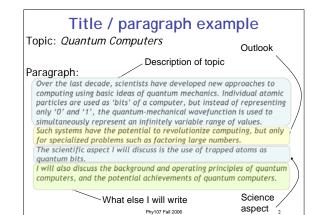
#### Course essay

- Friday, Nov 3:
  - Due in class essay topic(review article, operating experiment, noble prize)

short description - one paragraph http://www.hep.wisc.edu/-herndon/107-0609/essay.htm

• Friday, Nov 17


Due in class — essay outline

main article reference

• Friday, Dec. 8

Due in class — final typed essay. 500-750 words

Phy107 Fall 2006



#### From Last Time...

- Light shows both particle and wavelike properties
  - Interference is an example of wavelike property
  - Photoelectric effect is an example of particle like property: Einstein's Nobel prize
- · Photons are particles of light.
- Even in interference experiments light showed some particle like properties
  - Introduced idea of probabilities of outcomes happening to explain this

Phv107 Fall 2006

## Photoelectric effect summary

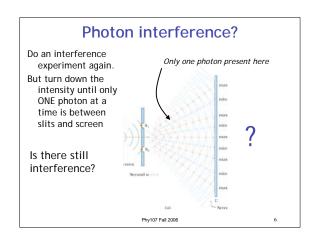
- Light is made up of photons, individual 'particles', each with energy: E = hf =
- One photon collides with one electron - knocks it out of metal.
- · If photon doesn't have enough energy, cannot knock electron out.
- Intensity ( = # photons / sec)

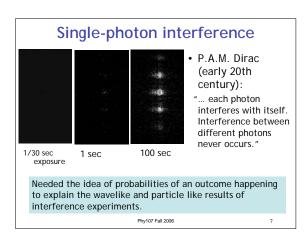
## doesn't change this. Photon greater than a minimum frequency (less than a maximum wavelength) required to eject electron Phy107 Fall 2006

# Photoelectric effect question

An electron is bound inside copper by a 'binding energy' of 4 eV. Which wavelength will eject electrons from copper?

A. 300 nm


B. 500 nm


C. 700 nm

Minimum photon energy to eject electron is 4 eV. Corresponding photon energy is aiven by

given by 
$$4.0~eV = \frac{hc}{\lambda} = \frac{1240~eV - nm}{\lambda~nm}$$
 So  $\lambda_{\rm max} = 310~{\rm nm}$ 

Phy107 Fall 2006





#### **Probabilities**

- We detect absorption of a photon at the screen.
- Cannot predict exactly where on the screen the photon will arrive.
- Position of an individual photon hits is determined probabilistically.
- Photon has a probability amplitude through space.
   Square of this quantity gives probability that photon will hit particular position on detector.
- The form of that probability amplitude is a wave!

Phy107 Fall 2006

#### Laser

We now can have 'coherent' photons in a laser, (Light Amplification by Stimulated Emission of Radiation) invented 40 years ago.

These photons can in fact interfere with each other.

Phy107 Fall 2006

# Compton scattering • Collision of photon and electron in vacuum • Photon loses energy, transfers it to electron • Photon loses momentum transfers it to electron • Total energy and momentum conserved Before collision Photon energy E=hf Photon mass = 0 Photon momentum p=E/c

Phy107 Fall 2006

#### Compton scattering

Phy107 Fall 2006

- Photons can transfer energy to beam of electrons.
- Determined by conservation of momentum, energy.
- Compton awarded 1927 Nobel prize for showing that this occurs just as two balls colliding.



Arthur Compton, Jan 13, 1936 Compton scattering question

A green photon collides with a stationary electron. After the the collision the photon color is

A. unchanged

B. shifted toward red

C. shifted toward blue

Photon transfers energy to electron. Photon energy goes down, so photon wavelength gets longer

Phy107 Fall 2006

2006 12

## Photon: particle and wave

- Light: Is quantized. Has energy and momentum:  $E = hf = \frac{hc}{\lambda} = \frac{1240 \text{ eV} - nm}{\lambda} \quad p = \frac{E}{c} = \frac{hf}{c} = \frac{h}{\lambda}$
- Light has a dual nature. It exhibits both wave and particle characteristics
  - Applies to all electromagnetic radiation
- The photoelectric effect show the particle characteristics of light
  - Light can behave as if it were composed of particles
- · Interference and diffraction
  - shows the wave and particle and probabilistic characteristics of light  $_{\rm hy107\,Fall\,2006}$

Matter waves

- If light waves have particle-like properties, maybe matter has wave properties?
- de Broglie postulated that the wavelength of matter is related to momentum as



• This is called the de Broglie wavelength.



