-

nosity since 15 October, 1999. A total 250 fb−1 data has been delivered by PEP-II. For the

analysis of B → (K∗0/K∗+)γ decays, we use data taken before July 2002, for the analysis of

B → (ρ/ω)γ decays, we use almost the entire data set.

Monte Carlo (MC) simulations are used in BABAR analyses for different purposes, such

as event-selection optimization and background studies. The inclusive processes, such as

the continuum processes and the inclusive bb process, are generated using JetSet [49]. This

MC data is generally called “generic” MC; for example, generic B MC. In addition to these

Figure 17: The integrated PEP-II-delivered and BABAR-recorded luminosity since 15 Oc-
tober, 1999. The three curves represent the PEP-II delivered (top), the BABAR recorded
(middle), and the offpeak data (bottom).
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inclusive processes, various exclusive B decays are generated using EvtGen [50]. For example,

the signal MC for each B → (K∗/ρ/ω)γ decays is generated using this generator. A more

detailed description of the MC data sets used in BABAR can be found in Ref. [8].
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4 Reconstruction

Reconstruction of the B → (K∗/ρ/ω)γ events requires good EMC clusters (photons and

merged π0s) and well-identified charged kaons and charged pions. The information from these

candidates is stored in the micro database, one of the data formats used by BABAR computing.

These different formats are called event stores, and they are implemented to satisfy different

needs, such as quality control, reconstruction, calibration, or physics analysis. Each format

is optimized for that specific purpose [51].

4.1 Event Reconstruction

Figure 18 illustrates the decay chain of the modes of interest here. A total of seven

exclusive decay modes will be discussed in the following sections. The reconstruction of the

B → (K∗/ρ/ω)γ decays is as follows. The vector meson is reconstructed from a combination

of Kπ, ππ, and πππ for K∗, ρ, and ω meson, respectively. The K-meson includes charged

kaons and K0
S
s, and the π-meson includes the charged and neutral pions. For the K0

S
and π0,

only the decays of K0
S
→ π+π− and π0 → γγ are considered. The reconstructed vector meson

(K∗, ρ, or ω) is then combined with a photon to form a B-meson candidate. This photon is

called the “primary photon”. In this thesis, both the decay mode and the charge-conjugate

decay mode of each decay are analyzed together. This convention will be followed in the rest

of this thesis unless otherwise specified.

Significant numbers of combinatorial backgrounds are present in each mode. For most

background events, the primary photon is produced by π0/η decays or Initial-State Radia-

tion (ISR). In the c.m. frame of the e+e−-system, the energy of the primary photon is about

2.6 GeV for the signal decays. This requirement strongly limits the combinatorial back-

ground, especially in the e+e− → bb process, where the π0/ηs are normally soft. However,

in the continuum process, “e+e− → uu, dd, ss, cc, τ+τ−”, the event shape is jet-like and
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SK (0.17)

-π +π → 0ρ (1.00)

0π -π +π → ω (0.89)

-π +π

γ) +ρ, 
*+

 (K→ +B

0π + K→ *+K (0.33)
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Figure 18: The decay chains of the exclusive decays discussed here. The number in the
parenthesis indicates the fraction of the vector mesons decaying to the specific decay mode.
The interested decay modes are those with decay fraction in parenthesis. For those modes,
which contain K0

S
in the decays, only the K0

S
→ π+π− decay is considered, and the 69% of

K0
S

decays via this mode.

the π0/ηs are boosted in the c.m. frame, therefore the π0/ηs are relatively harder and could

result in much higher combinatorial background, the “continuum background”. A much

more detailed discussion of the combinatorial background will be given in Section 5.1.

For many purposes in this analysis, such as estimating the signal and background yields,

the following branching fractions are assumed:

B(B0 → K∗0γ) = B(B+ → K∗+γ) = 4.0 × 10−5, (48)

and

B(B0 → ρ0γ) = B(B0 → ωγ) = 0.5 · B(B+ → ρ+γ) = 0.5 × 10−6. (49)

These branching fractions can be combined with the decay fraction of the vector meson,

shown in Figure 18, to give the assumed branching fraction of each exclusive decay mode.
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4.1.1 Kinematic Variables - mES and ∆E∗

In the operation of the PEP-II, the beam energy is known very accurately. The produced

Υ (4S)-resonance decays exclusively to two B-mesons, which are almost at rest in the c.m.

frame of the e+e− system. Exploiting these facts, two kinematic variables are widely used

in the analysis of exclusive B decays, the beam-constrained mass, mES, and the energy

difference between the beam and the reconstructed B-meson, ∆E∗. In the c.m. frame, mES

and ∆E∗ are defined as

∆E∗ = E∗
γ + E∗

V − E∗
beam, (50)

and

mES =
√

E∗2
beam

− ( ~p∗γ + ~p∗V )2. (51)

Here the E∗
beam = 1

2

√
s, where

√
s is the total beam energy in the c.m. frame of the e+e−

system (throughout this thesis, the (*) is used to indicate that a variable is calculated in the

c.m. frame of the e+e− system.). Here E∗
γ (E∗

V ) and ~p∗γ ( ~p∗V ) are the energy and 3-momentum

of the primary photon (the vector meson).

The variables mES and ∆E∗ make optimal use of kinematic constraints and are largely

uncorrelated. They can be used to separate the signal from the background in a likelihood

fit. As shown in Figure 19, the signal mES and ∆E∗ distributions can be well described by

a Crystal-Ball function23, a Gaussian distribution with a low-side power-law tail. The tail

structure in the mES and ∆E∗ results from some of the neutral candidates’ energy leaking

out of the EMC crystals. The signal mES distribution peaks at 5.28 GeV/c2 with a resolution

of 3 MeV/c2. The signal ∆E∗ distribution peaks around zero with a resolution of 40 MeV.

23The Crystal-Ball function [52] is defined as,

f(x) = C ·
{

e−(x−〈x〉)2/2σ2

, for x > 〈x〉 − ασ
(

n
α

)n · e−α
2

2 /
(

〈x〉−x
σ + n

α − α
)n

, for x ≤ 〈x〉 − ασ
, (52)

with 〈x〉 the mean, σ the width, and α and n are the parameters for the power tail.
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Figure 19: a) The mES and ∆E∗ distribution of a B → (K∗0/K∗+)γ Monte Carlo sample.
The Monte Carlo sample corresponds to an integrated luminosity of 40 fb−1, and contains
continuum background and the signal decay only. A 2-dimensional fit performed with this
MC data sample is projected onto plots of the c) mES, and b) ∆E∗ distributions, respectively.
The dashed curve indicates the background component and the solid line indicates the total
fit. The fit uses all events in the mES-∆E∗ plane in a), which is the “fit region”, and the
small box indicates the “signal region”.

The background underneath the signal peak is estimated using the events from a larger

region on the mES-∆E∗ plane, and is subtracted directly in the fit. The background mES

shape is well described by an ARGUS function24, a threshold function with the threshold

fixed at 5.29 GeV/c2. The ∆E∗ is modeled by a second-order Polynomial.

The resolution of the mES in the B → (K∗/ρ/ω)γ decays could be improved by a process

24The ARGUS function [53] is defined as,

f(x) = C · x

EBEAM
·
√

1 − x2

E2
BEAM

· e−ξ

(

1− x
2

E2
BEAM

)

, (53)

with ξ the shape parameter and EBEAM the threshold.
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called rescaling, where the E∗
γ in Eq. 51 is scaled by a factor, k, which is determined from

k · E∗
γ + E∗

V − E∗
beam = 0. The energy leakage in the event is assumed from the detection

of the primary photon only. Our studies show that this rescaling can improve the resolution

of mES by 10-20% in the decays where vector mesons decay to charged particles only. This

rescaled mES is used in the analysis of the B → (K∗0/K∗+)γ decays. A further study

also shows that this method increases the correlation between the mES and ∆E∗ variables

for some background components. So a new photon-energy calibration, which corrects the

photon energy leak using the centroid position of the photon on EMC crystals, is used to

improve the resolution of both mES and ∆E∗ without increasing such a correlation. This

calibration has been used in the analysis of B → (ρ/ω)γ decays to correct the energy of the

primary photons. In the following discussion, the mES will be used to represent both the

mES and the rescaled mES unless otherwise specified.

4.1.2 Signal Region and Fit Region

For many purposes of the analysis, certain regions are defined, using the mES and ∆E∗

variables. The most important ones are the signal region and the fit region

• The signal region is defined on the mES−∆E∗ plane to be within [5.27, 5.29] GeV/c2×

[−0.2, 0.1] GeV.

• The fit region covers a larger phase space than the signal region, where all events

in this region can be included into a likelihood fit for final signal extraction, and is

defined on the mES − ∆E∗ plane to be within [5.2, 5.29] GeV/c2× [−0.3, 0.3] GeV.

The signal region and fit region are shown in Figure 19. Some other regions, such as side-

bands, are also used in this analysis, and will be defined when mentioned.
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4.1.3 Best Candidate Selection

Because of the presence of background particles in an event, multiple candidates of a

signal decay can be reconstructed in the same event. Only one candidate is selected after all

the applied selection cuts, including the background suppression cuts discussed in Section 5.

The best candidate is selected as the minimum |∆E∗|.

4.2 Quality Selection Criteria

As mentioned in the beginning of this section, some quality selection criteria, including

particle identification, are applied to the final decay particles or the intermediate particles

after event reconstruction. These selection criteria are used mainly to reject poorly recon-

structed candidates, or to ensure correct particle types. The background events are also

suppressed to some extent by this selection.

4.2.1 Primary Photons

The primary photon candidate is selected from neutral EMC bumps, which are local

maxima of the EMC clusters and are not associated with any charged track. The following

selection criteria, which are described in details elsewhere [54], are applied

• The EMC coverage extends in polar angle from 15.8◦ to 141.8◦, −0.774 < cos θ < 0.956.

To avoid both those photon candidates detected near the edge of the EMC, which

most likely will be preshowered and the beam background contaminations, a further

requirement −0.74 < cos θ < 0.93 is applied.

• Only neutral bumps with energy in the c.m. frame between 1.5 GeV and 3.5 GeV are

considered.

• The number of crystals is required to be greater than four. However, this requirement
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is redundant, since the average number of crystals for a photon within the specified

energy requirement are typically about 20-30.

• The neutral bumps contain no dead, damaged, or noisy crystals. The noisy crystals

are identified on a run-by-run basis. The occupancy of each crystal for the first 100

events of each run is used to determine if a crystal is noisy, by checking if it has greater

than 10 MeV for half of the 100 events. The damaged crystals are identified by the

online DAQ system if the event information is not completely read out.

• The neutral bumps must be at least 25 cm away from any other neutral bumps or

charged tracks. This criterion is used to suppress the background from hadronic split-

offs25 and merged π0s.

The following selection criteria are used to further suppress the merged π0s or reject the

photons from the π0/η decays. These include the π0/η-veto and the cut on the second-

moment of the photon shower shape

• In the study of the B → (K∗0/K∗+)γ decays, we veto the photons from π0(η) decays

by requiring that the invariant mass of the candidate photon combined with any other

neutral bump of laboratory energy greater than 50(250) MeV/c2 to be outside the

range from 115 MeV/c2 to 155 MeV/c2 (from 505 MeV/c2 to 585 MeV/c2). These

vetoes effectively reject more than 90% of the background photons from the π0/η

decays.

In the B → (ρ/ω)γ decays, the expected branching fractions are two orders of mag-

nitude smaller, and the expected background is much higher. To improve the singal

significance, which is defined as S/
√

(S + B) with S (B) the expected signal yield

25The “split-off” is a radiated photon candidate originating from a hadron candidate.
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(background yield) in the signal region, the minimum energy requirement has been

decreased to 30 MeV for the π0-veto, and the corresponding veto ranges have been

extended to [105, 155] MeV/c2 and [500, 590] MeV/c2 for π0 and η-veto, respectively.

These changes have been tested using Monte Carlo (MC) samples of B → (ρ/ω)γ

decays, and the signal significance is improved by roughly 10% for each B → (ρ/ω)γ

decay mode.

• The energy of a primary photon candidate spreads over tens of crystals. The shower

shape can be characterized by the 2nd moment, defined as

2nd moment =
∑

crystal i

Ei · ((θi − θ0)
2 + (φi − φ0)

2)
∑

i Ei
(54)

where the θi(φi) and θ0(φ0) are the centroid position of the ith crystal and the bump,

respectively. The Ei is the energy of the ith crystal. The merged π0 is distributed

elliptically and has a large value of the 2nd moment. The signal photon is azimuth-

symmetric around the centroid of the bump and tends to have small 2nd moment. A

requirement that the 2nd moment less than 0.002 is applied to remove almost all the

merged π0s with almost no signal efficiency loss.

These selection criteria effectively reject background photons and ensure a good primary

photon candidate.

4.2.2 Charged Particles

The charged particles, kaons and pions (except π± in K0
S

decays), are selected from the

track list with further requirements

• There are at least 12 DCH hits.

• The |z0| is less than 10 cm.
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• The Distance of Closest Approach (DOCA) to the beam axis, d0, is less than 1.5 cm.

• The transverse momentum of the track must be larger than 100 MeV/c.

• The tracking fit probability must be larger than zero. This probability could be zero

because of some technical failures in the track reconstruction.

These requirements define a “GoodTrackLoose (GTL)” track, one of the standard track lists

provided by the tracking analysis working group (AWG) for general usage in the collabora-

tion. These selections ensure that good track parameters are measured. Since the K0
S

has

long life-time, the charged pions from K0
S

decays may originate far from the IP; therefore,

the GTL requirement is not applied. Selections with the K0
S

candidate will be discussed in

the following.

4.2.3 Charged Particle Identification

For this analysis, the most important particle identifications (PID) are kaon selection and

pion selection. Between these two, pion identification has special importance in the analysis

of the B → (ρ0/ρ+)γ decays, since the B → (K∗0/K∗+)γ decays have branching fractions

that are orders of magnitude higher, and B → (K∗0/K∗+)γ decays can fake B → (ρ0/ρ+)γ

decays by mis-identifying the charged kaon in a K∗ decay as a pion. Kaon/pion PID [55]

mainly uses the information from the DIRC. The dE/dx measurement in the SVT and the

DCH also provides supplemental information. These are the only PID requirements for

tracks with laboratory momenta less than 0.7 GeV/c, which is below the DIRC active range.

The likelihood for each particle hypothesis (e, µ, π, K, and p) is calculated by multiplying

the likelihoods from each sub-detector (SVT, DCH, and DIRC). A cut on the likelihood

ratio, such as LK/(Le + Lπ + LK + Lµ + Lp), is applied to select the corresponding particle

type, e.g. kaons. The performance of the selectors are studied using control samples, where
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Figure 20: The number of observed photons in the DIRC for tracks with laboratory momenta
greater than 0.6 GeV/c. Here we select the positive track in the B0 → ρ0γ signal Monte
Carlo and B0 → K∗0γ background Monte Carlo. Shown are π from ρ decays (top solid line),
π from K∗ decays (dashed line), and true K from K∗ decays that have been misidentified
as π by the pion likelihood selector (bottom solid line).

the particle types can be identified kinematically. For example, the D∗ → Dπ decay is used

as a control sample for the study of kaon/pion PID, where the charged pion/kaon from the

D0 → K−π+ decay can be identified by its charge correlation to the slow π± from D∗± decay.

Generally the data-MC difference shown on the control sample is considered the systematic

error of the specific PID selector.

The PID selectors provided by PID AWGs fulfilled most of the PID requirements en-

countered in this analysis. However, a pion selector with lower kaon mis-identification

rate using the available standard selectors is necessary to improve the experimental sen-

sitivity significantly for the B → (ρ0/ρ+)γ analysis, given the orders-of-magnitude higher

B → (K∗0/K∗+)γ background. This has been achieved by further comparing the number

of observed DIRC photons with the number of expected DIRC photons, after applying the
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decays. a) the pion selection efficiency, and b) the kaon mis-identification rate over the track
momentum is shown. The efficiency and the mis-identification rate is obtained using a large
sample of kinematically identified kaons and pions in the D∗ → Dπ decays.

standard PID selectors. Figure 20 illustrates the photon consistency distribution26 for π±

or K± after a standard pion selector, likelihood-based pion“veryTight”. A consistency of

greater than 0.001 between the measured and the expected photons can suppress an extra

50% of the kaons which survived the “veryTight” selector, with a cost of a few percent loss

on the pion-selection efficiency. This specially designed pion selector is used in the analysis

of the B → (ρ0/ρ+)γ decays.

Figure 21 shows the selection efficiency of this pion selector and the corresponding kaon

mis-identification rate over a large momentum range, on both D∗ → Dπ data and MC.

