From last time

1st law: Law of inertia
Every object continues in its state of rest, or uniform motion in a straight line, unless acted upon by a force.

2nd law: F=ma, or $\mathbf{a}=F / m$

The acceleration of a body along a direction is

- proportional to the total force along that direction, and
- inversely the mass of the body

3rd law: Action and reaction
For every action there is an equal and opposite reaction.
Physics 107, Fall 2006

Equal accelerations

- If more massive bodies accelerate more slowly with the same force...
... why do all bodies fall the same, independent of mass?

$$
F_{\text {gravity }}=m g
$$

- Gravitational force on a body depends on its mass:
- Therefore acceleration is independent of mass:

$$
a=\frac{F_{\text {gravity }}}{m}=\frac{m g}{m}=g
$$

A fortunate coincidence

- A force exactly proportional to mass, so that everything cancels nicely.
- But a bit unusual.
- Einstein threw out the gravitational force entirely, attributing the observed acceleration to
 a distortion of spacetime.

Acceleration of the moon

Acceleration $=\frac{\text { change in velocity }}{\text { change in time }}$

Earth's pull on the moon

- The moon continually accelerates toward the earth,
- But because of its orbital velocity, it continually misses the Earth.
- The orbital speed of the moon is constant, but the direction continually changes.
- Therefore the velocity changes with time.

True for any body in circular motion

Shoot the monkey

- another example of superposition

The monkey has exactly the same acceleration downward, so that the dart hits the monkey.

$$
\text { Physics 107, Fall } 2006
$$

How has the velocity changed?

Centripetal acceleration $=v^{2} / r$, directed toward center of orbit. $\mathrm{r}=$ radius of orbit
(In this equation, v is the speed of the object, which is the same at all times)

Physics 107, Fall 2006

Experiment

Physics 107, Fall 2006
10

Newton's falling moon

Acceleration of moon

- The moon is accelerating at $\frac{v^{2}}{r} \mathrm{~m} / \mathrm{s}^{2}$ directly toward the earth!
- This acceleration is due to the Earth's gravity.
- Is this acceleration different than g , the gravitational acceleration of an object at the Earth's surface?
- Can calculate the acceleration directly from moon's orbital speed, and the Earth-moon distance.

Physics 107, Fall 2006

The radius of the earth

- "Originally" from study of shadows at different latitudes by Eratosthenes!
- R (earth) $=6500 \mathrm{~km}$

Distance dependence of Gravity

- The gravitational force depends on distance.
- Moon acceleration is
$\frac{9.81 \mathrm{~m} / \mathrm{s}^{2}}{0.00272 \mathrm{~m} / \mathrm{s}^{2}} \approx 3600$ times smaller than the acceleration of gravity on the Earth's surface.
- The moon is 60 times farther away, and $3600=60^{2}$
- So then the gravitational force drops as the distance squared

Newton: I thereby compared the force requisite to keep the Moon in her orb with the force of gravity at the surface of the Earth, and found them answer pretty nearly.

Distance and diam. of moon

-ecccc((00 -))) DDDOQ

- The diameter of the moon is the diameter of its shadow during a solar eclipse. From the diameter d and angular size $\mathrm{d} / \mathrm{r} \sim 5$ deg, infer distance $r-60 * r$ (earth).

Moon acceleration, cont

- Distance to moon $=60$ earth radii $\sim 3.84 \times 10^{8} \mathrm{~m}$
- Speed of moon?

Circumference of circular orbit $=2 \pi r$
Speed $=\frac{\text { orbital distance }=2 \pi r}{\text { orbital time }=27.3 \text { days }}=1023 \mathrm{~m} / \mathrm{s}$
Centripetal acceleration $=0.00272 \mathrm{~m} / \mathrm{s}^{2}$

This is the acceleration of the moon due to the gravitational force of the Earth.

