From last time

Gravity and centripetal acceleration

$a_{c}=\frac{v^{2}}{r} \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~F}=6.7 \times 10^{-11} \frac{m_{1} \times m_{2}}{r^{2}}$
Used to explore interesting questions like what is at the center of the galaxy
HW\#2: Due
HW\#2: Due
HW\#3: Chapter 5: Conceptual: \#22 Problems: \#2, 4
HW\#3: Chapter 5: Conceptual: \#22 Problems: \#2, 4
Chapter 6: Conceptual: \# 18 Problems: \#2, 5
Chapter 6: Conceptual: \# 18 Problems: \#2, 5
Exam 1: Next Wednesday, Review Monday,
Scantron with XX questions, bring \#2 pencil
Chapters 1 and 3-6
1 Page, front only, equation sheet allowed

Discussion so far...

- So far we have talked about
- Velocity and Acceleration
- Momentum and conservation of momentum
- Momentum transfer changing the velocity of an object
- That momentum transfer resulting from a force when the objects are in contact
- Newton's relation: Acceleration = Force / mass

Energy

- Both objects moving in final state.
- That movement represents energy.
- In addition to momentum, the energy is physical property of the system.
- We will see that it is also conserved.
- In the rifle - bullet example
- Before firing, the energy is stored in the gunpowder.
- After firing, most of the energy
appears as the motion of the bullet and rifle
- Some of the energy appears as heat.

What is the central mass?

- One star swings by the hole at a minimum distance b of 17 light hours ($120 \mathrm{~A} . \mathrm{U}$. or close to three times the distance to Pluto) at speed $v=5000 \mathrm{~km} / \mathrm{s}$, period 15 years.
$a_{c}=\frac{v^{2}}{r}=6.7 \times 10^{-11} \frac{\mathrm{~m}}{r^{2}}$
$m=\frac{r v^{2}}{6.7 \times 10^{-11}}=\frac{1.8 \times 10^{13} \cdot 25 \times 10^{12}}{6.7 \times 10^{-11}}=6.7 \times 10^{36}$
- Mass Sun: $2 \times 10^{30}, 3.4$ million solar mass black hole(approximate estimate) at the center of our Milky Way galaxy! \qquad 2

Something missing

- With these tools, can think about the world in many ways.
- Collisions resulting in a momentum transfer
- Gravitational forces resulting in acceleration of falling bodies and orbits of planets.
- But this leaves something out
- Think about firing a rifle:
- Before pulling the trigger, both rifle and bullet are stationary: total momentum is zero.
- After firing, the bullet and rifle move in opposite directions. Total momentum is still zero.
- But clearly the situation before and after is different.

Before Energy Consider Work

- Work is done whenever a body is continually pushed or pulled through a distance.
- Twice as much work is done when the body is moved twice as far.
- Pushing twice as hard over the same distance does twice as much work.

> - Work = Force x Distance

Work, cont.

- Force has units of Newtons (N)

Distance has units of meters (m) So work has units of $\mathrm{N}-\mathrm{m}$, defined as Joules (J).

- Example:

The Earth does work on an apple when the apple falls.
The force applied is the force of gravity

- Example:

I do work on a box when I push it along the floor.
The force applied is from my muscles
Physis 107 , Fall 206

Multi-part question

I lift a body weighing 1 N upward at a constant vertical velocity of $0.1 \mathrm{~m} / \mathrm{s}$. The Net force on the body is
A. 1 N upward
B. 1 N down
C. 0 N

Since the acceleration is zero, the net force must be zero.

Question, cont.

The force I exert on the body is
A. 1 N up
B. 1 N down
C. 0

Since net force is zero, and the gravitational force is 1 N down, I must be exerting 1 N up.

Question, cont.

After lifting the 1 N body a total distance of 1 m, the Net work done on the body is
A. 1 J
B. 0.1 J C. 0 J

$$
\begin{aligned}
\text { Work } & =\text { Force }_{\text {Net }} \times \text { Distance } \\
& =(1 \mathrm{~N}-1 \mathrm{~N}) \times 1 \mathrm{~m}=0 \text { । oule }
\end{aligned}
$$

Question, cont.

After lifting the 1 N body a total distance of 1 m, the work I have done on the body is
A. 11
B. 0.1 J
C. 0 J

Work $=$ Force \times Distance $=1 \mathrm{~N} \times 1 \mathrm{~m}=1 \mathrm{~N}-\mathrm{m}=1 \mathrm{~J}$ oule

Energy

A object's energy is the amount of work it can do.
Energy comes in many forms
-Kinetic Energy
Gravitational Energy

- Electrical Energy
\$Thermal Energy
-Solar Energy
Chemical Energy
* Nuclear Energy

It can be converted into other forms without loss
(i.e it is conserved)

Energy of motion

In outer space, I apply a force of 1 N to a 1 kg rock for a distance of 1 m .