26The photon consistency is defined as

photon consistency = 1 −
∑

∀i,f(i;x)>f(x0;x)

f(i; x), (55)

with x0 the observed DIRC photon, the x expected DIRC photon with pion hypothesis, and f(i; x) Possion
distribution with mean x.



59

The kaon mis-identification rate is around 1% over most of the momentum range, and the

corresponding pion selection efficiency is around 80%. This pion selector is applied on all the

charged tracks in the B → (ρ0/ρ+)γ decays. For the charged tracks in the B0 → ωγ decay

mode, the likelihood-based “tight” selector, which has a slightly higher selection efficiency

(around 90%) than the “veryTight”, is applied. Charged kaons in B → (K∗0/K∗+)γ decays

are selected using a “SMS KaonTight” selector, which has a selection efficiency around 85%

and the corresponding pion mis-identification rate is 2-3%. The charged pions (except from

K0
S

decays) in the B → (K∗0/K∗+)γ decays are also required to fail the “SMS KaonTight”

selection. The selectors are chosen differently across each decay mode based on a dedicated

comparison of the performance of available selectors to maximize the signal significance.

4.2.4 Neutral Pions

The photons used in π0 reconstruction have a minimum energy of 30 MeV and must a

have shower shape consistent with a photon. Only π0s with reconstructed masses between

0.115 GeV/c2 and 0.150 GeV/c2 are used. Further, assuming that the π0 is from the primary

vertex, the interaction point calculated using all the tracks in the event, a nominal π0 mass-

constrained fit has been used improve the momentum resolution of daughter photons.

For the π0s from the B+ → K∗+γ, K∗+ → K+π0 and B+ → ρ+γ, ρ+ → π+π0, additional

requirements are implied

• The invariant mass of the photon-pair lies inside [0.117, 0.145] GeV/c2. The mass

window is asymmetric around the nominal π0 mass window in order to reflect the tail

of the mass distribution, which results from energy leakage in the EMC.

• cos(θγγ) > 0.6. θγγ is the angle between the two daughter photons in the laboratory

frame.
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These selection criteria are used to improve the purity of the π0 in these decay modes. The

cos θγγ cut can effectively suppress the π0s from the beam background at low momenta.

4.2.5 Vertexing

In many BABAR analyses, vertexing the decay particles is needed for various physics pur-

poses; e.g., to determine the displacement of the two B-mesons in a time-dependent CP

analysis, or to decrease the combinatorial background when combining tracks to form a par-

ticle. To fully utilize these techniques in background suppression, the following vertexings are

used. The detailed description of the BABAR vertexing methods can be found elsewhere [56].

• “FastVertexing”: a fast algorithm checks if several tracks originate from same point.

This is used in the reconstruction of the vector mesons, which decay to at least two

charged tracks, and it is able to suppress the combinatorial background in the recon-

struction. The vertexing fit χ2 probability is required to be larger than 0.0001.

• The “GeoKin” vertexing, which is the standard vertexing for BABAR time-dependent

CP-analysises to determine the displacement between the reconstructed B-meson and

the rest of the event (ROE). The displacement on the beam axis (∆z) is centered about

zero for both signal and continuum background events, but the width of the distribu-

tion is wider in the signal decays, reflecting the fact that the B-mesons can fly. This

distribution has been used in this analysis to suppress the continuum background. The

|∆z| < 0.4 cm and |∆zerr| < 0.04 cm are required to remove the non-physical events,

such as collisions in beam gas.

4.2.6 K0
S

Selection Criteria

The K0
S

candidates used in this analysis are reconstructed from K0
S
→ π+π− decay only.

A positive track is combined with a negative track to make a K0
S

candidate with the following
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requirements

• The χ2 probability of “fastvertexing” is larger than zero.

• The K0
S

flight distance, which is defined to be the distance between the decay point of

K0
S

and the primary vertex, to be larger than 0.3 cm.

• The K0
S

mass lies inside [0.487, 0.508] GeV/c2.

In the B0 → ωγ decay mode, to suppress the crossfeed from B0 → K∗0γ, K∗0 → K0
s π0

decay, which has the same final states as B0 → ωγ and has a branching fraction about

10 times larger, we calculate the distance between the decay point of ω and the primary

vertex and require this distance to be less than 0.3 cm. This vetoes the K0
S

decays and

suppresses B0 → K∗0γ, K∗0 → K0
s π0 decays. This is called the “K0

S
-veto”. With this “K0

S
-

veto”, this crossfeed can be suppressed further by another 40-50% with almost no signal

efficiency loss.

4.2.7 Meson Selection Criteria

For the vector mesons, the χ2 probability of “fastvertexing” has to be larger than 0.0001

for the applicable modes; we further require the mass of K∗-, ρ-, and ω- mesons to be

within [0.8, 1.0] GeV/c2, [0.63, 0.94] GeV/c2, and [0.764, 0.795] GeV/c2, respectively. These

selection criteria are chosen from a dedicated optimization to maximize the significance for

each decay mode.

4.3 Summary

After above event quality selections, in the signal region the background-to-signal ratio

is about 1:1 and 100:1 for the B → (K∗0/K∗+)γ decays and the B → (ρ/ω)γ decays,

respectively. A total of about 1500 B → (K∗0/K∗+)γ signal events are expected with
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80 fb−1
BABAR data. Therefore, the analysis of the B → (K∗0/K∗+)γ decays is somewhat

different from the analysis of the B → (ρ/ω)γ decays: the former is a precision measurement

and the later is still a statistically dominant analysis. Different analytical methods are used,

which are discussed in the following section in details.
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5 Analytical Methods

In this section, the details of the analysis for B → (K∗/ρ/ω)γ decays is discussed.

This discussion concentrates on background suppression and final signal extraction. To

suppress backgrounds, multi-variable analysis techniques, such as Fisher discriminant and

neural network, are used. For final signal extraction, a likelihood-fit method, which is suitable

for extraction of small signals in presence of large background, is used.

5.1 An Overview of Backgrounds

As mentioned in Section 4.1, the “continuum” background involves the processes, “e+e− →

uu, dd, ss, cc, τ+τ−”. We study the continuum background using MC simulations of these

processes and off-resonance data. However the background from e+e− → bb process (named

as “B-background”) is much more complicated. In addition to these combinatorial back-
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Figure 22: The mES distribution of the signal, continuum background, and B-background
yield in the B0 → ρ0γ decay mode at a luminosity of 200 fb−1. All the quality selections
discussed in Section 4 have been applied, and only the events in the fit region are used.



64

grounds, there exists other backgrounds, which are very signal-like.

Figure 22 shows the estimated yields of the continuum background, the B-background,

and the signal at a luminosity of 200 fb−1 for B0 → ρ0γ decay mode, plotted as a distribution

of the mES. The continuum background is more than two orders of magnitude higher than

the signal yield, and the B-background is also very significant. Similar to other decay modes,

the continuum background dominates while the B-background is not negligible.

For the B → (K∗0/K∗+)γ decays, whose branching fractions are expected to be 10-

60 times larger than the B → (ρ/ω)γ decays, the background is also very different. The

cross-section of the uu and dd processes is almost five times higher than the ss process [8],

σe+e−→uu, dd : σe+e−→ss=1.74:0.35, and this results in 5-10 times more pions produced than

kaons. Therefore the continuum background in the B → (ρ/ω)γ decays are much higher

than in the B → (K∗0/K∗+)γ decays.

5.1.1 Continuum Background

In the continuum background, the primary photons mainly originate from two sources:

π0/η decays, or Initial State Radiation (ISR). Figure 23 shows the event shapes of the con-

tinuum background related to π0/η decays and a signal decay in the c.m. frame. The event

shape is spherical for the signal decay, where particles originate from two B-mesons, which

are almost at rest and is jet-like for the background. The thrust axis27 of the ROE, ~T ∗, is

highly correlated with the direction of the primary photon in the continuum background, un-

like in the case of the signal decay. The angle between ~T ∗ and the primary photon is defined

as θT , whose distributions of the signal, the continuum background, and the B-background

27The thrust of an event is defined as,

T = max
|n|=1

{
∑

i |n · ~pi|
∑

i |~pi|
}, (56)

with |n| the thrust axis, named as “ ~T ∗” here.
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Figure 23: The event shape of, a) the continuum background (jet-like) and, b) the signal
decay (spherical) in the c.m. frame of the e+e−-system. After singling out the reconstructed

signal, indicated by ~V and γ, the rest of event (ROE), indicated by unlabeled solid lines, are

grouped together. The thrust axis of ROE, ~T ∗, is indicated by the dashed arrow.

are shown in Figure 24. For the B0 → ρ0γ signal decay and the B-background, the distri-

bution is almost flat, but for the continuum background, it peaks around one. The | cos θT |

distribution gives the most significant suppression of the continuum background. Further, a

likelihood fit over the mES (and ∆E∗) effectively separates the rest of this background from

the signal, as discussed in Section 4.1.1.

Similarly, the event shape of the continuum background with ISR is also jet-like, but the

correlation between the thrust axis and the primary photon is much weaker. The relative

ratio between these two types of continuum background is different from mode to mode, but

in general the one related to π0/η decays contributes more.

5.1.2 B-Background

Some amount of B-background is also present for every decay mode. This background

is not as significant as the continuum background, but the cos θT (or the event shape) is

not helpful in rejecting it. This is illustrated in Figure 24, where the B-background has a
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Figure 24: The | cos θT | distribution for the B0 → ρ0γ signal, B-background, and continuum
background.

Type B0 → ρ0γ mode B+ → ρ+γ mode B0 → ωγ mode

B → (K∗0/K∗+)γ B0 → K∗0γ,K∗0 → K+π− B+ → K∗+γ,K∗+ → K+π0 B → (K∗0/K∗+)γ

B → (ρ/ω)(π0/η) B0 → ρ0(π0/η) B+ → ρ+(π0/η) B+ → ω(π0/η)

Table 1: The peaking B-backgrounds for each B → (ρ/ω)γ decay mode. Only B →
(K∗0/K∗+)γ and B → (ρ/ω)(π0/η) backgrounds are singled out from other B backgrounds
to be considered separately.

distribution similar to the signal decay. Furthermore, the components of the B-background

are much more complicated than those of the continuum background. For example, some of

the B-backgrounds are very much signal-like, showing distributions of mES and ∆E∗ similar

to the signal in the signal region; these are called “peaking B-backgrounds”28. These peaking

B-backgrounds could significantly bias the signal yield in the fit if not properly handled.

Extensive Monte Carlo simulations, including more than 20 exclusive B-decays, have

been studied to identify peaking B-backgrounds for every signal decay. Finally, we only

28More generally, the peaking B-background is related to some specific B-decays. The reconstructed event
over these decays can show peaks around the signal region.
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select the peaking B-background for B → (ρ/ω)γ decays, shown in Table 1 and consider

them separately from other B-backgrounds. Other possible peaking B- backgrounds are

proven to be negligible from MC studies,

• B → (K∗0/K∗+)γ background in B → (ρ/ω)γ decays. The B → (K∗0/K∗+)γ

decays can be mistaken for B → (ρ0/ρ+)γ decays due to misidentification of the charged

kaon as a pion for those decays shown in Table 1. The B → (K∗0/K∗+)γ background

in B0 → ωγ decay mode is more complicated. First, a B0 → K∗0γ, K∗0 → K0
sπ

0 decay

has the same final states as a B0 → ωγ and can mimic the B0 → ωγ decay, but the

mω is at the tail of the mK∗. Secondly, studies show that a B0 → K∗0γ, K∗0 → K+π−

decay could be mistaken for the B0 → ωγ decay due to mis-identification of the charged

kaon as a pion, with a combination of a soft background π0. Both these backgrounds

show significant peaks around the signal region. To simplify the analysis, we do not

single out any specific B → (K∗0/K∗+)γ decay, and consider them as one peaking

background.

Many methods have been used to suppress B → (K∗0/K∗+)γ background in B →

(ρ/ω)γ decay modes, such as PID (see Section 4.2.3) and K0
S
-veto (see Section 4.2.6).

In B0 → ωγ decay mode, the B0 → K∗0γ, K∗0 → K+π− background can be strongly

suppressed by applying pion PID on all the charged pions.

• B → (ρ/ω)(π0/η) background. These decays can mimic B → (ρ/ω)γ decays when

the low-energy daughter photon in π0/η decays is lost. Belle and BABAR have studied

these decays recently29, and showed that these backgrounds are also significant for

29Recent studies [57] in BABAR have shown that in addition to the well-measured B+ → ρ+π0 decay [58],

B(B+ → ρ+π0) = (10.9 ± 2.7) × 10−6, (57)

there is 3.5 σ evidence for the B+ → ρ+η decay,

B(B+ → ρ+η) = (9.2± 3.5) × 10−6, (58)
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Figure 25: The a) cos θH and the b) ∆E∗ distribution of the signal and peaking B-background
for the B0 → ρ0γ decay.

B → (ρ/ω)γ decays.

These backgrounds can be strongly suppressed by a “helicity” angle cut. The helicity

angle, θH , is defined as the angle between one daughter of the vector meson and the

reconstructed B-meson in the rest frame of the vector meson with the exception in

the B0 → ωγ decay; here, the θH is defined as the angle between the reconstructed

B-meson candidate and the normal of the decay plane of the ω candidate. The θH

is expected to follow a sin2 θ distribution for signals and cos2 θ for B → (ρ/ω)(π0/η)

and over 4.3 σ evidence for the B0 → ωη decay [59],

B(B0 → ωη) = (4.0 ± 1.3) × 10−6, (59)

which we used in this analysis. For the B0 → ωπ0 decay and the B0 → ρ0η decays [57], only 90% C.L. upper
limits are set, which are 1.2 × 10−6 and 1.2 × 10−6, respectively. In this analysis, we assume that

B(B0 → ωπ0) = B(B0 → ρ0η) = 1.0× 10−6. (60)

Belle has claimed the evidence for the B0 → ρ0π0 decay with a branching fraction of 5.1 × 10−6 [60], but
BABAR only gives a upper limit of 2.9 × 10−6 [58]. A weight-averaged branching fraction is used in this
analysis,

B(B0 → ρ0π0) = 1.8 × 10−6. (61)
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backgrounds, as shown in Figure 25 a). The | cos θH | is required to be less than 0.7(0.75)

for B+ → ρ+γ decay and B0 → ωγ decay(B0 → ρ0γ decay), to reject more than 50%

of the B → (ρ/ω)(π0/η) backgrounds.

The B → (K∗0/K∗+)γ background and the B → (ρ/ω)(π0/η) backgrounds involve either

misidentification of a kaon as a pion or missing a particle. Therefore, some energy is miss-

ing, and the ∆E∗ of these background events peaks around 50 MeV to 100 MeV below zero,

as shown in Figure 25 b). This could help greatly the separation of the signal from these

backgrounds in a fit involving the ∆E∗.

The remaining B-background for each decay mode is “combinatorial B-background”,

which is dominated by B → Xsγ decays, with mXs
> 1.1 GeV/c2 (here Xs represents any

strange meson). In a B → Xsγ decay, one or more of the final decay particles are missed in

the reconstruction, so the B → Xsγ decay could mimic a signal decay. Figure 26 shows the

distribution of the combinatorial B-background on the mES −∆E∗ plane, and the projection

onto the ∆E∗. A Gaussian-like peak is seen in the ∆E∗ distribution, with the mean of the

Gaussian outside the fit region. This is because that the B → Xsγ background mainly has

one particle missing (e.g., a pion). The concentration of these backgrounds in one corner of

the mES − ∆E∗ plane can also cause significant bias on signal yields in a likelihood fit, if

not properly handled.

5.2 Background Suppression Variables

For B → (ρ/ω)γ decays, given the orders-of-magnitude high “background-to-signal ra-

tio”, a further rejection of the continuum background is essential. Several studies have been

performed to improve the background suppression, and these studies are discussed below:
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Figure 26: The a) mES-∆E∗ distribution of the combinatorial B-background, and b) the
projection onto ∆E∗ for the B0 → ρ0γ decay. The ∆E∗ distribution in [−0.3, 0.1] GeV is
fitted with a Gaussian distribution. The B0 → ρ0γ signal distribution is also shown, and
the signal events in signal region are in the shaded region.

• Shape variables. In addition to cos θT , some other variables are available to exploit

fully the difference of the event shape between a continuum event (jet-like) and a

B-decay event (spherical).

• Variables related to signal decay kinematics. Similar to cos θH , this type of

variable is derived using the kinematic constraints on the signal side. These variables

are effective in suppressing both the continuum background and B-backgrounds.