Equation for force of gravity

$\mathrm{F}_{\text {gravity }} \propto \frac{(\text { Mass of object } 1) \times(\text { Mass of object } 2)}{\text { square of distance between them }}$

$$
\mathrm{F} \propto \frac{m_{1} \times m_{2}}{d^{2}}
$$

For masses in kilograms, and distance in meters,

$$
\mathrm{F}=6.7 \times 10^{-11} \frac{m_{1} \times m_{2}}{d^{2}}
$$

Example

- Find the acceleration of an apple at the surface of the earth
Force on apple $=F_{\text {apple }}=6.7 \times 10^{-11} \frac{m_{\text {Earth }} \times m_{\text {apple }}}{d^{2}} \quad \begin{aligned} & \text { This is also the } \\ & \text { force on the Earth } \\ & \text { by the apple! }\end{aligned}$
$d=$ distance between center of objects \sim radius of Earth
Acceleration of apple $=\frac{F_{\text {apple }}}{m_{\text {apple }}}=6.7 \times 10^{-11} \frac{m_{\text {Earrh }}}{d^{2}}$

$$
=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2} \times \frac{5.98 \times 10^{24} \mathrm{~kg}}{\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}}=9.83 \mathrm{~m} / \mathrm{s}^{2}
$$

- International space station orbits at $350 \mathrm{~km}=350,000 \mathrm{~m}$
- $d=6,370,000 \mathrm{~m}+350,000 \mathrm{~m}=6,720,000 \mathrm{~m}$
- Again d has changed only a little, so that g is decreased by only about 10\%

The space station is falling...
...similar to Newton's apple

- In its circular orbit, once around the Earth every 90 minutes, it is continuously accelerating toward the Earth at $\sim 8.8 \mathrm{~m} / \mathrm{s}^{2}$.
- Everything inside it is also falling (accelerating toward Earth at that same rate).
- The astronauts are freely falling inside a freelyfalling 'elevator'. They have the perception of weightlessness, since their environment is falling just as they are.

Gravitational force decreases with distance from Earth

Force on apple $=F_{\text {apple }}=6.7 \times 10^{-11} \frac{m_{\text {Earth }} \times m_{\text {apple }}}{d^{2}}$
So moving farther from the Earth
should reduce the force of gravity

- Typical airplane cruises at $\sim 5 \mathrm{mi}=8000 \mathrm{~m}$
-d increases from 6,370,000 m to 6,378,000 m
- only about a 0.25% change!

So why is everyone floating around?

Edward M. (Mike) Fincke, Expedition
science officer

Acceleration of gravity on moon

- On the moon, an apple feels gravitational force from the moon.
- Earth is too far away.

Force on apple on moon $=F_{\text {apple }}=6.7 \times 10^{-11} \frac{m_{\text {moon }} \times m_{\text {apple }}}{r_{\text {moon }}^{2}}$
Accel. of apple on moon $=\frac{F_{\text {apple }}}{m_{\text {apple }}}=6.7 \times 10^{-11} \frac{m_{\text {moon }}}{r_{\text {moon }}^{2}}$
Compare to accel on Earth $=6.7 \times 10^{-11} \frac{m_{\text {Earth }}}{r_{\text {Earth }}^{2}}$

$$
\frac{\text { accel. on moon }}{\text { accel. on Earth }}=\frac{m_{\text {moon }} / m_{\text {Earth }}}{\left(r_{\text {moon }} / r_{\text {Earth }}\right)^{2}}
$$

Gravitational force at large distances:
 Stars orbiting our black hole

Accel. of gravity on moon

$$
\begin{aligned}
\frac{\text { accel. on moon }}{\text { accel. on Earth }} & =\frac{m_{\text {moon }} / m_{\text {Earrh }}}{\left(r_{\text {moon }} / r_{\text {Earth }}\right)^{2}} \\
& =\frac{7.4 \times 10^{22} \mathrm{~kg} / 6.0 \times 10^{24} \mathrm{~kg}}{\left(1.7 \times 10^{6} \mathrm{~m} / 6.4 \times 10^{6} \mathrm{~m}\right)^{2}} \\
& =\frac{0.0123}{(.265)^{2}}=0.175 \approx \frac{1}{6}
\end{aligned}
$$

Orbits obey Newton's gravity, orbiting around some central mass

- Scientists at the Max Planck Institute for Extraterrestrische Physik has used infrared imaging to study star motion in the central parsec of our galaxy.
- Movie at right summarizes 14 years of observations.
- Stars are in orbital motion about some massive central object

http:// www.mpe.mpg.de/ www ir/ GC/ intro.html

What is the central mass?

- One star swings by the hole at a minimum distance b of 17 light hours ($120 \mathrm{~A} . \mathrm{U}$. or close to three times the distance to Pluto) at speed $\mathrm{v}=5000 \mathrm{~km} / \mathrm{s}$, period 15 years.
- From the orbit we can derive the mass.
- The mass is 2.6 million solar masses.
- It is mostly likely a black hole at the center of our Milky Way galaxy!

