Homework - Exam	
HW\#\#: Chap 10 Conceptual: 36,42 Problem 7, 9 Chap 11 Conceptual: 5,10	
Hour Exam 2: Wednesday, October 25th - In-class, covering waves, electromagnetism, and relativity - Twenty multiple-choice questions - Will cover: Chapters 8, 910 and 11 Lecture material - You should bring - 1 page notes, written single sided - \#2 Pencil and a Calculator - Review Monday October 23rd - Review test online on Monday	
Phy 107 Fall 2006	1

From last time...

- Einstein's Relativity
- All laws of physics identical in inertial ref. frames
- Speed of light=c in all inertial ref. frames
- Consequences
- Simultaneity: events simultaneous in one frame will not be simultaneous in another.
- Time dilation
- Length contraction
- Relativistic invariant: $x^{2}-c^{2} t^{2}$ is 'universal' in that it is measured to be the same for all observers

Relativistic Addition of Velocities

- As motorcycle velocity approaches c, v_{ab} also gets closer and closer to c
- End result: nothing exceeds the speed of light

$$
v_{a b}=\frac{v_{a d}+v_{d b}}{1+\frac{v_{a d} v_{d b}}{c^{2}}}
$$

Observing from a new frame

- In relativity these events will look different in reference frame moving at some velocity
- The new reference frame can be represented as same events along different coordinate axes

A relativistic invariant quantity

Earth Frame	Ship Frame
Event separation $=4.3 \mathrm{LY}$	Event separation $=0 \mathrm{LY}$
Time interval $=4.526$ yrs	Time interval $=1.413$ yrs
$(\text { separation })^{2}-c^{2}(\text { time interval })^{2}$	$(\text { separation })^{2}-c^{2}(\text { time interval })^{2}$
$=(4.3)^{2}-(c(4.526 y r s))^{2}=-2.0 \quad L Y^{2}$	$=0-(c(1.413 y r s))^{2}=-2.0 \quad L Y^{2}$

- The quantity (separation) ${ }^{2}-c^{2}(\text { time interval })^{2}$ is the same for all observers
- It mixes the space and time coordinates

'Separation' between events

- Views of the same cube from two different angles.
- Distance between corners (length of red line drawn on the flat page) seems to be different depending on how we look at it.

- But clearly this is just because we are not considering the full three-dimensional distance between the points.
- The 3D distance does not change with viewpoint.

Forces, Work, and Energy in Relativity What about Newton's laws?

- Relativity dramatically altered our perspective of space and time
- But clearly objects still move, spaceships are accelerated by thrust, work is done, energy is converted
- How do these things work in relativity?

Relativistic speed of particle subject to constant force

- At small velocities (short times) the motion is described by Newtonian physics
- At higher velocities, big deviations!
- The velocity never exceeds the speed of light

Phy107 Fall 2006

Newton again

- Fundamental relations of Newtonian physics
- acceleration = (change in velocity)/ (change in time)
- acceleration = Force / mass
- Work =Force x distance
- Kinetic Energy $=(1 / 2)($ mass $) \times(\text { velocity })^{2}$
- Change in Kinetic Energy = net work done
- Newton predicts that a constant force gives
- Constant acceleration
- Velocity proportional to time
- Kinetic energy proportional to (velocity) ${ }^{2}$

Applying a constant force

- Particle initially at rest, then subject to a constant force starting at $\mathrm{t}=0$,

$$
\Delta \text { momentum }=\text { momentum }=(\text { Force }) \times \text { (time })
$$

- Using momentum $=$ (mass) \times (velocity), Velocity increases without bound as time increases

Relativity says no.

The effect of the force gets smaller and smaller as velocity approaches speed of light

Momentum in Relativity

- The relationship between momentum and force is very simple and fundamental

$$
\begin{aligned}
& \text { Momentum is constant for zero force } \\
& \frac{\text { change in momentum }}{\text { change in time }}=\text { Force }
\end{aligned}
$$

This relationship is preserved in relativity

Relativistic momentum

- Relativity concludes that the Newtonian definition of momentum
($\mathrm{p}_{\text {Newton }}=\mathrm{mv}=$ mass \times velocity $)$ is accurate at low velocities,
but not at high velocities

The relativistic momentum is:

Phy 107 Fall 2006 13

Was Newton wrong?

- Relativity requires a different concept of momentum
- But not really so different!

$$
\begin{aligned}
& p_{\text {relativistic }}=\gamma m v \\
& \gamma=\frac{1}{\sqrt{1-(v / c)^{2}}}
\end{aligned}
$$

- For small velocities <<light speed $\gamma \approx 1$, and so perativistic mv
- This is Newton's momentum
- Differences only occur at velocities that are a substantial fraction of the speed of light

How can we understand this?

- acceleration ($=\frac{\text { change in velocity }}{\text { change in time }}$
much smaller at high speeds than at low speeds
- Newton said force and acceleration related by mass.
- We could say that mass increases as speed increases.
$p_{\text {relativistic }}=\gamma m v=(\gamma m) v \equiv m_{\text {relativistic }} v$
- Can write this
$-m_{0}$ is the rest mass

$$
\begin{aligned}
& p_{\text {relativisitic }}=\gamma m_{o} v=\left(\gamma m_{o}\right) v \equiv m v \\
& \gamma=\frac{1}{\sqrt{1-(v / c)^{2}}}, \quad m=\gamma m_{o}
\end{aligned}
$$

-relativistic mass m depends on velocity

Example

- An object moving at half the speed of light relative to a particular observer has a rest mass of 1 kg . What is it's mass measured by the observer?

$$
\begin{aligned}
\gamma & =\frac{1}{\sqrt{1-(v / c)^{2}}}=\frac{1}{\sqrt{1-(0.5 c / c)^{2}}}=\frac{1}{\sqrt{1-0.25}} \\
& =\frac{1}{\sqrt{0.75}}=1.15
\end{aligned}
$$

So measured mass is 1.15 kg

Question

A object of rest mass of 1 kg is moving at 99.5% of the speed of light.
What is it's measured mass?
A. 10 kg
B. 1.5 kg
C. 0.1 kg

Relativistic Kinetic Energy

- Can see this graphically as with the other relativistic quantities
- Kinetic energy gets arbitrarily large as speed approaches speed of light
- Is the same as Newtonian kinetic energy for small speeds.