• Physics content in ROE. The B-meson decays mainly through b → c → s via

electro-weak interaction; however, the continuum background, especially the e+e− →

uu, dd, and ss processes, mainly decay through hadronic interactions. This difference

results in different multiplicities and momentum distributions of leptons, kaons, slow

pions, etc. By using these particles in the ROE, some variables can be constituted to

give further separation between B-decays and the continuum background.
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5.2.1 Shape Variables Related to the ROE

To utilize the event shape difference fully the following variables are defined to charac-

terize the event shape of the ROE:

• 18 energy cones. The energy of the tracks and neutral candidates in the ROE

are binned into cones with respect to the direction of the primary photon in the c.m.

frame with a 10◦ increment in angle, as shown in Figure 27.

• Legendre moments (L-moments). In the c.m. frame, the L-moments [61] of an

event are defined as follows:

Li =

∑

j in ROE | ~Pj| × | cos(θj)|i
∑

j in ROE | ~Pj|
, (62)
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20 Deg Forward

30 Deg Forward
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50 Deg Forward
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20 Deg Backward

30 Deg Backward

40 Deg Backward

50 Deg Backward

60 Deg Backward

70 Deg Backward

80 Deg Backward

90 Deg Backward

Figure 27: The 18 energy cones defined in the c.m. frame with respect to the primary
photon. The cone variable is obtained by summing contribution in a cone (exclusively) from
tracks and photons with momentum pointing within the cone.
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here θj is the angle between the jth particle and a specific event axis. ~Pj is the

momentum vector of the jth particle. Two event axes along the direction of the high-

energy photon (donated by Ljg) and the direction of the thrust-axis ~T ∗ of the ROE

(donated by Lj) can be used.

For historical reasons, 18 energy cones are used in the analysis of B → (K∗0/K∗+)γ decays.

However, in the B → (ρ/ω)γ analysis, L-moments (L1, L2, L3, and L2g) are used. Based

on the MC studies, using L-moments has been proven to give the equivalent background

suppression as the 18 energy cones, but simplifying the configuration of the neural network

(see Section 5.3).

To suppress the continuum background due to ISR events, the second-Wolfram moment

is calculated in the photon recoil frame, R′
2. In this frame, an ISR event behaves like a

two-jet continuum event, and can be effectively suppressed by the R′
2. This R′

2 variable is

expected to be strongly correlated with other shape variables.

5.2.2 Decay Kinematics - θB, θH , and θD

In addition to cos θH variable (Section 5.1.2 and Figure 25), the kinematics of B →

(K∗/ρ/ω)γ decays are also used to define the following variables:

1. θB is the angle between the reconstructed B-meson and the beam direction in the c.m.

frame. The Υ (4s) → BB is a vector to scalar-scalar decay. Therefore, the cos θB

follows a sin2 θ distribution for signal events, while for continuum background events

and combinatorial B-background, there is no such angular constraint and the cos θB is

more or less flatly distributed.

2. Dalitz angle, θD. For an ω decay, θD is defined as the angle between the daughter

π+ and the π0 in the rest frame of the π+π− system. For a real B0 → ωγ signal event,
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this angle θD follows a sin2 θ distribution. For the combinatorial B-background and

continuum background, where lots of ωs are false, this distribution tends to be flat.

However, some real ωs in the background can modify this distribution.

5.2.3 Physics Content in ROE - Tagging Variables

The BABAR tagging algorithm is developed to identify the underlying b-quark flavor of a

tag B (ROE) at the time of its decay, by using the correlation between the charge sign of

the quark and signed characteristics of the decay products. For example, in a semi-leptonic

decay of B-mesons, the primary lepton has the same charge as the underlying b-quark.

An algorithm is developed to identify the primary leptons from semi-leptonic B-decays, to

determine the flavor of tag B. An output between minus one and one is given by this “lepton

tagging” algorithm, which could be interpreted as a product of the probability of finding a

primary lepton and the charge of the primary lepton. The distribution of the electron-

tagging variable is shown in Figure 28; for B-decay events, including signal decays and

B-backgrounds, the distribution peaks around minus one and one, which indicates a higher

probability of finding semi-leptonic decays in the ROE. Similar tagging variables are also

derived by exploiting other B-decays30. All these tagging variables are combined together

using a neural network to maximize the tagging quality. The tagging algorithm has been

developed and maintained by the BABAR “tagging” working group, the details of tagging

algorithms are described elsewhere [62].

As shown in Figure 28, the distribution of tagging variables are slightly different between

the B-decay events and the continuum events, due to different physics processes in the ROE.

30The “kaon tagging” uses charged kaons from b → c → s decays; the “slowpion tagging” uses charged
slow pions from D∗ decay; the “kaon-slowpion tagging” uses correlations among these particles. Output
similar to the “lepton tagging” is given by each of these “tagging” categories. Furthermore, the maximum
track momentum in the c.m. frame (~p∗max) is also used, which can be used to identify the B-flavor through
two-body decays, such as B → Dπ’s. This is the “maximum ~p∗

max tagging”.
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Figure 28: The distribution of the electron tag variable.

The existing kaon tagging only exploits the discriminant power carried by charged kaons and

is optimized to give best separation between B-mesons and their CP -conjugated states. To

utilize the strangeness produced in the ROE fully the following variables are calculated:

1. Number of kaons. The total number of kaons (including K± and K0
S
) in the ROE

is calculated. The average number of kaons are around 1.0 in a B-decay, where the

dominant decay of B-mesons is b → c → s decay and is rarer in a continuum event,

especially in e+e− → uu, dd processes, where there is no strangeness produced.

2. Maximum momentum of the kaons in the c.m.frame. For an event with at

least one kaon, the maximum momentum of kaons in the c.m. frame is also calculated.

This is helpful in distinguishing the strangeness produced in signal decays from ss

events, where the generated strangeness is boosted, giving it higher momenta.

From Monte Carlo studies, these two variables proved to give better performance to distin-

guish B-decays from continuum events than the standard kaon tagging.
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combinatorial B → (K∗0/K∗+)γ B → (ρ/ω)(π0/η)
Variables cont. bkg B bkg. bkg. bkg.

θT s − − −
energy cones/
L-moments w − − −
θH

√ √ − s
θB, θD

√ √ − −
taggings
net flavor w − − −

Table 2: The summary of the background suppresion variables, and their suppresion power
on various backgrounds shown, with “s” most significant, “w” weakly, “−” almost no effect,
and “

√
” big enough to apply a cut directly. The B → (K∗0/K∗+)γ and B → (ρ/ω)(π0/η)

background are only considered separately from other B-background in the analysis of B →
(ρ/ω)γ decays.

These tagging variables are used in the analysis of B → (ρ/ω)γ decays. In the analysis of

B → (K∗0/K∗+)γ decays, a simpler, but less powerful variable is used. We defined the “net

flavor” content as
∑

i |N+
i − N−

i |, where N±
i are the numbers of e±, µ±, K±, and slow pi-

ons of each sign identified in the event. On average, the net flavor is larger in the BB decays.

Table 2 summarizes all the background-suppression variables used in this analysis, and

their suppression powers of various backgrounds. Some of these variables are correlated with

each other, e.g. the shape variables. Some of these variables only provide weak separation

between signal events and background events. A cut on these variables is not suitable.

Therefore, to maximize the background suppression, multivariate techniques (MVA) are

used to combine all these variables. An additional advantage of using MVAs is that they

can can simplify the analysis.
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Figure 29: Basic structure of a single hidden layer NN. Input nodes (red) corresponding
to event variables are passed to “hidden” nodes (blue) as linear combinations. The line
combination is then transformed by an “activation function,” in this case the tanh(x). Linear
combinations of the hidden node outputs are then passed to the output node (black), where
it is transformed once again by the activation function to give the final NN output.

5.3 Multivariate Analysis Techniques

Currently, two types of multivariate techniques are widely used in experimental particle

physics, neural network [63] and linear Fisher discriminant. Both are used in this analysis.

5.3.1 Neural Network

The basic structure of an neural network (NN)31 is depicted in Figure 29. At the bottom

of the diagram, event variables xi enter the network as input nodes. Linear combinations of

these variables are sent up to the hidden nodes; the jth hidden node will receive receive the

linear combination:

yj =
∑

aijxj. (63)

31The following description of NNs is based on reference [64].
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Each hidden node receives a different linear combination of the input variables. This input is

then transformed by an “activation” function, in this case the tanh function. The activation

function determines how fast the output of the hidden layer varies as a function of the input.

If the input range is small, a linear response is recovered; if it is large, a step response results.

At each stage, there is a ”bias” node which provides a constant output. The bias node is

used to set the zero-level of the output.

A linear combination of the output from the hidden nodes g(yj),

z =
∑

bjg(yj), (64)

is then passed to the output node where it is again transformed by an activation function.

The mathematical chain from input to output is shown on the right of Figure 29. An NN

can, in principle, have many hidden layers and output nodes. In general, NN structures can

be specified by the number of input nodes (network variables), the number of hidden layers

with the number of nodes in each hidden layer, and number of output nodes. Hence, the

example in Figure 29 can be described as a NN with three input nodes, one hidden layer

with three nodes and one output node. In this analysis, we consider only configurations with

one hidden layer.

The free parameters of an NN are the coefficients, aij and bj, which are used to form the

linear combination of input nodes to the hidden nodes, and the hidden node outputs to the

output node, respectively. The optimal set of coefficients must be determined in advance

through some data set (known as “training samples”), whose output for each input is already

determined. This process is known as the “training” of the NN. The performance of the NN

for any given set of coefficients is summarized by the sum-squared error (SSE),

SSE(aij, bj) =

N
∑

a=1

[NN( ~xa; aij, bj) − F ( ~xa)]
2 , (65)
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here the xa represents the vector of input variables for the ath event, NN( ~xa; aij, bk) is the

NN output for this vector with the coefficients aij and bj, and F ( ~xa) is the desired output

for this vector (e.g. zero if it is a vector corresponding to a background event, one if it is

a signal event). The SSE then represents a “χ2” for the network configuration that can be

minimized in a manner completely analogous to a fit, via gradient descent. The corresponding

coefficients are then the optimal set of the coefficients. This “back-propagation” algorithm

uses the derivatives of the SSE relative to changes in the coefficients to evaluate and adjust

them iteratively to minimize the SSE. Each iteration in this process is one “cycle” of the

training process.

In our application, instead of the SSE, the Mean-squared-error (MSE), which is defined

as MSE = SSE/(Number of Events), is used to quantify performance of the NN. Two inde-

pendent data samples are used, one for training, one for validation purposes. The output of

the validation sample is already known in advance. The trained NN is then applied on the

validation sample after each training cycle, and the corresponding MSE is obtained. The

variation of the MSE with respect to the training cycle number for both training sample

and the validation sample are then plotted, shown in Figure 30 a). The minimum of the

validation distribution is then selected as the optimal set of coefficients for the specified NN,

which gives the best performance on an independent sample. In practice, when the MSE of

validation is decreasing very slowly or already flat, it can be thought that the performance

of the current set of coefficients is very close to the optimal ones and the training can be

stopped. The NN package used for this analysis is the Stuttgart Neural Network Simula-

tor (SNNS) [65]. A ROOT-based package, RooSNNS, was then developed to configure, train

and validate the NN conviniently. The MSE vs. training cycles for one of the NN used in

this analysis is shown in Figure 30 a). The first few training cycles dramatically improve the

performance of the NN, and the following training cycles improve the performance slowly.
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Figure 30: The a) variation of the MSE respecting to training cycles, b) and c) NN distri-
butions of various data samples for a NN used in the B0 → ρ0γ decay mode.

All the training of the NN is performed using Monte Carlo samples. Figure 30 b) shows

the distribution of the NN output for the continuum background and signal events in the

validation sample, which is obtained directly from the RooSNNS. The signal peaks around

one, and the background peaks around zero. A cut on this output could be applied to reject

the continuum background. Since the NN is trained and validated on the MC data samples,

the quality the simulations, can actually affect the performance of the NN when applied to

the real data. So, various validations have been performed:

1. The NN distribution of the continuum MC is compared with the offpeak data, shown

in Figure 30 b). A very good agreement between data and MC is seen.

2. The distribution of the signal NN output is validated on the B → Dπ control sample,

which has distributions of the NN input variables similar to the signal decays. An

identical NN is applied to B → Dπ data and MC, and the NN outputs are shown in

Figure 30 c). Very good agreement is also seen.

These validations have further confirmed that the distributions of the NN output are well
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simulated on the Monte Carlo samples.

5.3.2 Fisher Discriminant

The linear Fisher discriminant [66, 67] is a classification method that projects high-

dimensional data onto one dimension and performs classification in this one-dimensional

space. It is an MVA technique widely used in high-energy physics to simplify and optimize

signal-background separation. It can be viewed as a single-output NN without any hidden

layer. A process similar to the NN training is also used to obtain the Fisher coefficients.

Figure 31 shows the distribution of a Fisher discriminant used in B0 → ρ0γ decay mode.

The input variables are the cos θB and cos θH . The studies on Monte Carlo simulations show

that these two variables are weakly-correlated in both signal events and background events.

Compared to neural networks, the linear Fisher discriminant is much simpler and could

have similar performance, if input variables are weakly-correlated, as in the example shown

Fisher
-0.5 0 0.5

E
ve

n
ts

/ 0
.1

0

0

0.05

0.1

0.15

0.2
 MCγ 0ρ

Continuum MC

Offpeak Data

B Background

Figure 31: The Fisher distribution of the signal, the continuum background, the B-
background and the off-resonance data for a Fisher used in the analysis of the B0 → ρ0γ
decay mode.
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above. However, this is not true for many of the shape variables and tagging variables.

5.4 Overview of the Likelihood-fit Methods

An unbinned, extended maximum likelihood-fit is used to extract the final signal yield.

The likelihood function is a production over all N candidates with Nhyp hypothesis,

L = exp



−
Nhyp
∑

i=1

ni



 ·





N
∏

j=1





Nhyp
∑

i=1

niPi(~xj; ~αi)







 , (66)

where ni is the yield of each hypothesis. The P(~xj; ~αi) is the probability density func-

tion (PDF) of each hypothesis (component) over fit variables ~xj given the set of parameters

~αi. The fit variables normally include mES, ∆E∗ for many BABAR analyses. One example

of this kind of fits is shown in Section 4.1.1, Figure 19.

Extensive toy Monte Carlo samples are used to check the modeling and the bias of the

likelihood fit. These toys are constructed as follows:

• Pure toy Monte Carlo. The data sample is generated using PDFs with given

parameters. The pull of a free parameter p, defined as (ptrue − pfit)/σp with ptrue the

true value and pfit the fitted value, can be used to test the bias of the likelihood fit

method. The pull distribution, obtained from a large set of pure toy Monte Carlo

events is a distribution with σ = 1 and mean zero for a unbiased likelihood fit.

• Embedded toy Monte Carlo. For this type of toy Monte Carlo, some components of

the pure toy Monte Carlo are replaced with the the standard BABAR simulated Monte

Carlo events. For example, we embed signal Monte Carlo into the PDF-generated peak-

ing B-background, combinatorial B-background, and continuum background events to

form a “signal-embedded” toy. The BABAR-simulated data sample resembles the real

data more than a PDF-generated distribution, where only the statistical fluctuation
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is considered. The correlations among the fit variables should be well preserved in

the BABAR simulation, so by building this type of toy Monte Carlo, these correlations

are introduced into the toy samples. The bias on the signal yield from ignoring these

correlations in likelihood fit can be studied using this type of toy Monte Carlos.

• Mixed toy Monte Carlo. Additional BABAR-simulated Monte Carlo events are

mixed with the pure toys or embedded toys described above. This type of Monte

Carlo is used mainly to check the fit bias when some components are not considered

in the likelihood fit.

These toys are also used to study the systematic errors related to the likelihood fits.

5.5 Design of the Analytical Methods

Background suppression using variables described above and likelihood fits to extract

final signal yields is now described. An optimal analysis is developed for each decay mode

separately.

5.5.1 B → (K∗0/K∗+)γ Decays

The branching fraction of B → (K∗0/K∗+)γ decays is rare, on the order of 10−5. However,

given the high-luminosity BABAR data, for some of B → (K∗0/K∗+)γ decays the statistical

errors are already starting to be comparable to the expected systematic errors. The primary

experimental goal of analyzing B → (K∗0/K∗+)γ decays is to have the systematic error

under control, while improving experimental sensitivities. This requirement determines the

background treatment technique and the choice of the likelihood fits.

• The continuum background is suppressed by combining all the variables shown in

Table 2 into a single output NN. Distinct NN is used for each decay mode to gain the
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maximum performance for each decay mode. A cut is applied on the NN output to

reject continuum background.

• The combinatorial B-background is included in the likelihood fit as a component,

and separated from the signal relying on the ∆E∗ distribution. In this approach, the

systematic error resulting from B-backgrounds is proves to be lowest from MC study,

in the range 2-3%.