Nobel prize, 1929

the de Brogne wavelengt

Phy107 Fall 2006

## Why h/p? Works for photons

- We argue that  $\lambda = \frac{h}{p}$  applies to everything
- Photons and footballs both follow the same relation.
- Everything has both wave-like and particle-like properties

Phy107 Fall 2006

## Wavelengths of massive objects

- deBroglie wavelength =  $\lambda = \frac{h}{p}$
- $\lambda = \frac{h}{mv}$

 p=mv for a nonrelativistic (v<<c) particle with mass.</li>

Phv107 Fall 2006

# Wavelength of a football



- Make the Right Call: The NFL's Own interpretations and guidelines plus 100s of official rulings on game situations. National FootBall League, Chicago. 1999: "... short circumference, 21 to 21 1/4 inches; weight, 14 to 15 ounces."
- (0.43 0.40 kg)

   "Sometimes I don't know how they catch that ball, because Brett wings that thing 60, 70 mph," Flanagan said.

  (27 32 m/s)
- Momentum: mv = (0.4 kg)(30 m/s) = 12 kg m/s

$$\lambda = \frac{h}{p} = \frac{6.6 \times 10^{-34} \ J - s}{12 \ kg - m/s} = 5.5 \times 10^{-35} m = 5.5 \times 10^{-26} nm$$

Phy107 Fall 2006

17

## This is very small

- $1 \text{ nm} = 10^{-9} \text{ m}$
- Wavelength of red light = 700 nm
- Spacing between atoms in solid ~ 0.25 nm
- Wavelength of football = 10-26 nm
- · What makes football wavelength so small?

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

Large mass, large momentum short wavelength

Phy107 Fall 2006

## Quantum Mechanics: Physics of the microscopic world

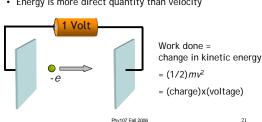
- · Macroscopic objects don't show effects of quantum mechanics.
- Saw this previously in pendulum:
  - Energy levels are quantized, but discreteness is too small to be detected.
  - Wave properties also too 'small' to be detected

Phy107 Fall 2006

## Wavelength of electron

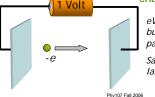
- · Need less massive object to show wave effects
- · Electron is a very light particle
- Mass of electron = 9.1x10<sup>-31</sup> kg

$$\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{6 \times 10^{-34} J - s}{\left(9 \times 10^{-31} kg\right) \times \left(velocity\right)}$$


Wavelength depends on mass and velocity Larger velocity, shorter wavelength

Phy107 Fall 2006

20


## How do we get electrons to move?

- · Electron is a charged particle.
- · Constant electric field, applies constant force,
- accelerates electron
- Work done on electron is (charge) x (voltage applied)
- · Energy is more direct quantity than velocity



#### The electron-volt

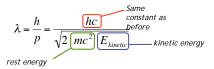
- · Unit of energy used in quantum mechanics:
- 1 electron-volt = energy gained by electron accelerating through 1 volt potential difference.
- 1 electron volt = 1 eV =  $(1.6x10^{-19}C)(1V)$  =  $1.6x10^{-19}J$ charge potential



eV a small unit of energy, but useful for small particles such as electrons

Same energy unit we used

# Wavelength of 1 eV electron


- Fundamental relation is wavelength =  $\lambda = \frac{h}{p}$
- · Need to find momentum in terms of kinetic
- p = mv, so  $E_{kinetic} = \frac{p^2}{2m}$   $p = \sqrt{2mE_{kinetic}}$

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE_{kinetic}}} = \frac{hc}{\sqrt{2mc^2E_{kinetic}}}$$

Phy107 Fall 2006

A little complicated

· But look at this without calculating it



Wavelength = 
$$\frac{\text{constant}}{\sqrt{\text{rest energy}}\sqrt{\text{Kinetic energy}}}$$

Phy107 Fall 2006

#### Matter wave question

A neutron has almost 2000 times the rest mass of an electron. Suppose they both have 1 ev of energy. How do their wavelengths compare?

