From Last Time...

- Hydrogen atom quantum numbers
- Quantum jumps, tunneling and measurements

Today

- Superposition of wave functions
- Indistinguishability
- Electron spin: a new quantum effect
- The Hydrogen atom and the periodic table

Phy 107 Fall 2006

Measuring which slit

- Suppose we measure which slit the particle goes through?
- Interference pattern is destroyed!
- Wavefunction changes instantaneously over entire screen when measurement is made
- Before superposition of wavefunctions through both slits. After only through one slit. Phy107 Fall 2006

Hydrogen Quantum Numbers

- Quantum numbers, $\mathrm{n}, \mathrm{I}, \mathrm{m}_{\mathrm{I}}$
- n: how charge is distributed radially around the nucleus. Average radial distance.
- This determines the energy
- I: how spherical the charge distribution
$-\mathrm{I}=0$, spherical, $\mathrm{I}=1$ less spherical...
- m_{1} : rotation of the charge around the z axis
- Rotation clockwise or counterclockwise and how fast
- Small energy differences for I and m_{l} states
 Phy 107 Fall 2006

A superposition state

- Margarita or Beer?
- This QM state has equal superposition of two.
- Each outcome
(drinking margarita, drinking beer)
is equally likely.
- Actual outcome not determined until measurement is made (drink is tasted).

Not universally accepted

- Historically, not everyone agreed with this interpretation.
- Einstein was a notable opponent
- 'God does not play dice'
- These ideas hotly debated in the early part of the 20th century.
- However, one more set of crazy ideas needed to understand the hydrogen atom and the periodic table.

Spin: An intrinsic property

- Free electron, by itself in space, not only has a charge, but also acts like a bar magnet with a N and S pole.
- Since electron has charge, could explain this if the electron is spinning.
- Then resulting current loops would produce magnetic field just like a bar magnet.
- But as far as we can tell the electron is not spinning

Phy 107 Fall 2006 7

Quantization of the direction

- But like everything in quantum mechanics, this magnitude and direction are quantized.
- And also like other things in quantum mechanics, if magnetic moment is very large, the quantization is not noticeable.
- But for an electron, the moment is very small.
- The quantization effect is very large.
- In fact, there is only one magnitude and two possible directions that the bar magnet can point.
- We call these spin up and spin down.
- Another quantum number: spin up: $+1 / 2$, down $-1 / 2$ Phy107 Fall 2006

Other particles

- Other particles also have spin
- The proton is also a spin $1 / 2$ particle.
- The neutron is a spin $1 / 2$ particle.
- The photon is a spin 1 particle.
- The graviton is a spin 2 particle.

Electron magnetic moment

- Why does it have a magnetic moment?
- It is a property of the electron in the same way that charge is a property.
- But there are some differences.
- Magnetic moment is a vector: has a size and a direction
- It's size is intrinsic to the electron
- but the direction is variable.
- The 'bar magnet' can point in different directions.

Electron spin orientations

These are two different quantum states
in which an electron can exist.
Phy 107 Fall 2006 \qquad

Spin 1/2 particle in a box

We talked about two quantum states

$$
\mid n=1, \text { spin }=+1 / 2\rangle \quad \mid n=1, \text { spin }=-1 / 2\rangle
$$

In isolated space, which has lower energy?
A. $\mid n=1$, spin $=+1 / 2\rangle$
B. $\mid n=1$, spin $=-1 / 2\rangle$
C. Both same

> An example of degeneracy: two quantum states that have exactly the same energy.

Indistinguishability

- Another property of quantum particles - All electrons are ABSOLUTELY identical.
- Never true at the macroscopic scale.
- On the macroscopic scale, there is always some aspect that distinguishes two objects.
- Perhaps color, or rough or smooth surface
- Maybe a small scratch somewhere.
- Experimentally, no one has ever found any differences between electrons.

Indinstinguishability and QM

- Quantum Mechanics says that electrons are absolutely indistinguishable.
Treats this as an experimental fact.
- For instance, it is impossible to follow an electron throughout its orbit in order to identify it later.
- We can still label the particles, for instance
- Electron \#1, electron \#2, electron \#3
- But the results will be meaningful only if we preserve indistinguishability.
- Find that this leads to some unusual consiquenses
- Suppose we want to describe the state with

Example: 2 electrons on an atom

- Probability of finding an electron at a location is given by the square of the wavefunction.

- We have two electrons,
so the question we would is ask is
- How likely is it to find one electron at location r_{1} and the other electron at r_{2} ?

On the atom, they look like this. (Both on the same atom).

- Must describe this with a wavefunction that says
- We have two electrons
- One of the electrons is in s-state, one in d-state
- Also must preserve indistinguishability

Physically measurable quantities

- How can we label particles, but still not distinguish them?
- What is really meant is that no physically measurable results can depend on how we label the particles.
- One physically measurable result is the probability of finding an electron in a particular spatial location.

Two possible wavefunctions

- Two possible symmetries of the wavefunction, that keep the probability unchanged when we exchange particle labels:
- The wavefunction does not change

Symmetric

- The wavefunction changes sign only

Antisymmetric

In both cases the square is unchanged

Probabilities

- The probability of finding the particles at particular locations is the square of the wavefunction.
- Indistinguishability says that these probabilities cannot change if we switch the labels on the particles.
- However the wavefunction could change, since it is not directly measurable. (Probability is the square of the wavefunction)

Spin-statistics theorem

- In both cases the probability is preserved, since it is the square of the wavefunction.
- Can be shown that
- Integer spin particles (e.g. photons)
have wavefunctions with ' + ' sign (symmetric)
These types of particles are called Bosons
- Half-integer spin particles (e.g. electrons)
have wavefunctions with '-' sign (antisymmetric)
These types of particles are called Fermions

Pauli exclusion principle

- Only wave function permitted by indistinghishability is exactly zero. This means that this never happens.
- Cannot put two Fermions in same quantum state
- This came entirely from indisinguishability, that electrons are identical.
- Without this,
- there elements would not have diff. chem. props.,
- properties of metals would be different,
- neutron stars would collapse.

Putting electrons on atom

- Electrons are Fermions
- Only one electron per quantum state

So what?

- Fermions - antisymmetric wavefunction:

Try to put two Fermions in the same quantum state (for instance both in the s-state)

Phy 107 Fall 2006 26

Include spin

- We labeled the states by their quantum numbers. One quantum number for each spatial dimension.
- Now there is an extra quantum number: spin.
- A quantum state is specified by it's space part and also it's spin part.
- An atom with several electrons filling quantum states starting with the lowest energy, filling quantum states until electrons are used.

Other elements

- More electrons requires next higher energy states
- Lithium: three electrons

$\mathrm{n}=1$ states lowest energy, fill first electrons have more complex states occupied