With the final choice of the likelihood fit, none of the possible “peaking” B-background

can affect the signal yield more than 1%. Therefore, all the B-backgrounds are treated

as combinatorial B-backgrounds.

• The likelihood fit is a 2-dimensional (2-D) fit over mES and ∆E∗ with signal, con-

tinuum background, and combinatorial B-background. A detailed comparison among

1-D (mES), 2-D (mES and ∆E∗), and 3-D (mES, ∆E∗, and mK∗) likelihood fit with

signal and continuum background (including or not including the combinatorial B-

background) shows that above approach is the optimal one. The experimental sensi-

tivity is improved and the experimental systematic error, especially the one associated

with the B-background, is well under control.

Table 3 summarizes NN configuration and its performance, and the final signal efficiency

for each B → (K∗0/K∗+)γ decay mode. After applying the NN to suppress the continuum

background, in the signal region the signal-to-background ratio is improved by a factor of

5-10 for each decay mode.

5.5.2 B → (ρ/ω)γ Decays

The analysis approach for the B → (ρ/ω)γ decays is different from the B → (K∗0/K∗+)γ

decays because of the following facts:
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Description K∗0 → K+π− K∗0 → K0
sπ

0 K∗+ → K+π0 K∗+ → K0
s π+

NN variables
| cos θT |, 18 energy cones, R′

2,
| cos θB|, | cos θH |, “net flavor” and ∆z(∗) (only in K∗0 → K+π−)

NN hidden
25 7 24 8

nodes
NN Cut > 0.43 > 0.64 > 0.68 > 0.65
NN εsig 0.86 0.77 0.76 0.74
NN εcont.bkg. 0.20 0.09 0.09 0.12
εsig 0.26 0.18 0.19 0.24

Table 3: The NN input variables, cut value on the NN output, NN efficiency on the signal,
“NN εsig”, and the background, “NN εcont.bkg.”, and the final signal efficiency in the fit region,
“εsig”, for each B → (K∗0/K∗+)γ decay mode. All the efficiencies have been estimated using
corresponding MC samples, which is independent from the NN training samples.

1. No evidence for the B → (ρ/ω)γ decays is found. The theoretical predictions

for branching fractions of B → (ρ/ω)γ decays are about 0.5-1.0×10−6, so this is still a

statistically limited analysis.

2. The continuum background is much more significant than in B → (K∗0/K∗+)γ

decays, and could overwhelm the expected small-signal yields. It is essential to suppress

this background, so that a significant signal could be observed.

3. The significant peaking B-backgrounds have comparable yields as signals in the

fit region. These could significantly bias fitted signal yields and must be dealt with

separately from other B-backgrounds.

Therefore, the primary goal of analyzing B → (ρ/ω)γ is to improve the experimental sig-

nificance over the existing data set. This can be achieved by either improving background

suppressions, or using higher dimensional likelihood fit. We have improved suppression

of the continuum background, using tagging variables to replace the “net flavor” used in

analyzing B → (K∗0/K∗+)γ decays (see Section 5.2.3) and π0/η vetoes. Starting with a
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two-dimensional likelihood fit (mES and ∆E∗), various multi-dimensional likelihood fits are

tried to improve the significance also. We found that including the NN-output distribu-

tion into the likelihood fit after a loose cut on it improves the significance most, effectively

increasing the existing data set by roughly 40-50%.

However, combining all the background suppression variables into a single NN, as in

analyzing B → (K∗0/K∗+)γ decays, will introduce various difficulties in using the NN dis-

tribution in the likelihood fit. Firstly, the combinatorial B-background is included in the

likelihood fit as a component to minimize the systematic error. Only cos θB and cos θH dis-

tributions of this background show differences from signal decays. Therefore, the NN output

of this background is neither signal-like nor background-like. The modeling of this distribu-

tion must be obtained from MC and could result in large systematic errors. Secondly, the

peaking B-backgrounds are also included in the likelihood fit to obtain an unbiased fit and

to minimize the systematic errors associated with it. However, the cos θH distribution of

B → (ρ/ω)(π0/η) backgrounds shown in Figure 25 is very different from the signal events.

Therefore, more NN distributions have to be obtained from MC and validated over control

samples. All these would complicate the analysis significantly and might overwhelm the

improvement by including this variable.

In order to overcome these difficulties, the shape variables and tagging variables are

combined using a single output NN. Since all these variable are related to ROE, a similar

distribution is expected for signal events and all B-backgrounds, as shown in Figure 32. A

loose cut is applied on the NN distribution and the remaining NN distribution is included in

the likelihood fit with the assumption that NN distributions for signal and B-backgrounds

are the same. In this way, only two NN distributions are involved in the likelihood fit,

significantly simplifying the analysis. Some deviations of B-background NN output from the

signal are also seen in Figure 32. However, this results in a very small systematic error. To
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Figure 32: The NN distribution of the signal, the B → (K∗0/K∗+)γ background, the B0 →
ρ0(π0/η) background, and the combinatorial B-background for the B0 → ρ0γ decays.

improve the background suppression, especially for B-backgrounds, cos θB, cos θH , and cos θD

(in B0 → ωγ mode) are then combined in a Fisher discriminant (shown in Figure 31) and

also included in the likelihood fit. A 4-D (mES, ∆E∗, NN, and Fisher) likelihood fit is used to

separate the signal from backgrounds, in which the combinatorial B-background and peaking

B-backgrounds (the B → (K∗0/K∗+)γ background and the (ρ/ω)(π0/η) background) are

included as independent components. The only exception is the B0 → ωγ decay, which

only contains three components: the signal, the continuum background, and the ω(π0/η)

background.

Table 4 summarizes the NN configuration and its performance, and the final signal effi-

ciency for each B → (ρ/ω)γ decay. Application of the loose NN cuts improves the signal-to-

background ratio by a factor of about eight for all three decay modes. Inclusion of the mass

of vector mesons in the likelihood fit is studied in MC simulation. The modeling of PDFs for

each component increased the systematic errors, but the improvement from including this
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Description B0 → ρ0γ B+ → ρ+γ B0 → ωγ

NN variables
| cos θT |, R′

2, L1, L2, L3, L2g,
tagging variables and ∆z(∗) (except in B+ → ρ+γ)

NN hidden nodes 8 7 6
NN Cut > 0.6 > 0.6 > 0.65
NN εsig 0.81 0.76 0.76
NN εcont.bkg. 0.10 0.11 0.09
Fisher | cos θB|, | cos θH | and | cos θD| (in B0 → ωγ)
εsig 0.16 0.11 0.09

Table 4: The NN input variables, cut value on the NN output, NN efficiency on the signal,
“NN εsig”, and the background, “NN εcont.bkg.”,the Fisher variables, and the final signal
efficiency in the fit region, “εsig”, for each B → (ρ/ω)γ decay mode. All the efficiencies
have been estimated using corresponding MC samples, which are independent from the NN
training samples.

variable is not significant. Further, a wider mass window introduces more crossfeed among

B → (ρ/ω)γ decays and B → (K∗0/K∗+)γ backgrounds, which potentially introduces addi-

tional systematic uncertainties. Consequently, we choose a tighter cut on the mass window,

and ignored this distribution in our likelihood fit. With the chosen mass selection, the cross-

feed among B → (ρ/ω)γ decays is a few precent in the fit region, and no significant peaks in

the fit region are seen. Therefore, we can safely ignore the crossfeed among the B → (ρ/ω)γ

decays.

5.6 Likelihood Fit

5.6.1 Correlations

For each component in the likelihood fit, the PDF, P(~xj; ~αi), is composed of a product

of the individual PDFs over the variables. In this way, we ignore the correlations among the

fit variables. The validity of doing so has been established by the fact that the correlations

among the fit variables are weak for all components. A detailed study of the correlations has

been performed over Monte Carlo simulations and the offpeak data for each decay mode.
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Typically, the correlation among the fit variables is a few percent. The strongest correlation32

is shown between the mES and ∆E∗ for the combinatorial B-background at about 10%. The

effect of the correlations on the signal yield has been studied by building various “signal

embedded” toy Monte Carlos, shown in the Table 5.

5.6.2 Composition of the Component PDFs

Table 11 in Appendix B summarizes all the PDFs used to compose the PDF for each

component, P(~xj ; ~αi), in the B → (K∗0/K∗+)γ decays and the B → (ρ/ω)γ decays, respec-

tively. The selections of the PDFs are based on the Monte Carlo studies.

B → (K∗0/K∗+)γ decays

In the B → (K∗0/K∗+)γ decays, to reduce systematic uncertainty, the fit parameters of

the continuum background and the signal (with the exception noted later) are determined by

a fit to data. For the continuum background, the ∆E∗ distribution is modeled by a first-order

polynomial function with the exception of K∗+ → K0
sπ

+, where a second-order polynomial

is used. The mES for the continuum background is modeled as an ARGUS function [53].

These are shown in Section 4.1.1 Figure 19. In the K∗+ → K+π0 decay mode, the contin-

uum background shape is simultaneously fit to the off-resonance data, assuming the same

continuum shapes. For the B-background, the Gaussian distribution used for ∆E∗ and the

Novosibirsk function33 used for mES have all shape parameters fixed to values determined

from the Monte Carlo. As shown in Figure 19, the signal ∆E∗ distribution is modeled as

a Crystal Ball function [52], with the low-side power-law tail fixed from Monte Carlo data.

32As mentioned in Section 4.1.1, this correlation is reduced by using the mES instead of the rescaled mES .
33The Novosibirsk function [68] is defined as

f(x) = C · e−
1
2 ·[ln(1+τ ·(x−<x>)· sinh(τ

√

ln 4)

στ
√

ln 4
)/τ ]2+τ2

, (67)

with 〈x〉 the mean, σ the width, and τ the ”tail“ parameter.
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The energy leak from the primary photon is well compensated for by the rescaled mES, so the

mES distribution for signal is modeled as a Gaussian function, except for the K∗+ → K+π0

decay mode, where a Crystal Ball function, with tail parameters fixed using Monte Carlo, is

used to accommodate a low-side tail due to the π0 energy leakage. The same low-side tail

in K∗0 → K0
sπ

0 decay mode is not separately fit due to the low statistics in this mode.

B → (ρ/ω)γ decays

In the B → (ρ/ω)γ decays, the mES and ∆E∗ PDFs are parameterized by a Crystal

Ball function for both the signal and the peaking background. The parameterization is de-

termined from signal MC samples, except for the mean of the ∆E∗ distribution, which is

offset by the observed difference between data and MC samples of B → (K∗0/K∗+)γ decays.

Similar to the B → (K∗0/K∗+)γ decays, the continuum background mES and ∆E∗ distribu-

tions are parameterized by an ARGUS function and a second-order polynomial, respectively.

The combinatorial B-background is described by a smooth distribution [69] (KEYS), de-

termined from MC events in both mES and ∆E∗. The distribution of NN for signal and

all the B-backgrounds is parameterized by a Crystal Ball function with the exception of

B0 → ωγ decay mode, where a KEYS PDF, obtained from signal Monte Carlo, is used.

The NN distribution for continuum is determined from sideband data34, and a histogram

34The sidebands used to extract the NN and Fisher distributions of the continuum background have been
defined as follows:

1. Mass veto sideband in B → (ρ0/ρ+)γ modes. These are formed by inverting the meson mass
cut from [0.63, 0.94] GeV/c2 to [0.5, 0.63] GeV/c2 or [0.94, 1.10] GeV/c2. Then, events are selected
within the region [5.2, 5.26] GeV/c2× [−0.35, 0.6] GeV on the mES –∆E∗ plane.

2. Mass veto sideband in B0 → ωγ mode. These are formed by inverting the meson mass cut from
[0.764, 0.795] GeV/c2 to [0.7, 0.764] GeV/c2 or [0.795, 0.85] GeV/c2. Then, events are selected within
the region [5.2, 5.26] GeV/c2×[−0.35, 0.6] GeV on the mES –∆E∗ plane.

3. Upper sideband. These are composed by choosing events in the region
[5.2, 5.3] GeV/c2×[0.3, 0.6] GeV on the mES –∆E∗ plane without any change to the other
cuts.

These sidebands were selected to be an orthonormal data set to the events in the fit region. The NN and
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is used as the PDF. The distribution of the Fisher variable is parameterized by a KEYS

PDF constituted from the sideband data for the continuum background, and MC events for

all other hypotheses. The fit to the data determines the shape parameters of the contin-

uum background mES and ∆E∗ PDFs, as well as the signal, continuum background, and

combinatorial B-background yields. All other parameters are fixed, including the peaking

B-background yields.

5.6.3 Validation of Likelihood Fits

The likelihood fits are then validated using various toy Monte Carlos. In principle, a fully

embedded toy Monte Carlo study, where all the components are selected from the BABAR-

simulated events, resembles the real data most. However, because of lack of statistics in the

continuum MC, we can, at most, build the “All embedded (except continuum background)”

toy MC samples. This embedded MC is used to validate the modeling of B-backgrounds,

and check correlations. In building toy samples, the expected yield of each component is

normalized to correspond to a luminosity of 81.9 fb−1 and 191 fb−1 for B → (K∗0/K∗+)γ

decay modes and B → (ρ/ω)γ decay modes, respectively, using the assumed branching

fractions or cross-sections in Section 3.3, Section 4.1, and Section 5.1.2. A example of

this kind of study is shown in Figure 33, where a pure toy Monte Carlo (with around 1000

independent toys) is performed, and the fitted signal yield, the error and the pull distributions

are shown. Table 5 shows the mean/sigma of signal pull distributions for various toy Monte

Carlo studies.

B → (K∗0/K∗+)γ decays

Fisher are obtained by combining all the sideband data to increase the statistical samples. These distributions
are then compared to the events in the fit region (with mES < 5.26 GeV/c2 to exclude most of signal and
B-background). The sideband data are validated to have the same NN and Fisher distribution as the the
events in the fit region within the statistics.
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Figure 33: The pull, fitted signal yield, and the error of the signal yield from a toy Monte
Carlo study in B0 → ρ0γ decay mode.

All embedded
Modes Pure Sig. embedded (except cont. bkg.) Mixed

K∗0 → K+π− -0.02/1.01 -0.54/1.06 0.35/1.02 −
K∗0 → K0

sπ
0 0.09/1.04 -0.67/1.12 -0.05/1.03 −

K∗+ → K+π0 -0.12/1.04 -0.37/1.05 -0.04/1.03 −
K∗+ → K0

s π+ 0.02/0.94 -0.57/1.02 -0.08/0.97 −
− − − − −
B0 → ρ0γ -0.05/1.02 -0.08/1.08 0.00/0.96 −
B+ → ρ+γ -0.02/1.00 0.11/1.06 0.00/0.99 −
B0 → ωγ -0.10/0.99 -0.11/1.14 0.04/1.00 −1.1+1.1

−1.9

Table 5: The pull mean/sigma of the signal yield for each decay mode, with the exception
that for the mixed toy MC study in the B0 → ωγ decay, only the bias on the signal event is
given, which results from ignoring the B-background in the likelihood fit.
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For the B → (K∗0/K∗+)γ decays, ignoring the correlations in signal events does intro-

duce a slight bias on signal yields, shown in Table 5. We decide to correct this bias using

the “signal embedded” toy studies. A correction factor for the signal efficiency, defined

as fitted signal yield/expected signal yield, is then derived from the signal embedded toy

studies, which is 0.978, 0.907, 0.963, and 0.955 for K∗0 → K+π−, K∗0 → K0
sπ

0, K∗+ →

K+π0, and K∗+ → K0
s π+ decays, respectively. The error of the fitted signal yield is con-

sidered the systematic uncertainty of this correction factor, MC statistics/fit bias, which

is mainly determined by statistics of signal MCs, and is 0.9%, 3.2%, 2.4%, and 1.6% for

K∗0 → K+π−, K∗0 → K0
s π0, K∗+ → K+π0, and K∗+ → K0

sπ
+ decays, respectively.