Mass-energy equivalence

- This results in Einstein's famous relation

$$
E=\gamma m_{o} c^{2}, \text { or } E=m c^{2}
$$

- This says that the total energy of a particle is related to its mass.
- Even when the particle is not moving it has energy.
- We could also say that mass is another form of energy
- Just as we talk of chemical energy, gravitational energy, etc, we can talk of mass energy

Relativistic Kinetic Energy

- Might expect this to change in relativity.
- Can do the same analysis as we did with Newtonian motion to find

$$
K E_{\text {relativisitic }}=(\gamma-1) m_{o} c^{2}
$$

- Doesn't seem to resemble Newton's result at all
- However for small velocities, it does reduce to the Newtonian form

$$
K E_{\text {relativistic }} \approx \frac{1}{2} m_{o} v^{2} \text { for } v \ll c
$$

Total Relativistic Energy

- The relativistic kinetic energy is

$$
\begin{aligned}
K E_{\text {relativistic }} & =(\gamma-1) m_{o} c^{2} \\
& =\underbrace{\gamma m_{o} c^{2}}_{\begin{array}{c}
\text { Depends on } \\
\text { velocity }
\end{array}}-\underbrace{m_{o} c^{2}}_{\begin{array}{c}
\text { Constant, } \\
\text { independer } \\
\text { velocity }
\end{array}}
\end{aligned}
$$

- Write this as

$$
\underbrace{\gamma m_{o} c^{2}}_{\text {Total energy }}=\underbrace{K E_{\text {relativistic }}}_{\text {Kinetic energy }}+\underbrace{m_{o} c^{2}}_{\text {Rest energy }}
$$

Example

- In a frame where the particle is at rest, its total energy is $E=m_{0} \mathrm{C}^{2}$
- Just as we can convert electrical energy to mechanical energy, it is possible to tap mass energy
- A 1 kg mass has $(1 \mathrm{~kg})\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}^{12}=9 \times 10^{16} \mathrm{~J}\right.$ of energy
- We could power

30 million 100 W light bulbs for one year!
(~ 30 million sec in 1 yr)

A relativistic perspective

- The concepts of space, time, momentum, energy that were useful to us at low speeds for Newtonian dynamics are a little confusing near light speed
- Relativity needs new conceptual quantities, such as space-time and energy-momentum
- Trying to make sense of relativity using space and time separately leads to effects such as time dilation and length contraction
- In the mathematical treatment of relativity, space-time and energy-momentum objects are always considered together

Energy and momentum

- Relativistic energy is $E=\gamma m_{o} c^{2}$
- Since γ depends on velocity, the energy is measured to be different by different observers
- Momentum also different for different observers
- Can think of these as analogous to space and time, which individually are measured to be different by different observers
- But there is something that is the same for all observers:

$$
E^{2}-c^{2} p^{2}=\left(m_{o} c^{2}\right)^{2}=\text { Square of rest energy }
$$

- Compare this to our space-time invariant $x^{2}-c^{2} t^{2}$

The Equivalence Principle

Clip from Einstein Nova special

- Led Einstein to postulate the Equivalence Principle

Try some experiments

Which of these is a straight line?
A. A

B. B
C. C
D. All of them

Mass and curvature

- General relativity says that any mass will give space-time a curvature
- Motion of objects in space-time is determined by that curvature
- Similar distortions to those we saw when we tried to draw graphs in special relativity

Phy107 Fall 2006

Idea behind geometric theory

- Matter bends space and time.
- Bending on a two-dimensional surface is characterized by curvature at each point
curvature $=1$ (radius of curvature $)^{2}$
- How can we relate curvature to matter?

Einstein's solution

- Einstein guessed that the curvature functions
(units of $1 / \mathrm{m}^{2}$)
are proportional to
the local energy and momentum densities (units of $\mathrm{kg} / \mathrm{m}^{3}$)
- The proportionality constant from comparison with Newtonian theory is
$\frac{8 \pi G}{c^{2}}$
where G is Newton's constant

A test of General Relativity

- Can test to see if the path of light appears curved to us
- Local massive object is the sun
- Can observe apparent position of stars with and without the sun
- But need to block glare from sun

Eddington's Eclipse Expedition 1919

- Eddington, British astronomer, went to Principe Island in the Gulf of Guinea to observe solar eclipse.
- After months of drought, it was pouring rain on the day of the eclipse
- Clouds parted just in time, they took photographic plates showing the location of stars near the sun.
- Analysis of the photographs back in the UK produced a deflection in agreement with the GR prediction

Near the Earth

- The ratio of the curvature of space on the surface of the Earth to the curvature of the surface of the Earth is
~ 7×10^{-10}
- The curvature of space near Earth is so small as to be usually unnoticeable.
- But is does make objects accelerate toward the earth!

Eddington and the Total Eclipse of 1919

