Physics 107

Ideas of Modern Physics
(www.hep.wisc.edu/~herndon/107-0609)

- Main emphasis is Modern Physics:

Post-1900 Physics

- Why 1900?
- Two radical developments: Relativity \& Quantum Mechanics
- Both changed the way we think as much as did Galileo and Newton.

What will we cover?

- Scientific observation and reasoning.
- Motion and energy.
- Relativity.
- Quantum Mechanics.
- Gravity.
- Particle theory and cosmology.

How do we do this?

- Lectures
- Demonstrations
- In-class interactive questions
- Homework
- Discussion sections

HW 1: Chap 3 Conceptual 6, 28, 32
Chap 3 Problems 6, 10, 16

Goals of the course

- Learn a process for critical thinking, and apply it to evaluate physical theories
- Use these techniques to understand the revolutionary ideas that embody modern physics.
- Implement the ideas in some basic problems.
- Understand where physics is today, and where it is going.

What do you need to do?

- Read the textbook
\triangleleft Physics Concepts and Connections
- Come to the lectures
$\triangleleft 9: 55$ MWF in 2241 Chamberlin Hall
- Participate in discussion section
\diamond One per week, starting Sept 11th
- Do the homework
\diamond Assigned most Wednesdays, due the following Wednesday
- Write the essay
\diamond On an (approved) physics topic of your choice, due Dec 8
- Take the exams
\diamond Three in-class hour exams, one cumulative final exam

What do you get?

- An understanding of the physical universe.
- A grade
- 15\%HW and Discussion Quizzes
- 15% essay
- 20\%each for 2 of 3 hour exams (lowest dropped)
- 30\% from cumulative final exam

Aristotle's ideas about motion

- Terrestrial objects move in straight lines. Earth moves downward, Water downward, Air rises up, Fire rises above air.
- Celestial bodies are perfect.

They move only in exact circles.

- Where did Aristotle concentrate his work?
- Celestial bodies, most interesting problem of the day

Motion of the celestial bodies

Apparent motion of stars:
Rotation about a point every 24 hours.
Moon, sun, and planets were known to move with respect to the stars.

Motion of the stars over 6 hrs

Daily motion of sun \& planets over 1 year

You figure it out!

Assuming that the planets and stars are moving around the earth you would expect:
A. The planets to move faster than the stars since they are closer.
B. The stars to move faster than the planets.
C. We wouldn't know what to expect.

I would say it would be helpful to have more information!

Physics 107, Fall 2006 15

Aristotle's crystal spheres

Earth/ Water/ Air/ Fire

Prime mover (24 hrs) Cristal sphere (49000 yrs) Firmament (1000 yrs)

Saturn (30 years) J upiter (12 years) Mars (2 years)
Sun (1 yr)
Venus (1 yr)
Mercury (1 yr)
Moon (28 days)
Already Complex!

Epicycles, deferents, and equants: the legacy of Ptolemy

[^0]
Ptolemy's universe

- In 'final' form - 40 epicycles and deferents
- Equants and eccentrics for sun, moon, and planets.
- Provided detailed planetary positions for 1500 years
- Very complex!
- However good for what was needed, navigation.

The heliocentric universe

- Sun-centered
- Planets orbiting around sun.
- Theory didn't perfectly predict planetary motion. Only discovered later.
- But the (imperfect)
 theory is attractive in several ways.

Physics 107, Fall 2006 \qquad

More detailed observations, + some philosophy (Copernicus)

- Ptolemy's system worked, but seemed a little unwieldy, contrived
- Required precise coordination of planetary paths to reproduce observations.
- Imperfect circular motion against Aristotle.
- Copernicus revived heliocentric (sun-centered) universe

1473-1543

How can we tell if it is 'correct'?

Both explained contemporaneous observations.
But a rotating and revolving Earth seemed absurd!
Both motions require incredibly large speeds:
Speed of rotation $\sim 1280 \mathrm{~km} /$ hour
Orbital Speed: 107,000 km/ hr = $30 \mathrm{~km} / \mathrm{sec}$!
No observational evidence of orbital motion:
Relative positions of stars did not shift with Earth's motion (parallax)
Stars weren't brighter when Earth is closer (opposition).
No observational evidence of rotation:
Daily motions are as easily explained by a fixed earth
The motions do not require a rotating earth.

Advantage:

A 'good' theory makes predictions

But, at the time, these predictions could not be tested!

20 years of detailed observations (Tycho Brahe \& J ohannes Kepler)

- Brahe's exacting observations demanded some dramatic revisions in planetary motions.

Both Ptolemy's and Copernicus' theories were hard-pressed at this detailed level.

Kepler's elliptical orbits

- Contribution of Kepler:
- first consideration of non-circular orbits in over 1000 yrs of thinking.
- No more epicycles required!

1571-1630

Circular
orbit
Detailed observations required a radical new concept for an explanation. Physics 107, Fall 2006

Elliptical orbit

Some common threads

- 'Philosophical' considerations, such as complexity and symmetry, can lead to revolutionary developments.
- Thoughtful consideration of possibilities that at first seem outrageous
- But final evaluation based on comparison with detailed experimental measurements.
More detailed observations test, and sometimes force changes to theories.

An important difference

- 'Ancient' theories focused on description of motion, empirical laws, without answering 'why?'
- Symmetries were of shape and motion.
- Later developments focus on the physical laws that govern motion.
- The actual motion can be quite complex, but the physical laws demonstrate astounding simplicity, beauty, and symmetry.

[^0]: Epicycle reproduced planetary retrograde motion