B → (ρ/ω)γ decays

For B → (ρ/ω)γ decay modes, no significant bias on the signal yields is found (see

Table 5). The “All embedded (except continuum background)” toy MC study bears the

closest resemblance to real data. This sample can test not only the correlations among fit

variables for signal and B-backgrounds, but also the hypothesis that the NN distributions

of these components are the same. Additionally, the available MC samples are large enough

to perform a high statistics test with this type of toy study35. Based on the results of the

“All embedded (except continuum background)” toy MC study, no correction factor on the

signal efficiency is applied. But to be conservative, the error of the fitted signal yield is taken

as the systematic error of “MC statistics/fit bias/B-background modeling”, which is 10.2%,

10.8%, and 5.4% on the signal efficiency for B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ decay

modes, respectively. In B0 → ωγ decay mode, the effect of ignoring the B → (K∗0/K∗+)γ

background and the combinatorial B-background is studied using “mixed” toy studies, and

35In BABAR, the standard MC simulations are produced in proportional to the on-resonance data with a
fixed rate. When analyzing B → (ρ/ω)γ decays, the available B-background MCs are already few times
bigger than the available B-background MCs at the time of analyzing B → (K∗0/K∗+)γ decays.
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Figure 34: The likelihood fit on the B → (K∗0/K∗+)γ control sample in B → (ρ0/ρ+)γ decay
modes. The projection plots of the likelihood fit to the B → (K∗0/K∗+)γ sample, which is
obtained by releasing the PID selector in the B → (ρ0/ρ+)γ decay mode. The red solid line is
the total fit and the dashed blue line is the total background. The plots are projections with
the following cuts applied if that variable is not being plotted: 5.272 < mES < 5.286 GeV/c2,
−0.20 < ∆E∗ < 0.0 GeV, and N > 0.9.

the bias on the signal yield is 1.1 events with a systematic error of +1.1
−1.9.

Offpeak data, sideband, and control samples

To validate the likelihood fit further, it is then applied to off-resonance data, sideband

data, and control samples.

1. The off-resonance data contains no signal events. No significant non-zero signal

yield is expected when performing likelihood fits on it. This has been confirmed by
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the fit in each decay mode.

2. The sideband data in the fit region is constructed by selecting events outside the

meson mass window, described in 4.2.7. This control sample has statistics comparable

to the final data set. Furthermore, it contains some amount of B-backgrounds but

almost no signal events. This could provide a better test of the likelihood fit than the

off-resonance data set. No significant signal is present in the fit for each decay mode.

3. In B → (ρ0/ρ+)γ decays, the B → (K∗0/K∗+)γ backgrounds are strongly sup-

pressed by pion PID (Section 4.2.3). By removing the PID, a control sample for

B → (ρ0/ρ+)γ decays can be built. This sample contains very large B → (K∗0/K∗+)γ

events. Therefore applying the identical fits as B → (ρ0/ρ+)γ decays (with the

mean of the signal ∆E∗ floating) could give a very good test of the likelihood fit

in B → (ρ0/ρ+)γ decay modes. Figure 34 shows the projection plots of the B0 → ρ0γ

fit on the corresponding B → (K∗0/K∗+)γ control sample. The fitted signal yield is

in good agreement with the expected B → (K∗0/K∗+)γ yield.

After all these validations, the likelihood fit is applied to the final data set in the fit region

to extract the signal yield for each decay mode. The results are discussed in Section 6.
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6 Fitted Results

6.1 Fitted Signal Yields of the B → (K∗0/K∗+)γ Decays

Figure 35 and Figure 36 show projection plots of the likelihood fits of the 81.9 fb−1

BABAR onpeak data for the B0 → K∗0γ decay modes and the B+ → K∗+γ decay modes,

respectively. Significant signal peaks are seen.

There are 3304, 511, 1393, and 1174 events in the fit region for K∗0 → K+π−, K∗0 →

K0
s π0, K∗+ → K+π0, and K∗+ → K0

s π+ decay modes respectively. These events are in-

cluded in the likelihood fits, and the corresponding signal yields are 582.6±29.7, 61.8±15.3,
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Figure 35: The projection plots of the final fits on mES and ∆E∗ for the B0 → K∗0γ decay
modes. The solid line is the total fit and the dashed line is the total background. No cuts
on other variables were applied when making the projection plots.
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Figure 36: The projection plots of the final fits on mES and ∆E∗ for the B+ → K∗+γ decay
modes. The solid line is the total fit and the dashed line is the total background. No cuts
on other variables were applied when making the projection plots.

250.9±22.6, and 156.9±15.7, respectively. For K∗0 → K+π− decay mode, the statistical

precision of the signal yield is around 5%.

6.2 Fitted Signal Yields of the B → (ρ0/ρ+)γ and B0 → ωγ Decays

Figures 37, 38, and 39 show projection plots of the likelihood fits of 191.4 fb−1
BABAR

data, almost all the available data by 2004, for the B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ

decay modes, respectively. No significant signal peaks are seen.

There are 4367, 7071, and 1390 events in the fit region for B0 → ρ0γ, B+ → ρ+γ, and

B0 → ωγ decay mode respectively. These events are included in the likelihood fits, and
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Figure 37: The projection plots of the unblinded results for B0 → ρ0γ decay mode, where
a), b), c), and d) are the projection onto mES, ∆E∗, neural net, and Fisher, respectively.
The solid line is the total fit, and the dashed line is the total background. The plots are
projections with the following cuts applied if that variable is not being plotted: 5.272 <
mES < 5.286 GeV/c2, −0.10 < ∆E∗ < 0.05 GeV and N > 0.9. The selection efficiency for
signal events is 50%, 59%, 78%, and 49% for mES, ∆E∗, neural net, and Fisher projections.

the corresponding signal yields are 0.3+7.2
−5.4, 25.6+15.3

−13.9, and 8.3+5.7
−4.5, respectively. Ignoring the

systematic uncertainties, the significance of the B+ → ρ+γ and B → (ρ/ω)γ signal yields

are around 2σ, however the significance of the B0 → ρ0γ signal yield is negligible. In the

B0 → ρ0γ decay mode, the small bumps seen in the mES and ∆E∗ distribution are due to

small peaking B-backgrounds. In the B0 → ωγ decay mode, the bias due to ignoring the

B → (K∗0/K∗+)γ background and the combinatorial B- background have been corrected

directly in the likelihood.
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Figure 38: The projection plots of the unblinded results for B+ → ρ+γ decay mode, where
a), b), c), and d) are the projection onto mES, ∆E∗, neural net, and Fisher, respectively.
The solid line is the total fit, and the dashed line is the total background. The plots are
projections with the following cuts applied if that variable is not being plotted: 5.272 <
mES < 5.286 GeV/c2, −0.10 < ∆E∗ < 0.05 GeV and N > 0.9. The selection efficiency for
signal events is 42%, 56%, 66%, and 41% for mES, ∆E∗, neural net, and Fisher projections.
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Figure 39: The projection plots of the unblinded results for B0 → ωγ decay mode, where
a), b), c), and d) are the projection onto mES, ∆E∗, neural net, and Fisher, respectively.
The solid line is the total fit, and the dashed line is the total background. The plots are
projections with the following cuts applied if that variable is not being plotted: 5.272 <
mES < 5.286 GeV/c2, −0.10 < ∆E∗ < 0.05 GeV and N > 0.9. The selection efficiency for
signal events is 46%, 58%, 70%, and 45% for mES, ∆E∗, neural net, and Fisher projections.
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Figure 40: The background-subtracted meson mass distribution of the B → (K∗0/K∗+)γ
decays. The events in the signal region are selected to make these plots with the meson mass
window extended to [0.7, 1.1] GeV/c2. These distributions are then fitted to a relativistic
Breit-Wigner function, shown by the solid line. The parameters of the Breit-Wigner function
is fixed by the nominal values from PDG Book [38].

6.3 Cross Checks

After obtaining the final results, the goodness of the likelihood fit is validated using a toy

Monte Carlo. About 1000 pure toy Monte Carlo samples are generated using the fitted yields

and the PDF parameters. The likelihood fit is then applied to these toy data samples, and a

likelihood distribution is obtained. The likelihood of the final data fits and the mean of the

toy MC likelihood distribution are consistent with each other within 2σ, for all the decay

modes. Other projection plots, which are similar to Figures 35-39 with different selections
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on fit variables are also checked. No significant deviations from the fitted curve are seen.

These checks proved that the likelihood functions are able to describe the data well.

For the B → (K∗0/K∗+)γ decays, a further cross-check is performed to check the non-

resonant contribution to these decays. The events in the signal region (see Figure 19) with a

meson mass window [0.7, 1.1] GeV/c2 are projected onto the meson mass distribution (mKπ),

and the background is subtracted using the events in [5.2, 5.26] GeV/c2 × [−0.2, 0.1] GeV,

where only continuum background is present. These distributions plotted in Figure 40, show

a nice Kπ resonance structure. These distributions are then fitted to a relativistic p-wave

Breit-Wigner function36 with the resonance shape fixed to the nominal parameters from the

Particle Data Group [38]. These fits show that the data is well modeled by the nominal

resonance shape. These cross-checks have fully confirmed that the fitted K∗γ signal yields

are truly due to B → K∗γ events.

36The relativistic p-wave Breit-Wigner function is defined as,

f(m) =
m · Γrel

(m2 − m2
0)

2
+ (m0 · Γrel)

2
, (68)

with

Γrel = Γ

(

p

p0

)2l+1
(m0

m

)

·
(

1 + (p0r)
2

1 + (pr)2

)

, (69)

here m is reconstructed mass, m0 is the peak of the resonance, p is the outgoing momentum of the daughter
in the resonance rest frame, p0 is the outgoing momentum of the daughter at the resonance peak, l = 1 is
the angular momentum, Γ is the decay width of the resonance and r = 3 GeV−1 is the barrier radius.
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7 Systematic Errors

The systematic errors in calculating the branching fractions fall in two main categories

as follows:

• Systematic errors related to the signal reconstruction efficiency. The signal

reconstruction efficiency for each decay mode was obtained from corresponding signal

MC simulation to calculate the branching fraction. This efficiency is later checked

against the real data. For this type of systematic uncertainty, a correction factor and

a relative error on the signal efficiency is given.

• Systematic errors related to the likelihood fit. These are obtained from the

variation of the likelihood fit, e.g. by fixing some parameters of the PDFs using Monte

Carlo data or ignoring some components in modeling the data. For each source, a “fit

bias” on the fitted signal yield, which is associated with an error, is then determined.

The fitted signal yield is then corrected by this bias, and the corresponding error (in

events) on the bias is taken as the systematic error.

7.1 Systematic Errors on Signal Reconstruction Efficiency

The number of BB pairs produced in BABAR is studied by the “B counting” analy-

sis working group (AWG), using ratios of hadron events to µ+µ− events between on- and

off-resonance data [70]. A 1.1% uncertainty on the number of BB pairs is given. This

uncertainty is common for all decay modes.

The production ratio of charged and neutral B events, R+/0, is assumed to be 1.0 for

most BABAR analyses. This ratio has been measured recently to be,

R+/0 ≡ Γ(e+e− → B+B−)/Γ(e+e− → B0B̄0) = 1.006 ± 0.048 (70)
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at
√

s = MΥ (4S) [71], and results in an additional 2.4% systematic error on the measurements

of B branching fractions. However, this error is mainly statistics dominated, and with a

growing BABAR data set, a better determination of the production ratio can be achieved.

Since the systematic error is beginning to dominate the total error for for B → (K∗0/K∗+)γ

decays, and this production ratio error is relatively significant, a 2.4% systematic error is

added for each decay mode conservatively. While for B → (ρ/ω)γ decays, relative to the

statistical error, this error is small and is ignored.

The reconstruction efficiencies of charged tracks [72, 73], neutral candidates (including

π0 and single photons) [74] and K0
S
s [75] in MC simulations are of interest for most BABAR

analyses and have been studied using various control samples, by different BABAR AWGs.

Algorithms are then provided to correct the corresponding efficiencies on MCs and assign

systematic errors. As shown in Table 6, the systematic errors are 0.8% and 3.0% for every

track and K0
S
, respectively. The systematic error in efficiency of reconstructing a π0 candidate

is 5% and 3.0% for B → (K∗0/K∗+)γ decays and B → (ρ/ω)γ decays, respectively. The

improvement in the B → (ρ/ω)γ decays comes from a recent study of the π0 systematic

error [76]. The systematic error of the signal photon is derived from π0s, whose daughter

photons have almost the same energy. This systematic error is 2.5% for B → (K∗0/K∗+)γ

decays, and should be less than this for B → (ρ/ω)γ decays. However this study is not fully

finished, so we conservatively assign a 3.0% for each B → (ρ/ω)γ decay mode.

As discussed in Section 4.2.3, PID systematic errors in MC simulations are studied by

comparing efficiencies between data and MC, using the D∗ → Dπ control samples. The

detailed algorithms used to obtain the PID systematic error are described elsewhere [55].

The systematic error is 1.0% for the kaon selection in B → (K∗0/K∗+)γ decays and 2% for

pion selection in B → (ρ/ω)γ decays, respectively. For B → (ρ/ω)γ decays, the kaon mis-id

rate of the pion selectors is very important since the yield of B → (K∗0/K∗+)γ background
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is estimated from MC and fixed in the likelihood fit. This mis-id rate is also checked using

the same D∗ control sample. A correction factor of 1.32 and 1.31 is determined for the kaon

mis-id rate for B0 → ρ0γ and B+ → ρ+γ decay modes, respectively. The uncertainties on

the corresponding correction factors are 0.32 and 0.31. This will be considered as part of

the systematic errors of the likelihood fit.

The systematic errors of π0/η-veto and distance cuts are studied using a “photon em-

bedded” method [77]. A high-energy photon from MC simulation or radiative Bhabha event

is embedded into generic MC samples, or off- or on-resonance data. By treating this photon

as the primary photon, the efficiencies of the veto/distance cuts are compared between data

and Monte Carlo simulations. These studies result in an efficiency difference between data

and MC simulations of 2% and 1% for the veto and the distance cut, respectively. These are

assigned as the systematic errors of the π0/η-veto and distance cuts, respectively.

The meson mass distributions for data and Monte Carlo using large samples of ρ, K∗, and

ω mesons are compared. When cutting on the mass distributions, the efficiency difference

between data and Monte Carlo is found to be far less than 1%, relative to the signal efficiency.

Therefore, this systematic error is ignored.

The NN distribution could result in two types of systematic errors, a systematic error on

the signal efficiency when a cut is applied on the NN distribution, or a systematic error on

the fitted signal yield when the NN distribution is used in a likelihood fit. These systematic

errors are studied using B → Dπ control samples, shown in Appendix A. The systematic

error related to signal efficiency is summarized in Table 6.

As discussed in Section 5.6.3, for B → (K∗0/K∗+)γ decays, ignoring the correlations

between fit variables mES and ∆E∗ does introduce some inefficiencies in the likelihood fit.

This bias, corrected using a “signal embedded” toy Monte Carlo study, is 0.978, 0.907,

0.963, and 0.955 for K∗0 → K+π−, K∗0 → K0
s π0, K∗+ → K+π0, and K∗+ → K0

s π+ decay,
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respectively. The errors on these factors are dominated by the statistics of available signal

MCs, and are treated as “MC statistics/fit bias” systematic error. For B → (ρ/ω)γ decays,

we take no correction on the signal efficiency due to “MC statistics/fit bias”, and take the

statistics errors of the fitted signal yield as the systematic errors of “MC statistics/fit bias/B-

background modeling”, which are 10.2%, 10.8%, and 5.4% on the signal efficiency for the

B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ decay mode, respectively. This includes the systematic

error in the modeling of NN distributions for signal and B-backgrounds.

All systematic errors discussed above are summarized in Table 6. For B → (K∗0/K∗+)γ

decays the total systematic error on the signal efficiency is 5.4%, 10.7%, 9.0%, and 6.1% for

K∗0 → K+π−, K∗0 → K0
sπ

0, K∗+ → K+π0, and K∗+ → K0
s π+ decay mode, respectively.

This error is already larger than the statistical error for K∗0 → K+π− decay mode. The total

error for B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ is 12.1%, 10.0%, and 10.8%, respectively.

This is dominated by the “MC statistics/fit bias/B-background modeling”.

7.2 Systematic Errors of Likelihood Fits

The systematic errors related to likelihood fits are quite for B → (K∗0/K∗+)γ decays

and B → (ρ/ω)γ decays as discussed below separately,

7.2.1 Fit Systematics in B → (K∗0/K∗+)γ Decays

In B → (K∗0/K∗+)γ decays, significant signals are present for all the decay modes.

Therefore, almost all the parameters of the signal PDFs are determined directly from the

data. Further, the parameters of the continuum background are also floating in the fits. For

these parameters, no systematic error is given. We only consider the following two types of

systematic errors. No bias on the signal yield is assigned.

