From last time...

- Galilean Relativity
- Laws of mechanics identical in all inertial ref. frames
- Einstein's Relativity
- All laws of physics identical in inertial ref. frames
- Speed of light $=c$ in all inertial ref. frames
- Consequences
- Simultaneity: events simultaneous in one frame will not be simultaneous in another.
- Time dilation: time interval between events appear different to different observers

Consequences of Einstein's relativity

- Many ' common sense' results break down:
- Events that seem to be simultaneous are not simultaneous in different inertial frames
- The time interval between events is not absolute. it will be different in different inertial frames
- The distance between two objects is not absolute it is different in different inertial frames
- Velocities don't always add directly

Einstein's principle of relativity

- Principle of relativity:

- All the laws of physics are identical in all inertial reference frames.
- Constancy of speed of light:
- Speed of light is same in all inertial frames (e.g. independent of velocity of observer, velocity of source emitting light)
(These two postulates are the basis of the special theory of relativity)

Why is this?

- J ane on train: light pulse travels distance 2d.
- J oe on ground: light pulse travels farther
- Relativity: both J oe and J ane say light travels at c
- J oe measures longer travel time of light pulse
- This is time dilation

Phy107 Fall 2006

Time dilation, continued

Reference frame of J ane on train

Reference frame of
Joe on ground

- Observer J ane on train: light pulse travels distance 2d.
- Time $=$ distance divided by velocity $=2 \mathrm{~d} / \mathrm{c}$
- Time in the frame the events occurred at same location called the proper time $\Delta \mathrm{t}_{\mathrm{p}}$

Atomic clocks and relativity

- In 1971, four atomic clocks were flown around the world on commercial jets.
- 2 went east, 2 went west -> a relative speed $\sim 1000 \mathrm{mi} / \mathrm{hr}$.
- On return, average time difference was 0.15 microseconds, consistent with relativity.

First atomic clock: 1949

Miniature atomic clock: 2003 Phy 107 Fall 2006

The 'proper time'

- We are concerned with two time intervals. Intervals between two events.
- A single observer compares time intervals measured in different reference frames.
- If the events are at the same spatial location in one of the frames..
- The time interval measured in this frame is called the 'proper time'.
- The time interval measured in a frame moving with respect to this one will be longer by a factor of γ
$\Delta t_{\text {other frame }}=\gamma \Delta t_{\text {proper }}, \quad \gamma>1$
Phy107 Fall 2006

Traveling to the stars

Spaceship leaves Earth, travels at 0.95c

Spaceship later arrives at star

Phy 107 Fall 2006

The ship observer's frame

Earth leaves...

.then star arrives

Phy107 Fall 2006

Comparing the measurements

- The ship observer measures 'proper time'
- Heartbeats occur at the same spatial location (in the astronaut's chest).
- On his own clock, astronaut measures his normal heart-rate of 1 second between each beat.
- Earth observer measures, with his earth clock, a time much longer than the astronaut's $\left(\Delta \mathrm{t}_{\text {earth }}=\gamma \Delta \mathrm{t}_{\text {astronaut }}\right)$

$$
\Delta t_{\text {earth }}=\gamma \Delta t_{\text {astronaut }}=\frac{\Delta t_{\text {astronaut }}}{\sqrt{1-v^{2} / c^{2}}}=3.2 \times \Delta t_{\text {astronaut }}=3.2 \mathrm{sec}
$$

Earth observer sees astronaut's heart beating slow, and the astronaut's clock running slow.
Earth observer measures 3.2 sec between heartbeats of astronaut.

Phy107 Fall 2006

Resolution

- Special relativity applies only to reference frames moving at constant speed.
- To turn around and come back, the astronaut must accelerate over a short interval.
- Only the Earthling's determination of the time intervals using special relativity are correct.
- General relativity applies to accelerating reference frames, and will make the measurements agree.
- Special relativity predicts that astronaut would disagree, saying earthling is younger!
- Why?

If both measure the time interval between heartbeats of the earthling, the earthling measures the proper time.
Any other measurement of the time interval is longer! The astronaut says the earthling's heart beats more slowly.

