

Falling object: constant acceleration

- Falling objects have constant acceleration.
- This is called the acceleration of gravity 9.8 m/s/s = 9.8 m/s²
- But why does gravity result in a constant acceleration?
- Why is this acceleration independent of mass?

Physics 107, Fall 2006

These are difficult questions. Maybe not completely answered even now.
But tied into a more basic question:

What causes acceleration?
Or, how do we get an object to move?

A hot topic in the 17th century. Descartes was a major player in this.

Tough questions

Descartes' view...

- Motion and rest are primitive states of a body without need of further explanation.
- Bodies only change their state when acted upon by an external cause.
 This is similar our concept of inertia
- That a body, upon coming in contact with a stronger one, loses none of its motion; but that, upon coming in contact with a weaker one, it loses as much as it transfers to that weaker body Momentum and it's conservati

Momentum and it's conservation Physics 107, Fall 2006 5

Inertia

- Principle of inertia: object continues at constant velocity unless disturbed.
 - Need a disturbance to change the velocity.
- Inertia measures the degree to which an object at rest will stay at rest.
 - Objects with lots of inertia don't change motion as much as lighter objects subject to the same disturbance.
 - They are more difficult to accelerate

Physics 107, Fall 2006

Quantifying Inertia: Mass and Momentum

- Same disturbance applied to different objects
 results in different velocities
- (e.g. hitting bowling ball and golf ball w/golf club).

Physics 107, Fall 2006

7

- But the product mass × velocity is the same
- (e.g. for the bowling ball and the golf ball).
- Momentum = (mass)×(velocity)

Momentum conservation

- Can easily describe interactions of objects.
- The total momentum (sum of momenta of each object) of the system is always the same.
- We say that momentum is conserved.
 Between the golf ball and the golf club
- Momentum can be transferred from one object to the other, but it does not disappear.

Physics 107, Fall 2006

8

Momentum conservation: equal masses 2 Before collision: m = 1 kg m =1 kg Total momentum = v = 1 m/sv = 0 m/s1 kg-m/s+0 kg-m/s = 1 kg-m/s $p = mv = 1 ka \cdot m/s$ p=0 After collision: m = 1 kg v = 1 m/s Total momentum = m =1 kg v = 0 m/s0 kg-m/s+1 kg-m/s = 1 kg-m/s Physics Roz=Ralkgom/s $p = 1 kg \cdot m/s_9$

11

Physics 107, Fall 2006

Newtonian Forces
Newton made a definition of force that described how momentum was transferred.
He viewed it as a continuous process rather than the immediate transfer of Descartes and Galileo.
This makes a connection with our intuitive understanding of 'force' as a push or a pull.

Physics 107, Fall 2006

12

Momentum conservation

- We said before that an impressed force changes the momentum of an object.
- We also said that momentum is conserved.
- This means the momentum of the object applying the force must have decreased.
- According to Newton, there must be some force acting on that object to cause the momentum change.

Physics 107, Fall 2006

26

Dewton's third law• This is the basis for Newton's third law:
to every action there is always opposed an
equal reaction.• This is momentum conservation in the
language of forces.