1. Some signal parameters are still fixed from MC, e.g. the tail parameters of the Crystal-
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K∗0 → K+π− K∗0 → K0
sπ0 K∗+ → K+π0 K∗+ → K0

sπ+ B0 → ρ0γ B0 → ωγ B+ → ρ+γ
Description Factor σ(%) Factor σ(%) Factor σ(%) Factor σ(%) Factor σ(%) Factor σ(%) Factor σ(%)

εMC

(before corr.) 0.257 0.179 0.189 0.244 0.160 0.090 0.137

B Counting 1.00 1.1 1.00 1.1 1.00 1.1 1.00 1.1 1.00 1.1 1.00 1.1 1.00 1.1
R+0 1.00 2.4 1.00 2.4 1.00 2.4 1.00 2.4
Tracking Eff 0.99 1.6 1.00 0.8 0.99 0.8 0.99 1.6 0.99 1.6 1.00 0.8
PID 0.98 1.0 0.98 1.0 0.97 1.0 1.00 2.0 1.00 2.0 1.00 2.0
π0 eff. 0.98 5.1 0.98 5.1 0.97 3.0 0.97 3.0
Photon eff. 1.00 2.5 1.00 2.5 1.00 2.5 1.00 2.5 1.00 3.0 1.00 3.0 1.00 3.0
Distance cut 1.00 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00 2.0
π0(η) veto 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0
Ks 0.98 3.0 0.98 3.0
meson mass 1.00 <1.0 1.00 <1.0 1.00 <1.0 1.00 <1.0 1.00 <1.0 1.00 <1.0 1.00 <1.0
NN 1.00 3.0 1.00 3.5 1.00 2.7 1.00 2.8 1.00 4.6 1.00 4.6 1.00 1.8
MC statistics/
fit bias/B bkg. 0.98 0.9 0.91 3.2 0.96 2.4 0.96 1.6 1.00 10.2 1.00 5.4 1.00 8.1
modeling

Total 0.95 5.4 0.85 10.7 0.92 9.0 0.91 6.1 0.99 12.1 0.95 10.0 0.97 10.8

εMC

(after corr.) 0.244 5.4 0.153 10.7 0.174 9.0 0.221 6.1 0.158 12.1 0.132 10.0 0.083 10.8

Table 6: The systematic uncertainties of B for each decay mode. For each type of systematic uncertainty related
to the signal efficiency, a correction factor on the signal efficiency and the relative error on the signal efficiency are
calculated, as described in Section 7.1. The “meson mass” cut efficiency has a systematic error on the signal efficiency
far below 1%, and ignored in calculating the total systematic error. The “π0” and “photon” systematic errors are
correlated, therefore they are summed in linear with each other before added in quarture with other systematic errors.
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Ball functions in the signal PDF. We vary the fixed values by ±1σ around the fixed

values, which are obtained from a fit to the signal MC sample, and fit the final data

set again. The resulting changes in the signal yields are treated as the corresponding

systematic errors.

2. The combinatorial B-background PDF is fixed from Monte Carlo sample. We extract

a different B-background shape from the dominant component, B → Xsγ. Using this

shape, we perform the final fit again. The variation of the signal yield is considered as

the systematic error of the B-background modeling.

In this way, the total systematic error associated with the fit is ±12.8, ±4.5, ±6.7, and

±2.2, for for K∗0 → K+π−, K∗0 → K0
sπ

0, K∗+ → K+π0, and K∗+ → K0
sπ

+ decay modes,

respectively.

7.2.2 Fit Systematics in B → (ρ/ω)γ Decays

Compared to B → (K∗0/K∗+)γ decays, where most of the signal parameters are deter-

mined from the fit itself, all the signal parameters in each B → (ρ/ω)γ decay are determined

from the MC and fixed in the final likelihood fit. The only exception is the mean of ∆E∗,

which is further offset by the difference seen between data and MC in B → (K∗0/K∗+)γ de-

cays. Only the yields of the signal, continuum background, and combinatorial B-background

(if applicable), and the parameters of mES and ∆E∗ of the continuum background are allowed

to float in the likelihood fit. We consider the following fit systematics,

1. Fixing parameters of the signal PDF. We vary each of the fixed parameter by

±1σ of the uncertainties obtained from fitting to the signal Monte Carlo, and fit to

the final data again. The resulting variation of the signal yield is then considered as

the systematic error of fixing the corresponding parameter. Due to presence of a small
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signal, an asymmetric error is calculated. All the systematic errors are then summed

in quadrature to obtain the total systematic error, and is labeled “fixing parameters

of the signal PDF”. This error is +0.22
−0.02,

+1.54
−0.99, and +0.15

−0.16 for B0 → ρ0γ, B+ → ρ+γ, and

B0 → ωγ decay mode, respectively.

2. Binning/statistics of the histogram PDF. In the likelihood fit, the NN distribu-

tion of the continuum background is obtained from the sideband data and fixed in the

likelihood fit. This distribution is irregular, and a binned histogram is directly used in

the likelihood fit.

The binning of the histogram is chosen so that the statistics error of almost every

bin is less than 10%. The default bins of the histogram PDF are 45, 60, and 45 for

B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ, respectively. To study the systematic error

of the binning, the bins of the histogram are varied within 25, 35, 45, 55, and 65 for

B0 → ρ0γ and B0 → ωγ decay modes (30, 45, 60, 75, and 90 for B+ → ρ+γ decay

mode), and used in the final fit. The maximum variations of the signal yield are taken

as the systematic errors of “binning of the histogram PDF”, which are +0.20
−0.70,

+0.00
−0.70, and

+0.50
−0.00 for B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ decay mode, respectively.

To check the systematic error resulting from the statistics of the sideband data, a 5-th

Polynomial is fitted to the histogram PDF to smooth the distribution. The smoothed

PDF is used in the likelihood fit, replacing the histogram PDF. The resulting vari-

ations of the signal yield are taken as the systematic errors of “the statistics of the

histogram PDF”, which are +0.40
−0.40 for B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ decay mode,

respectively.

3. The Peaking B-backgrounds. The yields and the shape of the peaking B-backgrounds

are both fixed from Monte Carlo. We only consider the systematic error associated
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with fixing the yields of the peaking B-background.

The B → (K∗0/K∗+)γ background yield and its error for the B0 → ρ0γ and B+ → ρ+γ

decay modes are estimated using the measured B → (K∗0/K∗+)γ branching fractions

presented in this thesis. The statistics of the B → (K∗0/K∗+)γ MC and the uncer-

tainties of the kaon mis-identification rate are described in Section 7.1. One-sigma

variations of the yield are made, and the corresponding changes of the fitted signal

yield are taken as the systematic errors. The resulting systematic error for B0 → ρ0γ

and B+ → ρ+γ is +1.59
−1.29 and +0.92

−0.81, respectively. For B0 → ωγ decay mode, we do

not consider B → (K∗0/K∗+)γ background in the fit. Instead, a “B → (K∗0/K∗+)γ

background mixed” toy Monte Carlo is used to estimate the bias on the signal yield.

A bias of +1.05 events is found. We apply this bias on the signal yield and choose the

corresponding error on this correction, −1.05, as the systematic error.

The (ρ/ω)(π0/η) backgrounds are slightly different from the B → (K∗0/K∗+)γ back-

ground, since they contain two types of decays, and some of the decays have not been

observed yet. We vary the branching fraction of each decay mode by one standard de-

viation for a measured decay, or from zero to the current upper limit for a decay which

has only an upper limit (see Section 5.1.2). The exception is for B → ρ0π0 decay. We

vary the branching fraction from zero to 5.1×10−6, the recent Belle result of this decay

mode. Combining the variation on the branching fraction with the statistical errors of

the Monte Carlo samples, the variations of the yield are calculated. The corresponding

changes of the fitted signal yield, when making these variations, are considered to be

the corresponding systematic errors. This gives +0.56
−0.64,

+1.31
−1.20, and +0.26

−0.19 for B0 → ρ0γ,

B+ → ρ+γ, and B0 → ωγ, respectively.

4. The combinatorial B-background. The systematic uncertainty of the combina-
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torial B-background has been considered as part of the “MC statistics/fit bias/B-

background modeling” for B0 → ρ0γ and B+ → ρ+γ decay modes. For the B0 → ωγ

decay, a “combinatorial B” mixed-MC study was performed (Section 5.6.3), and a bias

of +1.5 events is seen, when this background is not considered in the likelihood fit. We

decided not to correct the bias, but to take the full bias as the systematic error. This

results a systematic error of +0.0
−1.5.

5. The best candidate selection. For events which contain more than one candidate,

we select the best candidate, which is defined as the one with the minimum |∆E∗|.

Before the best candidate selection, the average multiplicity of the signal events is 1.03,

1.15, and 1.14 for B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ decay modes, respectively. The

relatively high multiplicity in the B+ → ρ+γ and B0 → ωγ decay mode results from

the high multiplicity of the background π0 in an event. For the continuum background,

a second order polynomial is used to model the background ∆E∗ distribution. We also

check the possible effect of best candidate selection on modeling of the continuum

background, where an artificial bump could be created by the best candidate selection.

We only consider this for B+ → ρ+γ and B0 → ωγ decay modes.

First, we look at events in the mES < 5.26 GeV/c2, |∆E∗| < 0.3 GeV sideband, in

which more than one candidate is found. The ∆E∗ distribution of the best candidates

is fit with a second-order polynomial, which is fixed to be the same as that used in the

unblinded fit, and a Gaussian. Then, we use the Gaussian and the same second-order

polynomial to fit all events in the sideband. The size of the Gaussian component is

(1.3 ± 1.1)% and (0.6 ± 2.5)% of the continuum events for B+ → ρ+γ and B0 → ωγ

decay modes, respectively. This is consistent with no peaking structure.

For B+ → ρ+γ decay mode, we perform the final fit, replacing the continuum back-
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B0 → ρ0γ B+ → ρ+γ B0 → ωγ
Description Sig. bias error Sig. bias error Sig. bias error

Fixing of sig. PDFs 0.0 +0.22
−0.02 0.0 +1.54

−0.99 0.0 +0.15
−0.16

Binning of histogram PDFs 0.0 +0.20
−0.70 0.0 +0.00

−0.70 0.0 +0.50
−0.00

Statistics of histogram PDFs 0.0 +0.40
−0.40 0.0 +0.40

−0.40 0.0 +0.40
−0.40

B → (K∗0/K∗+)γ bkg. 0.0 +1.59
−1.29 0.0 +0.92

−0.81 -1.05 +1.05
−1.05

(ρ/ω)(π/η) bkg. 0.0 +0.56
−0.64 0.0 +1.31

−1.20 0.0 +0.26
−0.19

B bkg. n/a n/a 0.0 +0.00
−1.50

Best Candidate Selection n/a 0.0 +0.0
−1.2 n/a

Total 0.0 +1.7
−1.6 0.0 +2.2

−2.2 -1.05 +1.3
−1.9

Table 7: The summary of all systematic uncertainties associated with the likelihood fit for
each decay mode. For each type of systematic uncertainty, a bias on the signal yield and the
error (in events) on the signal bias are calculated. (here “bkg.” represents “background”.)

ground ∆E∗ PDF with a sum of a Gaussian and a second-order polynomial, with the

normalization of the Gaussian fixed to 1.3% of the total background yield. This leads

to a 1.2 event reduction in the signal yield. To be conservative, we take this as an

additional asymmetric uncertainty on the signal yield of −1.2 events in B+ → ρ+γ

decay mode. For B0 → ωγ decay mode, the same procedure is followed and the effect

is estimated to be on the order of 0.1 events. Therefore, we ignore this effect for the

B0 → ωγ decay mode.

6. Systematic error of the signal NN distribution. The systematic effect of the

NN distribution is discussed in Appendix A. Because the effect on the signal yield is

estimated to be less than 2% of the signal yield, we decide to ignore this systematic

error.

Table 7 summarizes the fit systematic errors discussed above. The total fit systematic

error is then calculated to be +1.7
−1.6,

+2.2
−2.2, and +1.3

−1.9 for B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ,
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respectively. A bias of −1.05 is then applied on the B0 → ωγ fitted signal yield, due to the

effect of the B → (K∗0/K∗+)γ background.
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8 Physics Results

In the following, the branching fractions of B → (K∗0/K∗+)γ and B → (ρ/ω)γ decays are

given first. The ratio of the branching fractions is then used to constrain |Vtd|/|Vts|. Finally

the CP -asymmetry and isospin-asymmetry of B → (K∗0/K∗+)γ decays are discussed.

8.1 B → (K∗0/K∗+)γ Branching Fractions

The branching fraction of the B0 → K∗0γ decay (B+ → K∗+γ decay) was measured

exclusively from both K∗0 → K+π− and K∗0 → K0
s π0 decay modes (K∗+ → K+π0 and

K∗+ → K0
sπ

+ decay modes), respectively. Individual results are combined to give a more

precise measurement. A χ2 method is used to combine the individual results. A detailed

discussion is presented in Appendix C.

8.2 Results

The branching fraction, the signal efficiency, ε, and the fitted signal yield, NS, of each

mode are summarized in Table 8. Following the procedure described in Appendix C, the

combined branching fractions for B0 → K∗0γ and B+ → K∗+γ decays are calculated, and

shown in Table 8. Figure 41 shows a comparison of these results with the theoretical pre-

Mode ε(%) NS B(×10−5) Combined B(×10−5)
K∗0 → K+π− 24.4±1.4 582.6±29.7 3.92±0.20±0.23

}

3.92±0.20±0.24
K∗0 → K0

sπ
0 15.3±1.9 61.8±15.3 4.02±0.99±0.51

K∗0 → K+π− 17.4±1.6 250.9±22.6 4.90±0.45±0.46
}

3.87±0.28±0.26
K∗+ → K0

s π+ 22.1±1.4 156.9±15.7 3.52±0.35±0.22

Table 8: The signal efficiency ε, the fitted signal yield NS and the branching fraction B of each
decay mode are shown. The combined branching fractions for B0 → K∗0γ or B+ → K∗+γ
are also shown. Errors are statistical and systematic, respectively, with the exception of ε,
which has only a systematic error, and NS, which has only a statistical error. The detailed
description of the systematic errors is found in Table 6 and Section 7.2.
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Figure 41: Summary of branching fractions for the B → (K∗0/K∗+)γ decays. The BABAR

result is compared to experimental results from CLEO [30] and Belle [31], and the theoretical
predictions from Ali et al. [40] and Xiao et al. [78].

dictions from several models and with the results from Belle and CLEO. These results are

in good agreement with the theoretical predictions. However, the experimental results are

already much more precise than any of the theoretical predications. As discussed in Sec-

tion 2, the theoretical uncertainties are dominated by the determination of the form factors.

The measurements presented here indicate smaller form factors than the ones predicted by

QCD sum rules, while they are in good agreement with the prediction of the lattice QCD

calculation. These results, with the CP -asymmetry and isospin asymmetry discussed later,

can be used to constrain the Higgs mass in 2HDM. A detailed discussion can be found in

Ref. [78].

8.3 B → (ρ/ω)γ Branching Fractions

Unlike the B → (K∗0/K∗+)γ decays, no signals are seen for individual B → (ρ/ω)γ

decays. In order to search for evidence of b → dγ decays, we combine individual decay

modes to improve statistics.
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8.3.1 Combining Technique

The combined branching fraction for B → (ρ/ω)γ is,

B(B → (ρ, ω)γ) =
1

2
· {B(B+ → ρ+γ) +

τB+

τB0

· [B(B0 → ρ0γ) + B(B0 → ωγ)]}. (71)

To avoid complications in calculating the covariance matrix, we combine the branching frac-

tion of B → (ρ/ω)γ decay modes in a simultaneous fit. We define the following “efficiency-

corrected yield”:

Neff =
N(B+ → ρ+γ)

εB+→ρ+γ

+
τB+

τB0

· [N(B0 → ρ0γ)

εB0→ρ0γ

+
N(B0 → ωγ)

εB0→ωγ

],

where Ns and εs are the fitted signal yield and the signal efficiency for each decay mode.

The decay rates are constrained as follows:

Γ(B0 → ρ0γ) = Γ(B0 → ωγ) = 0.5 · Γ(B+ → ρ+γ).

The efficiency-corrected yield is related to the NBB pairs by Neff = 2 ·NBB · B(B → (ρ, ω)γ).

We determine the efficiency-corrected yield directly from the likelihood fit. Each component

of this fit is identical to the corresponding individual fit described in Section 5.6, with the

only difference being that the signal yield for each component is given as a function of the

combined efficiency-corrected yield; 0.5 · Neff · εB+→ρ+γ , 0.25 · Neff · τB0/τB+ · εB0→ρ0γ , and

0.25 · Neff · τB0/τB+ · εB0→ωγ for B+ → ρ+γ, B0 → ρ0γ, and B0 → ωγ modes, respectively.

The bias on the signal yield in the B0 → ωγ decay mode, and the corrections on signal

efficiencies have already been applied.

8.3.2 Combined Results

The combined likelihood fit was validated using all the types of Monte Carlo samples

described in Section 5.6. With the assumed branching faction B(B+ → ρ+γ) = 1.0 × 10−6,

we expected more than 3σ significance on the combined branching fraction. Figure 42
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Figure 42: The projection plots of the combined likelihood fit, where a), b), c), and d) are
the projection onto mES, ∆E∗, neural net, and Fisher, respectively. The solid line is the
total fit and the dashed line is the total background. The plots are projections with the
following cuts applied, if that variable is not being plotted: 5.272 < mES < 5.286 GeV/c2,
−0.10 < ∆E∗ < 0.05 GeV and N > 0.9. The selection efficiency for signal events is 45%,
57%, 70%, and 44% for mES, ∆E∗, NN, and Fisher projections, respectively.

shows the projection plots of the combined fit, and the efficiency-corrected yield is 269+126
−120.

