## From last time

- Position, velocity, and acceleration
- velocity = time rate of change of position
- acceleration = time rate of change of velocity
- Particularly useful concepts when
- velocity is constant (undisturbed motion)
- acceleration is constant (free falling object)

HW\#1: Due
HW\#2: Chapter 3: Conceptual: \#2, 26, 30, 40
Chapter 3: Problems: \# 4, 6, 17

| Galileo Uniform acceleration from rest |  |  |
| :---: | :---: | :---: |
|  |  | $\square$ |
| Acceleration $=$ const $=\mathrm{a}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ |  |  |
|  |  |  |
|  | $=\text { (acceleration)x(time) }$ $=\text { at }$ |  |
| Uniformly increasing velocity |  |  |
| Distance | $=($ average vel) x (time) |  |
|  | $=(1 / 2)$ at $\times \mathrm{t}=(1 / 2) \mathrm{at}^{2}$ |  |
|  | Pmpsic |  |

## Tough questions

- These are difficult questions.

Maybe not completely answered even now.

- But tied into a more basic question:
- What causes acceleration?
- Or, how do we get an object to move?

A hot topic in the 17th century.
Descartes was a major player in this.

Physics 107, Fall 2006

## Inertia

- Principle of inertia: object continues at constant velocity unless disturbed.
- Need a disturbance to change the velocity.
- Inertia measures the degree to which an object at rest will stay at rest.
- Objects with lots of inertia don't change motion as much as lighter objects subject to the same disturbance.
- They are more difficult to accelerate


## Quantifying Inertia: Mass and Momentum

- Same disturbance applied to different objects results in different velocities
(e.g. hitting bowling ball and golf ball w/ golf club).
- But the product
mass $\times$ velocity
is the same
(e.g. for the bowling ball and the golf ball).
- Momentum $=($ mass $) \times($ velocity $)$



## What about Newton?

- Like Galileo and Descartes, Newton has a law of inertia.
- Newton's first law:

Every body perseveres in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it.

- The 'force' is the 'external disturbance' of Galileo and Descartes


## Momentum conservation

- Can easily describe interactions of objects.
- The total momentum (sum of momenta of each object) of the system is always the same.
- We say that momentum is conserved.
- Between the golf ball and the golf club
- Momentum can be transferred from one object to the other, but it does not disappear.


After collision: balls stick together


## Newtonian Forces

- Newton made a definition of force that described how momentum was transferred.
- He viewed it as a continuous process rather than the immediate transfer of Descartes and Galileo.
- This makes a connection with our intuitive understanding of 'force' as a push or a pull.

(change in momentum) $=$ (Applied force) $\times$ (change in time)

$$
\Rightarrow \frac{\text { change in momentum }}{\text { change in time }}=\text { applied force }
$$

Momentum $=$ (mass) $\times$ (velocity)
Change in momentum $=($ mass $) \times($ change in velocity $)$

| $\Rightarrow \text { mass }$ | $\underbrace{\frac{\text { change in velocity }}{\text { change in time }}}_{\text {acceleration }}=$ applied force $F=m a$ |
| :---: | :---: |
| Newton's | Force $=($ mass $) \times($ acceleration $)$ |
| second law | Physics 107, Fall 2006 acceleration $=\frac{\text { force }}{\text { mass }}$ |
|  |  |

## More than one force...

- Total force determines acceleration
- If $F_{1}$ and $F_{2}$ balance, acceleration is zero.



## Impulse

- The momentum change is called an impulse when it occurs over a very short time.
- An impulse is a short 'disturbance' exerted on an object.
- It is equal to the momentum change of the object.
- It's units are the same as that of momentum - Units are kg - $\mathrm{m} / \mathrm{s}$
- Makes a connection between Descarte and Newton


## Force results in acceleration

- A body will accelerate (change its velocity) when another body exerts a force on it.
- This is also a change in momentum.
- But what is a force?
- Push
- Pull
- J et thrust


16

## Back to falling bodies

- A free-falling body moves with constant acceleration.
- Newton says that this means there is a constant force on the falling body.
- This is the gravitational force, and is directed downward.



## Force and acceleration

- Larger force gives larger acceleration
- Directly proportional: $a \propto F$
- But clearly different bodies accelerate differently under the same force.
- Heavier objects are harder to push.
- Proportionality constant may depend on weight?


## Mass

- Define mass to be
'the amount of inertia of an object'.
- Can also say mass characterizes the amount of matter in an object.
- Symbol for mass usually m
- Unit of mass is the kilogram (kg).
- Said before that $a \propto F$
- Find experimentally that
Acceleration $=\frac{\text { Force }}{\text { Mass }}$
$a=\frac{F}{m}$


## The Four Forces

1. Strong nuclear force
2. Electromagnetic force
3. Weak nuclear force
4. Gravity


- Only gravity and electromagnetic forces are relevant in classical mechanics ( motion of macroscopic objects ).


## Inertia again

- But we already said that inertia characterizes a body's tendency to retain its motion (I.e. to not change its velocity), We say a heavier object has more inertia.
- But inertia and weight are different
- A body in space is weightless, but it still resists a push

| Force, weight, and mass |
| :---: |
| $F=m a \Rightarrow F=(\mathrm{kg}) \times\left(\mathrm{m} / \mathrm{s}^{2}\right)$ <br> $=k g-m / \mathrm{s}^{2} \equiv$ Newton <br> - 1 Newton $=$ force required to accelerate a <br> 1 kg mass at $1 \mathrm{~m} / \mathrm{s}^{2}$. <br> But then what is weight? <br> - Weight is a force, measured in Newton's <br> - H is the net force of gravity on a body. <br> $-F=m g, g=F / \mathrm{m}$ <br> Physis 107, Fall 2006 |

## Is 'pounds' really weight?

- In the English system (feet, pounds, seconds), pounds are a measure of force.
- So it is correct to say my weight is 170 pounds.
- Then what is my mass?

$$
m=\frac{F}{g}=\frac{170 \mathrm{lbs}}{32 \mathrm{ft} / \mathrm{s}^{2}}=5.3 \text { slugs!! }
$$

## Newton's third law

- This is the basis for Newton's third Iaw:

To every action there is always opposed an equal reaction.

This is momentum conservation in the language of forces.

## Momentum conservation

- We said before that an impressed force changes the momentum of an object.
- We also said that momentum is conserved.
- This means the momentum of the object applying the force must have decreased.
- According to Newton, there must be some force acting on that object to cause the momentum change.