A. both same

B. neutron wavelength < electron wavelength

C. neutron wavelength > electron wavelength

Wavelength depends on momentum, as h/p. Same momentum -> same wavelength. Momentum =  $\sqrt{2mE}$ , depends on energy AND mass

Phy107 Fall 2006

## Why use rest energy?

- Particles important in quantum mechanics are characterized by their rest energy
  - In relativity all observers measure same rest energy.

electron:  $mc^2 \sim 0.5 MeV$ 

proton:  $mc^2 \sim 940 \ MeV$ neutron:  $mc^2 \sim 940 \ MeV$  Different for different particles

1 MeV = 1 million electron-volts

Phy107 Fall 2006

26

#### General trends

Wavelength =  $\frac{\text{constant}}{\sqrt{\text{rest energy}}\sqrt{\text{Kinetic energy}}}$ 

- Wavelength decreases as rest energy (mass) increases
- Wavelength decreases as kinetic energy (energy of motion) increases

Phy107 Fall 2006

### Wavelength of 1 eV electron

· For an electron,

$$\lambda = \frac{1240 \text{ eV} - nm}{\sqrt{2 \times 0.511 \text{ MeV}}} \frac{1}{\sqrt{E_{kinetic}}} = \frac{1.23 \text{ eV}^{1/2} - nm}{\sqrt{E_{kinetic}}}$$
rest energy

• 1 eV electron,  $\lambda$ =1.23 nm • 10 eV electron  $\lambda$ =0.39 nm

• 100 eV electron  $\lambda$ =0.12 nm

Phy107 Fall 2006 25

#### Question

A 10 eV electron has a wavelength of ~ 0.4 nm. What is the wavelength of a 40 eV electron?

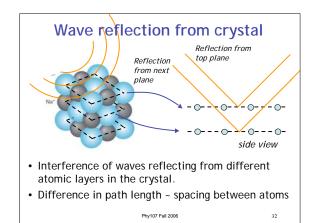
A. 0.2 nm

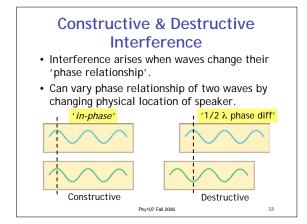
B. 0.4 nm

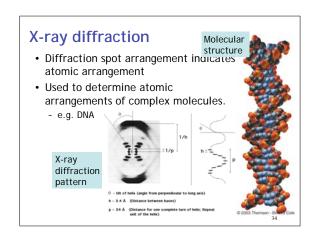
C. 0.8 nm

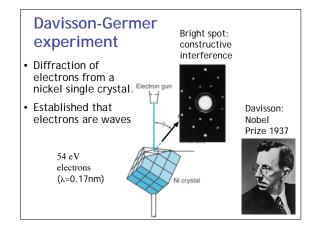
Wavelength = 
$$\frac{\text{constant}}{\sqrt{\text{rest energy}}\sqrt{\text{Kinetic energy}}}$$

Phy107 Fall 2006


#### Can this be correct?


- If electrons are waves, they should demonstrate wave-like effects
  - e.g. Interference, diffraction
- A 25 eV electron has wavelength 0.25 nm, similar to atomic spacings in crystals


Phy107 Fall 2006


III 2006 30











# Particle-wave duality

- · Like light, particles also have a dual nature
  - Can show particle-like properties (collisions, etc)
  - Can show wavelike properties (interference).
- Like light, they are neither particle nor wave, but some new object.
- Can describe them using "particle language" or "wave language" whichever is most useful

Phy107 Fall 2006

6