The yields of the combinatorial B-background and the continuum background have been

compared with the individual fits, and they are in good agreement with each other.

Figure 43 shows the likelihood function with respect to this efficiency-corrected yield,

Neff . We then take the significance as
√

−2lnL0/Lmax, where L0 is the value of the likeli-

hood for the null signal hypothesis. Considering statistics only, a 2.6σ significance is found.

Unfortunately, we do not see evidence for b → dγ decays.
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Figure 43: Likelihood function of the combined fit. The dashed horizontal line indicates the
−ln(L/Lmax) = 0.82 and the solid horizontal line indicates the −ln(L/Lmax) = 1.34.

8.3.3 Limit Setting

Since there is no evidence for b → dγ decays, we set an upper limit for each decay mode

at the 90% Confidence Level (C.L.). We define the 90% C.L. on the efficiency-corrected

signal yield for each mode as

N90
eff =

Nsig

ε
+ 1.28 × σstat(Nsig)

ε
+ 1.28 × σsyst(Nsig/ε) ,

where Nsig is the fitted signal yield, σstat(Nsig) is the statistical error on the signal yield, ε is

the efficiency and σsyst(Nsig/ε) is the combined systematic uncertainty on the effective signal

yield,

σsyst(Nsig/ε) =
Nsig

ε

√

(

σsyst(ε)

ε

)2

+

(

σsyst(Nsig)

Nsig

)2

.

In practice, the value of Nsig+1.28×σstat(Nsig) is obtained by scanning the likelihood function,

L, with respect to the signal yield to find the value at which −2 lnL/Lmax = 1.282 = 1.64,

where Lmax is the maximum value of the likelihood. The values of σsyst(Nsig/ε) are +10.9
−9.9 ,

+26.8
−26.1, and +18.7

−23.6 events for B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ decay modes, respectively.
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B(±stat. ± sys.) 90% limit 95% limit
Description Nsig fit sys. ε (×10−6) (×10−6) (×10−6)

B0 → ρ0γ 0.3+7.2
−5.4

+1.7
−1.6 0.158±0.019 0.01+0.22+0.05

−0.16−0.05 <0.36 <0.44

B+ → ρ+γ 25.6+15.3
−13.9

+2.2
−2.2 0.132±0.014 0.92+0.55+0.13

−0.50−0.13 <1.76 <1.99

B0 → ωγ 8.3+5.7
−4.5

+1.3
−1.9 0.086±0.009 0.46+0.31+0.08

−0.25−0.12 <0.97 <1.08

Combined

result 269+126
−120

+40.2
−44.5 n/a 0.64+0.32+0.10

−0.28−0.10 <1.16 <1.31

Table 9: Summary of the fit yield, the systematic error, the signal efficiency, the branching
fraction, the 90% upper limit and the 95% upper limit for each decay mode, and the combined
results.

Using the values of N 90
eff found with the above method we set the 90% C.L. upper limit of

0.36× 10−6, 1.76× 10−6, and 0.97× 10−6 for the B0 → ρ0γ, B+ → ρ+γ, and B0 → ωγ decay

modes, respectively.

As described above, we take the significance to be
√

−2lnL0/Lmax, where L0 is the value

of the likelihood for the null signal hypothesis. We translate the likelihood curve of the

efficiency-corrected signal yield by −σsyst(Nsig/ε) to account for the systematic error. We

find the significances for B+ → ρ+γ and B0 → ωγ are 1.9σ and 1.5σ respectively.

We combine the three decay modes together with a simultaneous fit by considering

Γ(B0 → ρ0γ) = Γ(B0 → ωγ) = 0.5 · Γ(B+ → ρ+γ), to obtain a combined effective signal

yield, Neff. We distinguish the correlated and uncorrelated systematic uncertainty among

three the decay modes. These systematic uncertainties are described in Appendix D and sum-

marized in Table 12. The total systematic error37 on Neff is +40.2
−44.5. The significance of the com-

bined results is 2.1σ. We then determine the 90% C.L. as was done for the individual modes

by scanning the likelihood with respect to Neff. We find the B(B → (ρ/ω)γ) < 1.16 × 10−6

at 90% C.L.

37The systematic error in the number of BB-pairs have been included already in this error.



119

Table 9 summarizes the results for the B → (ρ/ω)γ decays. These results are plotted

in Figure 44, and compared with the theoretical predictions and other experimental results.

The experimental results are in good agreement with each other, and are slightly below the

theoretical predictions.

8.4 Constraint on |Vtd|/|Vts|

To constrain |Vtd|/|Vts|, we use the isospin-averaged branching fractions. Similar to

Eq. 71, we define the isospin-averaged branching fraction for B → (K∗0/K∗+)γ decays:

B(B → (K∗0/K∗+)γ) =
1

2
· {B(B+ → K∗+γ) +

τB+

τB0

B(B0 → K∗0γ)}. (72)

Using our measured values of B → (K∗0/K∗+)γ branching fractions, we can constrain the

ratio of B[B → (ρ/ω)γ]/B(B → (K∗0/K∗+)γ) < 0.030. This in turn is used to bound

-0.5 0 0.5 1 1.5 2 2.5

γ 0ρ → 0B

γ ω → 0B

γ -ρ → -B

γ) ω/ρ (→B 

)-510×BF (

-1BaBar 191 fb

-1Belle 253 fb

Bosch et. al.

Ali et. al.

Figure 44: Summary of branching fractions for the B → (ρ/ω)γ decays (The arrows indicate
the 90% C.L. upper limit). The BABAR result is compared to experimental result from
Belle [79], and the theoretical predictions from Bosch et al. [27] and Ali et al. [35].
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Figure 45: Constraint on the |Vtd|/|Vts| from this result. The 95% C.L. limit on |Vtd|/|Vts| is
converted to a constraint on the ρ and η parameters of the Unitarity Triangle, indicated by
the bold solid arc, where the left-side of the SM-allowed region (inside region of the irregular
contour) is excluded.

|Vtd/Vts|, using the relationship [35, 40]:

B[B → (ρ/ω)γ]

B(B → (K∗0/K∗+)γ)
=

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2

· rm · ζ2[1 + ∆R]. (73)

Both ζ and ∆R must be taken from theory. Several different values of ζ and ∆R have

been published [35, 40, 80]. Following [35], we choose the values ζ = 0.85 ± 0.10, and

∆R = 0.10 ± 0.10, as the average over the values given for the three modes. We find

the limit |Vtd/Vts| < 0.19 at 90% C.L. by ignoring any theoretical uncertainty. Allowing

ζ and ∆R to vary within their theoretical uncertainties the upper limit changes by ±0.3.

Theoretical improvement on the calculation of the form factor is needed.

The limit on the |Vtd|/|Vts| can be used to constrain the ρ and η parameters of the

Unitarity Triangle, |Vtd|/|Vts| = λ ·
√

(1 − ρ)2 + η2, where λ ∼ 0.226. At the 95% C.L., our

result constrains |Vtd|/|Vts| < 0.20. Figure 45 shows this constraint on the ρ − η plane.

Currently, |Vtd| is measured using the Bd mixing. The world average of the mixing
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parameter ∆md is 0.502±0.006 ps−1 [39]. This result is converted to constraints on the ρ and

η parameters, shown in Figure. 45. The large uncertainty results from the large theoretical

error in Eq. 43. Using the current world 95% C.L. limit on the Bs mixing parameter,

∆ms > 14.5 ps−1 [39], and Eq. 44, this constraint has been significantly improved, shown in

the same Figure 45.

The limit on |Vtd|/|Vts| can be interpreted as a limit on |Vtd| < 0.008 at 90% C.L. by

assuming Vts = Vcb = (41.3 ± 1.5) × 10−3 [38]. The upper limit changes by ±0.001 when

varying ζ and ∆R within their theoretical uncertainties. This lies within the 90% confidence

interval found from a global fit to CKM data of 0.0048 < |Vtd| < 0.014 reported in Ref. [38].

Other ways of interpreting our results can be seen in Ref. [37]. If the individual branching

fractions are used to constrain the |Vtd|/|Vub|, a theoretically cleaner result can be obtained.

Furthermore, a ratio between B → (ρ/ω)γ decays and B → ρlν decays can be used to

constrain the |Vtd|/|Vub|, where form-factor uncertainty can be further reduced to give a

theoretically cleaner way to extract the |Vtd|.

8.5 CP - and Isospin- Asymmetry in B → (K∗0/K∗+)γ Decays

The branching fractions of the B → (K∗0/K∗+)γ decays are measured very precisely.

However, the large theoretical errors in the SM predictions limit their sensitivity to probe

new physics. Due to cancellation of theoretical uncertainties in a ratio of decay rates, the

CP -asymmetry and the isospin-asymmetry in these decays are well calculated and have

excellent beyond-the-SM sensitivity. The results of CP -asymmetry and isospin-asymmetry

are presented in the following.
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8.5.1 CP -Asymmetry

The ACP is defined in Eq. 40, and related to the observed signal events as following,

A(B → V γ) =
1

1 − 2η
· N(B → V γ) − N(B → V γ)

N(B → V γ) + N(B → V γ)
, (74)

where η is the mis-tag rate (the fraction of B → V γ mis-reconstructed as B → V γ). Here

we have already assumed that the signal efficiencies between the B → V γ and its CP -

conjugate decay are the same. Any signal efficiency difference between them is treated as a

systematic error.

We search for CP-violation using K∗0 → K+π−, K∗+ → K+π0, and K∗+ → K0
sπ

+ decay

modes. We identify the B → V γ decay and its CP -conjugated decay using the correlation

of the charge of the final stable particles (K± and π±) to the charge of the b-quark. From a

Monte Carlo study, the mis-tag rate for each decay mode is found to be less than 0.1%. So,

we will ignore the mis-tag rate in the following.

We extract the ACP using a simultaneous fit over each decay mode and its CP -conjugate

decay mode. Two components of the simultaneous PDF are identical to the one we used

in Section 5.6. Two more free parameters are introduced, the asymmetry of the signal

ACP,Sig and the asymmetry of the continuum background ACP,Cont. The asymmetry of the

combinatorial B-background is assumed to be the same as that of the continuum background.

The fitted CP -asymmetries are:

A(K∗0 → K+π−) = −0.069 ± 0.046 ± 0.011,
A(K∗+ → K+π0) = +0.084 ± 0.075 ± 0.007,
A(K∗+ → K0

sπ
+) = +0.084 ± 0.075 ± 0.007.

(75)

The first error is the statistical error and the second error is the systematic error, which

mainly originates from the asymmetries in the charged particle identification. The systematic

asymmetry errors in particle identification are 1.0%, 0.5%, and 0.5% for K∗0 → K+π−,

K∗+ → K+π0, and K∗+ → K0
sπ

+ decay modes, respectively. The BABAR detector also
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shows a slight asymmetry in the detection of the charged tracks. This has been studied

by the tracking AWG, and a systematic error of 0.25% is assigned for each track [72]. In

the low-momentum range, charged kaons interact with material with different cross-sections

from their CP -states [38]. This results in an additional 0.15-0.30% systematic error on the

CP -asymmetry. Finally, a 0.25% systematic error is assigned for each decay mode to account

for the assumption that the combinatorial B-background has same CP -asymmetry as the

continuum background. The fitted CP -asymmetry of the continuum background is consistent

with zero within statistics. Following the technique in Appendix C, the individual results

are combined to give

ACP (B → K∗γ) = −0.013 ± 0.036 ± 0.010.

This gives 90% C.L. interval of

−0.074 < A(B → (K∗0/K∗+)γ) < 0.049.

8.5.2 Isospin-Asymmetry

The isospin-asymmetry defined in Eq. 41 can be expressed as,

∆0−(B → V γ) =
I × R+/0τ+/τ 0 − 1

I × R+/0τ+/τ 0 + 1
, (76)

where I = B(B0 → K∗0γ)/B(B+ → K∗+γ), R+/0 ≡ Γ(Υ (4S) → B+B−)/Γ(Υ (4S) →

B0B0). Correlated experimental errors cancel in the ratio I. The measurement of the R+/0

from BABAR [71] is consistent with 1.0. Similar to the treatment of the branching fractions

in B → (K∗0/K∗+)γ decays, we treat the 2.4% experimental error of R+/0 as a systematic

uncertainty. We use the same combination technique described in Appendix C to obtain

∆0− = 0.050 ± 0.045(stat.) ± 0.028(syst.) ± 0.024(R+/0).
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This restricts ∆0− to the 90% confidence interval of

−0.046 < ∆0− < 0.146.

8.5.3 Summary of Asymmetries

The CP - and isospin-asymmetries of the B → (K∗0/K∗+)γ decays are plotted in Fig-

ure 46. Theoretical predictions based on the SM and other experimental results for these

decays are also shown. The experimental results are in good agreement with each other, and

with the precise SM predictions at a level of a few percent. The experimental results test

the SM predictions at the few percent level.

As discussed previously, the Wilson coefficients summarize the short-distance physics.

They behave like coupling constants. For radiative penguin B-decays, the dominant con-

tribution is from the Wilson coefficient, C7. New physics contributions may differ the SM

predictions of these Wilson coefficients. In Ref. [42], the authors argue that in some new

physics models, the ∆0− is sensitive to the sign of C7 and can be negative in some new physics

-0.1 0 0.1 0.2

)+π- K→ *0
(KcpA

)0π- K→ *-
(KcpA

)-πS
0 K→ *-

(KcpA

)γ * K→(B cpA

)γ * K→(B 0-∆

Asymmetry

BaBar

Belle

Hurth et. al.

Kagan et. al.

Figure 46: Summary of asymmetries for the B → (K∗0/K∗+)γ decays. The BABAR result is
compared to experimental result from Belle [31], and the theoretical predictions from Hurth
et al. [41] and Kagan et al. [42].
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models. Combined with Belle results, also shown in Figure 46, a positive ∆0− is preferred,

which is consistent with the SM prediction within error. However, the experimental error

does not yet exclude the negative region completely.
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9 Summary and Outlook

We have studied the radiative penguin decays using BABAR data. These results provide

experimental tests of the SM predictions.

• The branching fractions of the B → (K∗0/K∗+)γ decays are already much more precise

than the theoretical predictions. These experimental results can give guidance for

theoretical modeling of these decays; e.g., constrain the form factors of these decays.

• The CP -asymmetry and isospin asymmetry of the B → (K∗0/K∗+)γ decays provide

tests of the SM at a level of a few percent. They are in good agreement with the SM

predictions, limiting the parameter space of new physics models [78].

• We have not yet found evidence for the B → (ρ/ω)γ decays due to limited statistics.

However, our results give the best upper limits at this moment. These results provide

a competitive constraint on the |Vts|/|Vts|, using a ratio between the B → (K∗0/K∗+)γ

decays and the B → (ρ/ω)γ decays. These results greatly enhance theoretical interest

in radiative penguin decays.

By summer of 2006, BABAR expects to collect a total data sample of more than 500 fb−1.

With this BABAR data set and assuming B(B+ → ρ+γ) = 1.0 × 10−6, a better than 5σ

significant measurement of the b → dγ decay is expected, as shown in Figure 47, where the

projection of the relative errors of the branching fractions are shown for individual decay

modes and the combined result. Figure 47 also shows the projection of the relative error

on the |Vtd|/|Vts| using this analysis. It is very likely that we will determine |Vtd|/|Vts| with

less than a 15% error within two years. As shown, the theoretical error in the form factor

ratio is the largest theoretical uncertainty. Theoretical improvement is needed. Improved

measurements on the CP - and isospin-asymmetries of these decays can provide very stringent
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Figure 47: Projection of relative error on the B → (ρ/ω)γ branching fractions (left) and
the |Vtd|/|Vts| (right) using this analysis. Projection of relative error on |Vtd|/|Vts| using this
analysis. (see text for details)

tests of the SM, hopefully providing hints of physics beyond the SM.
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A The Systematic Errors of Neural Networks

For the analysises discussed in this dissertation, the extensive usage of the neural network

(NN) has brought excellent improvement on the background rejection. The improvement

mainly results from the possibility of using of additional background suppression variables

and the account for the correlations among background suppression variables. About 30-50%

more background rejection is obtained in the analysis of the B → (K∗0/K∗+)γ decays than in

the previous analysis of the same decays [77], where cuts on background suppression variables

are directly applied. The detailed discussion of these benifits can be refered in Section 5, and

a general discussion of the neural network can be found here [63]. The training of the NNs

is performed using the Stuttgart Neural Network Simulator (SNNS) [65] over Monte Carlo

data samples. The NN distributions are then validated using control samples obtained from

the BABAR data, then we sign the systematic errors accordingly. The detailed procedures

are described as follows.