Apparently a direct contradiction.
Phy107Fal 2006 14

Time for astronaut passes more slowly by a factor gamma. Trip time for astronaut is $4.5 \mathrm{yrs} / 3.2=\mathbf{1 . 4}$ years

Are there other 'paradoxes'?

- Both observer's agree on the speed (0.95c)
- Earth observer: ship moving
- Ship observer: earth and star moving
- They both agree on the speed
- But they disagree about the total trip time.
- If the time intervals are different, and speed is the same, how can distances be the same?
- The distances are not the same! Length contraction

Length Contraction

- People on ship and on earth agree on relative velocity $v=0.95 c$.
- But they disagree on the time (4.5 vs 1.4 years).
- What about the distance between the planets?

$$
\begin{aligned}
\text { Earth frame } \mathrm{d}_{\text {earth }}=v \mathrm{t}_{\text {Earth }} & =.95\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(4.5 \text { years }) \\
& =4 \times 10^{16} \mathrm{~m} \quad(4.3 \text { light years }) \\
\text { Ship frame } \mathrm{d}_{\text {ship }}=v \mathrm{t}_{\text {ship }} & =.95\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(1.4 \text { years }) \\
& =1.25 \times 10^{16} \mathrm{~m} \quad(1.3 \text { light years })
\end{aligned}
$$

Is any measurement the same for all observers?

 The real 'distance' between events- Need a quantity that is the same for all observers
- A quantity all observers agree on is $x^{2}-c^{2} t^{2} \equiv(\text { separation })^{2}-c^{2}(\text { time interval })^{2}$
- Need to look at separation both in space and time to get the full 'distance' between events.
- In 4D: 3 space +1 time

$$
x^{2}+y^{2}+z^{2}-c^{2} t^{2}
$$

- The same or 'invariant' in any inertial frame Phy 107 Fall 2006

A relativistic invariant quantity

A relativistic invariant quantity	
Earth Frame	Ship Frame
Event separation $=4.3 \mathrm{LY}$	Event separation $=0 \mathrm{LY}$
Time interval $=4.526 \mathrm{yrs}$	Time interval $=1.413 \mathrm{yrs}$
$(\text { separation })^{2}-c^{2}\left(\right.$ time interval) ${ }^{2}$ $=(4.3)^{2}-(c(4.526 y r s))^{2}=-2.0 \mathrm{LY}$	$\begin{aligned} & (\text { separation })^{2}-c^{2}(\text { time interval })^{2} \\ & =0-(c(1.413 y r s))^{2}=-2.0 \quad L Y^{2} \end{aligned}$
- The quantity (separation) ${ }^{2}-\mathrm{c}^{2}$ (time interval) $)^{2}$ is the same for all observers - It mixes the space and time coordinates	
Phy 107 Fall $2006{ }^{23}$	

- The quantity (separation) $)^{2}-\mathrm{c}^{2}(\text { time interval })^{2}$ is the same for all observers
- It mixes the space and time coordinates

Length contraction and proper length

- Which one is correct?
- Just like time intervals,
distances are different in different frames.
- There is no preferred frame,
so one is no more correct than the other.
- The 'proper length' L_{p} is the length measured in a frame at rest with respect to objects
- Here the objects are Earth and star.

Events in the Earth Frame

- Event \#1: leave earth

Time dilation, length contraction

- $\mathrm{t}=\gamma \mathrm{t}_{\text {proper }}$
- $\mathrm{t}_{\text {proper }}$ measured in frame where events occur at same spatial location
- $\mathrm{L}_{\mathrm{proper}} / \gamma$
- Lproper measured in frame where events are simultaneous
$\gamma=\frac{1}{\sqrt{1-(v / c)^{2}}}$
γ always bigger than 1 γ increases as v increases
γ would be infinite for $v=c$
Suggests some limitation on velocity as we approach speed of light

Relativistic Addition of Velocities

- Galilean addition of velocities can not be applied to objects moving near the speed of light
- Einstein's modification is

$$
v_{a b}=\frac{v_{a d}+v_{d b}}{1+\frac{v_{a d} v_{d b}}{c^{2}}}
$$

- The denominator is a correction based on length Frame b contraction and time
 dilation

