From last time Gravity and centripetal acceleration	
a _c =	$\frac{v^2}{r} m/s^2$ F = 6.7 × 10 ⁻¹¹ $\frac{m_1 \times m_2}{r^2}$
Used to explore interesting questions like what is at the center of the galaxy	
HW#2:	Due
HW#3:	Chapter 5: Conceptual: # 22 Problems: # 2, 4
	Chapter 6: Conceptual: # 18 Problems: # 2, 5
	Next Wednesday, Review Monday, n with XX questions, bring #2 pencil Chapters 1 and 3-6 1 Page, front only, equation sheet allowed

Discussion so far...

- So far we have talked about
 - Velocity and Acceleration
 - Momentum and conservation of momentum
 - Momentum transfer changing the velocity of an object
 - That momentum transfer resulting from a force when the objects are in contact
 - Newton's relation: Acceleration = Force / mass

Physics 107, Fall 2006

Something missing

- With these tools, can think about the world in many ways.
 - Collisions resulting in a momentum transfer
 - Gravitational forces resulting in acceleration of falling bodies and orbits of planets.
- But this leaves something out
- Think about firing a rifle:
 - Before pulling the trigger, both rifle and bullet are stationary: total momentum is zero.
 - After firing, the bullet and rifle move in opposite directions. Total momentum is *still* zero.
 - But clearly the situation before and after is different.

Physics 107, Fall 2006

Energy

- Both objects moving in final state.
- · That movement represents energy.
- In addition to momentum, the energy is physical property of the system.
- We will see that it is also conserved.
- In the rifle bullet example
 - Before firing, the energy is stored in the gunpowder.
 - After firing, most of the energy appears as the motion of the bullet and rifle
 - Some of the energy appears as heat.

Physics 107, Fall 2006

Before Energy Consider Work

- Work is done whenever a body is continually pushed or pulled through a distance.
- Twice as much work is done when the body is moved twice as far.
- Pushing twice as hard over the same distance does twice as much work.
- Work = Force x Distance Physics 107, Fall 2006

1

- Force has units of Newtons (N) Distance has units of meters (m) So work has units of N-m, defined as Joules (J).
- *Example*: The Earth does work on an apple when the apple falls. *The force applied is the force of gravity*
- Example: I do work on a box when I push it along the floor. The force applied is 100 Fell 2006

23

Thermal Energy

- Otherwise known as heat.
- The temperature of an object is related to the amount of energy stored in the object.
- The energy is stored by the microscopic vibratory motion of atoms in the material.
- This energy can be transferred from one object to another by contact.
- It can also be turned into work by contact.

Physics 107, Fall 2006

Storing energy

- Energy is neither created nor destroyed, but is just moved around.
- Or more accurately, it changes form.
- I do work by lifting a body against gravity.
- If the body now drops, it can do work when it hits (pounding in a nail, for instance).

Could say that the work I did lifting the body is stored until the body hits the nail and pounds it in.

Potential Energy

24

22

Physics 107, Fall 2006