A.1 Introduction

The NN distributions of the B → V γ signal decays are checked using B → Dπ control

samples. For the B → Dπ control samples, the background suppression variables are cal-

culated in the same way as for the B → V γ decays, by treating the bachelor pion in the

B → Dπ decay as the signal photon, as shown in Figure 48. Since most of the background

suppression variables are related to the rest of the event38, similar distributions on these

variables are obtained for the B → V γ decays and the B → Dπ decays. Therefore the

B → Dπ decays are a very good control sample of the NNs used in the B → V γ decays.

Table 10 summarizes the on-resonance data of the B → Dπ control samples used to

validate the NNs in the B → V γ decays. The corresponding signal MCs are also used. The

38The exception is for kinematic variables on the signal side.
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control samples are selected in such a way that the charge of the B mesons is the same for

the B → V γ decay and the corresponding control sample. The NNs used in B → V γ decays

are applied to the corresponding B → Dπ control sample. The NN outputs of data and MC

are compared to each other to check for any data-MC difference, and systematic errors are

assigned accordingly. Notice that we use different NN configurations for each decay mode.

In the following, we identify the NN by the B → V γ decay mode, e.g. the B0 → ρ0γ NN.

The control sample used to validate the NN is implied, as shown in Table 10.

A.2 Signal Selection

Identical reconstruction schemes are followed to obtain the B → Dπ candidates on

both the on-resonance data and the signal MCs. Event-selection criteria are applied to

suppress the continuum background and the B-background. These selection criteria include

+e -e

V

γ

*T

 -e+c.m. frame of e

+e -e

D

π

*T

 signalγ V →a) B  signalπ D →b) B 

Figure 48: The event shape of the B → V γ signal a) and the B → Dπ signal b) in the c.m.
frame of the e+e−-system. After singling out the reconstructed signal, indicated by labeled
solid lines, the rest of event (ROE), indicated by the unlabeled solid lines, are grouped

together. The thrust axis of ROE, ~T ∗, is indicated by the dashed arrow.
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charged particle identification, requirements on the charged tracks, etc. After these cuts,

the B-background in the signal region is estimated to be between 1-2% of the events in the

signal region, which is defined to be a region of 5.27 < mES < 5.29 GeV/c2 and |∆E∗| <

0.05 GeV. A small fraction of continuum background still presents in the signal region for

the on-resonance data, and we estimated the yield of this background using a 1-dimensional

unbinned likelihood fit over the mES. The likelihood includes two components, a Gaussian

component and an ARGUS component and uses all the events in the fit region, which is

defined to be a region of 5.2 < mES < 5.29 GeV/c2 and |∆E∗| < 0.05 GeV. Some examples

of the fits are shown in Figure 49. The yields of the signal and the continuum background

in the signal region are then obtained.

A.3 NN Distributions

The events in the signal region are chosen to make a comparison of the NN distributions

between the data and the MC. For this purpose, 100-bin histograms are used. For the on-

resonance data, the remaining continuum background is subtracted using the events in the

lower sideband, which is defined to be a region of 5.2 < mES < 5.27 GeV/c2 and |∆E∗| <

Modes Control sample B(×10−6) Luminosity (fb−1)

K∗0 → K+π− }

B0 → D−π+, D− → K+π−π− 273 ± 41 81.9
K∗0 → K0

sπ
0

B0 → ρ0γ
}

B0 → D−π+, D− → K0
S
π− 42 ± 6 167.0

B0 → ωγ

K∗+ → K+π0 }

B+ → D0π+, D0 → K+π− 201 ± 20 81.9
K∗+ → K0

s π+

B+ → ρ+γ B+ → D0π+, D0 → K+π− 201 ± 20 167

Table 10: Control samples used in the NN validation.
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Figure 49: Left: the likelihood fit on the B− → D0π− (D− → K+π+π−) on-peak data.
Right: the likelihood fit on the B0 → D−π+ (D− → KSπ−) on-peak data. 167 fb−1 of
on-resonance data are used here. The Gaussian-like solid curve is the signal. The dashed
curve is the total background. The solid curve overlaid with the data points is the total fit.

0.05 GeV, where there are no signal events. The i-th bin of the signal NN distribution for

the on-resonance data can be expressed as,

htotal(i) − Nbkg/Nlower · hlower(i), (77)

where htotal and hlower are the histogram distributions for all events in the signal region and

the lower sideband. Nbkg and Nlower are the estimated number of background events in the

signal region and the total events in the lower sideband. Figure 50 shows the comparison of

the NN distributions between the background-subtracted data and the MC for each decay

mode. Very good agreement between the data and MC is seen.

A.4 Efficiency Comparison

With the same notation used in Eq. 77 for the on-resonance data, the signal efficiency

with a NN cut value at x can be expressed as:

(
∫ 1.0

x

htotal −
Nbkg

Nlower
·
∫ 1.0

x

hlower

)

/Nsig, (78)
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Figure 50: Comparisons of the NN distributions between the data and MC.
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where Nsig is the total signal yield in the signal region. Figure 51 shows the comparisons of

this efficiency between the data and the MC for each NN. In general, very good agreement

is seen. Small efficiency discrepancies are seen when a cut is applied around one. This

difference is understood to come from the small B-background in the signal region. With a

tighter cut on the NN distributions, this B-background plays a more important role in the

background subtraction.

A.5 Results

Based on the results in Figure 51, systematic errors of the NN are assigned as follows.

A.5.1 Cut Efficiency

For every decay mode, a loose cut is applied to the NN distribution to reject a large

fraction of the continuum background. The cut value of each mode is shown in Table 3 and

Table 4, typically around 0.6. As shown in Figure 51, the efficiency difference between the

data and the MC around this cut value is almost negligible, so we decide not to correct the

signal efficiency. To be conservative, the larger of the relative error of the efficiency ratio and

the deviation of the efficiency from 1.0 is taken as the systematic error of the NN cut. These

errors are relative to the signal efficiency and 3.0%, 3.5%, 2.7%, 2.8%, 4.6%, 4.6%, and 1.8%

for K∗0 → K+π−, K∗0 → K0
s π0, K∗+ → K+π0, K∗+ → K0

sπ
+, B0 → ρ0γ, B0 → ωγ, and

B+ → ρ+γ, respectively. These errors are dominated by the statistics of the control samples.

A.5.2 NN Distributions in the Fits

For B → (ρ/ω)γ decays, the shape of the neural net distribution is extracted from

Monte Carlo and fixed in the likelihood fit. We scale the signal neural net shape by the

data/Monte Carlo ratio in the control sample. Then, we fit the unblinded data set with

the modified neural net shape. The shift of the signal yield is about 2.5%. The data over
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Monte Carlo discrepancy in the control sample is understood to be an effect of the remaining

B-background on the level of a few percent. Furthermore, the bias on the signal yield due

to the NN shape is also correlated with the uncertainty caused when applying a loose cut.

Therefore, we decided to ignore the effect from the signal neural net shape. A crosscheck is

performed by using the B → (K∗0/K∗+)γ control samples. We extracted the signal neural

net shape from the B → (K∗0/K∗+)γ control sample (see Section 5.6.3) and fit this shape

to the pure toy Monte Carlos used in Section 5.6. The average bias on the signal yield is 0.3

events in B0 → ρ0γ decay mode, while we expected 17.1 events. This further constrains the

effect of NN shape on the signal yield to be very tiny.
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B Individual Functions to Compose the PDFs

Table 11 summarizes all the function used to compose the component PDFs, P(~xj; ~αi),

for the B → (K∗0/K∗+)γ decays and B → (ρ/ω)γ decays.
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Var. Components K∗0 → K+π− K∗0 → K0
sπ0 K∗+ → K+π0 K∗+ → K0

s π+ B0 → ρ0γ B0 → ωγ B+ → ρ+γ

mES

{

Sig. GAUSS GAUSS CB GAUSS CB CB CB
K∗γ bkg. - - - - CB - CB
ρπ0(η) bkg. - - - - CB CB CB
cont.bkg. ARGUS ARGUS ARGUS ARGUS ARGUS ARGUS ARGUS
comb.B.bkg. NOVO NOVO NOVO NOVO KEYS - KEYS

∆E∗
{

Sig. CB CB CB CB CB CB CB
K∗γ bkg. - - - - CB - CB
ρπ0(η) bkg. - - - - CB CB CB
cont.bkg. 1st Poly. 1st Poly. 1st Poly. 2nd Poly. 2nd Poly. 2nd Poly. 2nd Poly.
comb.B.bkg. EXP GAUSS GAUSS GAUSS KEYS - KEYS

N
{

Sig. - - - - CB KEYS CB
K∗γ bkg. - - - - sig. NN - sig. NN
ρπ0(η) bkg. - - - - sig. NN sig. NN sig. NN
cont.bkg. - - - - 1D HIST 1D HIST 1D HIST
comb.B.bkg. - - - - sig. NN - sig. NN

F
{

Sig. - - - - KEYS KEYS KEYS
K∗γ bkg. - - - - KEYS - KEYS
ρπ0(η) bkg. - - - - KEYS KEYS KEYS
cont.bkg. - - - - KEYS KEYS KEYS
comb.B.bkg. - - - - KEYS - KEYS

Table 11: Summary of individual PDFs used to compose the component PDFs. Here N is the NN output variable,
F is the Fisher variable, “GAUSS” donates the Gaussian function, “CB” donates the Crystal-Ball function [52], “1D
HIST” donates a 1-dimensional histogram PDF, “NOVO” donates the Novosibirsk function [68], “EXP” donates the
exponential function, “ith Poly” donates i-th Polynomial function, “ARGUS” donates the ARGUS function [53], and
“KEYS” PDF is described in Ref. [69].
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C The Combining Method in B → (K∗0/K∗+)γ Analysis

A χ2 method, described in Probability and Statistics in Particle Physics [81], is used

for combining two measurements with partially correlated systematic errors. The method

described in the book is for general use, but a special case of it, where all measurements are

of a single quantity, is applied here.

The method starts with a vector of n measurements,

~y =













y1

y2

.

.
yn













. (79)

The fitted parameters are kept in a vector called ~θ, which may have many components, but in

our case has only one since we are fitting for a single branching fraction. The “predictions”,

~f for the ~ys are related to the fitted parameters by the A matrix

~f = A~θ. (80)

In our case, the A matrix is a column vector of 1’s.

Errors and correlations of measurements are described by a symmetric covariance matrix:

V =













σ2
1 σ2

12 . . σ2
1n

σ2
12 σ2

2 . . σ2
2n

. . . . .

. . . . .
σ2

1n σ2
2n . . σ2

n













, (81)

where σi is the total (statistical and systematic errors added in quadrature) error of a mea-

surement in mode i, and σij is the part of the systematic error that is correlated between

modes i and j.

A χ2 is then defined as

χ2 ≡ (~y − Aθ)T V −1(~y − Aθ), (82)
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where θ is the combined branching fraction to be calculated. If we minimize this χ2 with

respect to θ, we find

θ = (AT V −1A)−1AT V −1~y. (83)

The vector that is dotted with the ~y is the “weights” that are assigned to each measurement.

We define the weight vector, w̄ as: w̄ = (AT V −1A)−1AT V −1. The total error on the combined

branching ratio is given by:

σ2
ȳ = (AT V −1A)−1. (84)

In order to define off-diagonal elements of the V matrix, we decide which systematic

error are common between modes. The common errors, such as number of B candidates, the

efficiencies of the charged tracks, neutral candidates, and K0
S
’s, for each mode-pair are added

in quadrature to get the corresponding off-diagonal element. One somewhat tricky point is

what to do for a common systematic that contributes different amounts to two modes. For

example, the tracking systematic contributes 1.6% to the K∗0 → K+π− mode and only 0.8%

to the K∗+ → K+π0 mode. The correct procedure is to take
√

0.8 × 1.6% as the correlated

error. Following these calculations, the final covariance matrix is shown in Eq. 85,



















K∗0 → K+π− K∗0 → K0
sπ

0 K∗+ → K+π0 K∗+ → K0
s π+

K∗0 → K+π− 8.71 × 10−12 4.21 × 10−12 5.28 × 10−12 3.67 × 10−12

K∗0 → K0
s π0 . 12.37 × 10−11 1.35 × 10−11 5.07 × 10−12

K∗+ → K+π0 . . 4.09 × 10−11 4.73 × 10−12

K∗+ → K0
sπ

+ . . . 1.65 × 10−11



















. (85)
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D Systematic Error of the Combined B → (ρ/ω)γ Branch-

ing Fraction

The sources of systematic uncertainties of the combined “effective signal yield” is being

categorized as:

1. The effect from the individual fit systematic errors, summarized in Table 7.

2. The effect from the uncertainties of the signal efficiencies, shown in Table 6.

For the individual fit systematic errors, we vary each individual signal yield by one σ sepa-

rately and take the bias on the combined effective signal yield as the systematic uncertainty.

However, for the systematic uncertainties from the signal efficiencies, the situation is compli-

cated by the fact that some of the systematic uncertainties, shown in Table 6, are correlated

among modes. We explicitly break the systematic uncertainties on the signal efficiencies into

two categories:

• The uncertainties correlated among decay modes, which include the errors from B

counting, tracking efficiency, PID systematic, π/γ efficiency, π0/η veto, and photon

distance cut.

• The uncertainties uncorrelated among decay modes, which include the neural net sys-

tematic uncertainties and the “MC statistics/fit bias/B-background modeling”.

For the correlated uncertainties of the signal efficiencies, we vary the signal efficiency on the

same side for each decay mode simultaneously; the shift on the signal yield is taken as the

systematic uncertainty due to the correlated part of signal efficiencies. For the uncorrelated

part, we vary the signal efficiencies separately; the bias on the combined effective signal yield

is taken as the corresponding systematic uncertainty due to the uncorrelated uncertainties

of the efficiencies.
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error
Description B0 → ρ0γ mode B+ → ρ+γ mode B0 → ωγ mode (events)
Corr. eff. var. 0.151-0.165 0.123-0.141 0.080-0.092 +15.6

−14.3

Uncorr. eff. var.
{

0.140-0.176 - - +17.2
−16.7

- 0.121-0.143 - +4.6
−5.5

- - 0.080-0.092 +4.0
−4.6

signal bias
{

+1.7
−1.6 - - +10.9

−9.8

- +2.2
−2.2 - +12.9

−12.6

- - +1.3
−1.9

+27.5
−34.6

Total +40.2
−44.5

Table 12: Summary of all the systematic uncertainties for the combined effective signal yield.

Following the approach suggested above, we obtained the systematic uncertainty for each

case and the results are summarized in Table 12. The total systematic uncertainty for the

combined “effective yield” is +40.2
−44.5.
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Constraining |Vtd|/|Vts| using Radiative Penguin

B → V (K∗/ρ/ω)γ Decays

Ping Tan
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Exclusive radiative penguin B decays, B → (K∗0/K∗+)γ and B → (ρ/ω)γ, are flavor-

changing neutral-current (FCNC) processes. Studies of these decays are of special interest

in testing Standard Model (SM) predictions and searching for other beyond-the-SM FCNC

interactions. Using 89× 106 BB pairs from BABAR, we measure the branching fraction (B),

CP -asymmetry (A), and isospin asymmetry (∆0−) of B → (K∗0/K∗+)γ as follows:

B(B0 → K∗0γ) = 3.92 ± 0.20(stat.) ± 0.24(syst.),
B(B+ → K∗+γ) = 3.87 ± 0.28(stat.) ± 0.26(syst.),
A(B → K∗γ) = −0.013 ± 0.36(stat.) ± 0.10(syst.),
∆0−(B → K∗γ) = 0.050 ± 0.045(stat.) ± 0.028(syst.) ± 0.024(R+/0).

The 90% confidence intervals for the CP -asymmetry and the isospin-asymmetry in the B →

K∗γ decay are given as:

−0.074 < A(B → K∗γ) < 0.049,
−0.046 < ∆0−(B → K∗γ) < 0.146.

We also search for B → (ρ/ω)γ decays using 211× 106 BB pairs from BABAR. No evidence

for these decays is found. We set the upper limits at 90% confidence level for these decays:

B(B0 → ρ0γ) < 0.4 × 10−6,
B(B+ → ρ+γ) < 1.8 × 10−6,
B(B0 → ωγ) < 1.0 × 10−6,
B(B → (ρ/ω)γ) < 1.2 × 10−6.

These results are in good agreement with the SM predictions. The branching fractions of

these decays are then used to constrain the ratio |Vtd|/|Vts|.
Sridhara Dasu (Adviser)


