From Last Time...

- Observation of atoms indicated quantized energy states.
- Atom only emitted certain wavelengths of light
- Structure of the allowed wavelengths indicated the what the energy structure was
- Quantum mechanics and the wave nature of the electron allowed us to understand these energy levels.

Today

- The quantum wave function
- The atom in 3 dimensions
- Uncertainty principle again

Compton scattering and Photoelectric effect

- Collision of photon and electron
- Photon loses energy and momentum, transfers it to electron
- Either
- Loses enough energy/ momentum to bump it up one level
- Electron later decays back to ground state releasing a photon
- See reflected and emitted photons when looking at an object
- Or has enough energy to completely knock the electron out of the system. Photoelectric effect!

Hydrogen atom energies

- Electrons orbit the atom in quantized energy states
- Energy states are resonant states where the electron wave constructively interferes with itself. n whole wavelengths around
- Wavelength gets longer in higher n states and the kinetic energy goes down proportions to $1 / \mathrm{n}^{2}$

Potential energy goes up as with gravity also as $1 / n^{2}$

	$E_{n}=-\frac{13.6}{n^{2}} \mathrm{eV}$	

Another question

Here is Donald Lipski's sculpture 'Nail's Tail' outside Camp Randall Stadium.
What could it represent?
A. A pile of footballs
B. "I hear its made of plastic. For 200 grand, l'd think we'd get granite"

- Tim Stapleton (Stadium Barbers)
C. "I'm just glad it's not my money" -Ken Kopp (New Orlean's Take-Out)
D. Amazingly physicists make better sculptures!

Simple Example: 'Particle in a box'

Particle confined to a fixed region of space
e.g. ball in a tube- ball moves only along length L

- Classically, ball bounces back and forth in tube.
- No friction, so ball continues to bounce back and forth, retaining its initial speed.
- This is a 'classical state' of the ball. A different classical state would be ball bouncing back and forth with different speed.
- Could label each state with a speed, momentum=(mass) $\times($ speed $)$, or kinetic energy.
- Any momentum, energy is possible.

Can increase momentum in arbitrarily small increments.

Particle in box question

A particle in a box has a mass m.
It's energy is all energy of motion $=\mathrm{p}^{2} / 2 \mathrm{~m}$.
We just saw that it's momentum in state n is $n p_{0}$. It's energy levels
A. are equally spaced everywhere
B. get farther apart at higher energy
C. get closer together at higher energy.

General aspects of Quantum Systems

- System has set of quantum states, labeled by an integer ($n=1, n=2, n=3$, etc)
- Each quantum state has a particular frequency and energy associated with it.
- These are the only energies that the system can have: the energy is quantized
- Analogy with classical system:
- System has set of vibrational modes, labeled by integer fundamental ($n=1$), 1st harmonic ($n=2$), 2nd harmonic ($n=3$), etc
- Each vibrational mode has a particular frequency and energy.
- These are the only frequencies at which the system resonates.

Wavefunctions in two dimensions

- Physical objects often can move in more than one direction (not just one-dimensional)
- Could be moving at one speed in x-direction, another speed in y-direction.
- From deBroglie relation, wavelength related to momentum in that direction

$$
\lambda=\frac{h}{p}
$$

- So wavefunction could have different wavelengths in different directions.

Two-dimensional (2D) particle in box

Probability $=(\text { Wavefunction })^{2}$

Phy107 Fall 2006 14

Particle in a box

What quantum state could this be?
A. $n_{x}=2, n_{y}=2$
B. $n_{x}=3, n_{y}=2$
C. $n_{x}=1, n_{y}=2$

These have exactly the same energy, but the probabilities look different.
The different states correspond to ball bouncing in x or in y direction.

Three dimensions

- Object can have different velocity (hence wavelength) in x, y, or z directions.
- Need three quantum numbers to label state
- $\left(\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}, \mathrm{n}_{\mathrm{z}}\right)$ labels each quantum state (a triplet of integers)
- Each point in three-dimensional space has a probability associated with it.
- Not enough dimensions to plot probability
- But can plot a surface of constant probability.

Hydrogen atom

- Hydrogen a little different, in that it has spherical symmetry
- Not square like particle in a box.
- Still need three quantum numbers, but they represent 'spherical' things like
- Radial distance from nucleus
- Azimuthal angle around nucleus
- Polar angle around nucleus
- Quantum numbers are integers ($\mathrm{n}, \mathrm{l}, \mathrm{m}_{\mathrm{l}}$)

Hydrogen atom:

Lowest energy (ground) state

- Lowest energy state is same in all directions.
- Surface of constant probability is surface of a sphere.

$$
n=1, \ell=0, m_{\ell}=0
$$

Phy107 Fall 2006 \qquad

Where is the particle?

- Can say that the particle is inside the box, (since the probability is zero outside the box), but that's about it.
- The wavefunction extends throughout the box, so particle can be found anywhere inside.
- Can't say exactly where the particle is, but I can tell you how likely you are to find at a particular location.

Quantum momentum

- Quantum version is similar. Both contributions

- Ground state is a standing wave, made equally of
- Wave traveling right (positive momentum h / λ)
- Wave traveling left (negative momentum $-\mathrm{h} / \lambda$)

Back to the particle in a box

Wavefunction

- Here is the probability of finding the particle along the length of the box.
- Can we answer the question: Where is the particle?

How fast is it moving?

- Box is stationary, so average speed is zero.
- But remember the classical version

- Particle bounces back and forth.
- On average, velocity is zero.
- But not instantaneously
- Sometimes velocity is to left, sometimes to right

What is the uncertainty of the momentum in the ground state?
A. Zero
B. $h / 2 L$
C. h / L

Heisenberg Uncertainty Principle

- Using
- $\Delta x=$ position uncertainty
- $\Delta \mathrm{p}=$ momentum uncertainty
$-\Delta p=m o m e n t u m$ uncertainty
- Heisenberg showed that the product
$(\Delta \mathrm{x}) \cdot(\Delta \mathrm{p})$ is always greater than $(\mathrm{h} / 4 \pi)$

In this case we found:
(position uncertainty) x (momentum uncertainty) $\sim h$

Phy 107 Fall 2006
32

Atomic clock question

Suppose we changed the ammonia molecule so that the distance between the two stable positions of the nitrogen atom INCREASED. The clock would
A. slow down.
B. speed up
C. stay the same.

Phy 107 Fall 2006