I have done Force x Distance $=(1 \mathrm{~N}) \times(1 \mathrm{~m})=1 \mathrm{~J}$ of work.
After applying the force for 1 m ,
the rock is moving at some final velocity $\mathrm{V}_{\text {final }}$ as a result of the acceleration Force/ mass.

So the energy I expended in doing work has caused the body to change its velocity from zero to $\mathrm{v}_{\text {final }}$.

Kinetic energy (energy of motion)

- Work = Force \times Distance
- A constant applied force leads to an acceleration.
- After the distance is moved, the body is traveling at some final velocity $\mathrm{v}_{\text {final }}$.
- So the result of the work done is to change the body's velocity from zero to $\mathrm{v}_{\text {final }}$

Work-energy relation

- The acceleration of the body is related to the net force by $\mathrm{F}=\mathrm{ma}$

Work $=F_{\text {net }} \times d=(m a) \times d=m \times(a d)$

$$
\begin{aligned}
& \frac{1}{2} m v^{2} \text { is called Kinetic Energy, } \\
& \text { or energy of motion }
\end{aligned}
$$

A more general form

- If the object initially moving at some velocity

$$
\begin{aligned}
& V_{\text {initial }} \\
& \text { it has kinetic energy } \quad \frac{1}{2} m v_{v_{\text {intial }}^{2}}^{2}
\end{aligned}
$$

- As the result of a net work $W_{\text {net }}, \quad \frac{1}{2} m v_{\text {fruel }}^{2}$
the velocity increases to $\mathrm{V}_{\text {final }}$
- and the Kinetic Energy $W_{\text {net }}=\frac{1}{2} m v_{\text {final }}^{2}-\frac{1}{2} m v_{\text {initial }}^{2}$
increases to

The change in kinetic energy is equal to the net work done.

$$
\text { A more general form }
$$

- If the object initially moving at some velocity
$\mathrm{v}_{\text {initial }}$
it has kinetic energy
- As the result of a net work $\mathrm{W}_{\text {net }}$,

the velocity increases to $\mathrm{v}_{\text {final }}$, $\frac{1}{2} m v_{\text {fintial }}^{2}$ final $_{\text {- and the Kinetic Energy } \quad W_{\text {net }}=\frac{1}{2} m v_{\text {final }}^{2}-\frac{1}{2} m v_{\text {initial }}^{2}}^{\text {increases to }}$| The change in kinetic energy is equal to the net |
| :--- |
| work done. |

Work-energy relation

- The kinetic energy of a body is

$$
\frac{1}{2} m v^{2}
$$

- The kinetic energy will change by an amount equal to the net work done on the body.

Gravitational energy

- An object in a gravitational field can do work when it falls.
- We might say that energy is stored in the system.

Ball falls down in gravity

- Ball initially held at rest.
- $v_{\text {initial }}=0$
- Kinetic energy $=0$
- Ball released.
- Gravitational force = mg, falls with acceleration g
- Work done by gravitational force in falling distance h is Force \times Distance $=m g h$.
- Ball final kinetic energy $=m g h=\frac{1}{2} m v_{\text {final }}^{2}$

Work Done by Gravity

- Change in gravitational energy,

Change in energy $=\mathrm{mgh}$
true for any path : h, is simply the height difference, $y_{\text {final }}-y_{\text {initial }}$

- A falling object converts gravitational potential energy to its kinetic energy
- Work needs to be done on an object to move it vertically up - work done is the same no matter what path is taken

Ball moved up in gravity

- Work done by me on ball
- Ball initially held at rest by me.
- I move the ball slowly upward a distance h
- Force applied by me is mg upward.
- Work done by me on ball is Force \times Distance $=m g h$
- Work done by gravity on ball
- Force \times Distance $=-m g h$
- Net (total) work done on ball = mgh-mgh = 0
- Consistent with zero change in kinetic energy of ball during this time (I.e. ending velocity is same as starting velocity).

Electrical Energy

- Electricity is the flow of charged particles.
- Charged particles have an electromagnetic force between them similar to the gravitational force.
- This force can do work.
- Doing work against this force can store energy in the system.
- The energy can be removed at any time to do work.

Physics 107, Fall 2006
22

Thermal Energy

- Otherwise known as heat.
- The temperature of an object is related to the amount of energy stored in the object.
- The energy is stored by the microscopic vibratory motion of atoms in the material.
- This energy can be transferred from one object to another by contact.
- It can also be turned into work by contact.

Storing energy

- Energy is neither created nor destroyed, but is just moved around.
- Or more accurately, it changes form.
- I do work by lifting a body against gravity.
- If the body now drops, it can do work when it hits (pounding in a nail, for instance).

Could say that the work I did lifting the body is stored until the body hits the nail and pounds it in.

Potential Energy

