Course evaluation Wednesday, Review Friday

Final Exam

- Thursday, Dec. 21: 2:45 4:45 pm 113 Psychology Building
- Note sheet: one double-sided page
- Cumulative exam-covers all material, 40 questions
 11 guestions from exam 1 material
 - 11 questions from exam 2 material
 - 11 questions from exam 3 material
 - 7 questions from post-exam 3 material

Study Hint: download blank hour exams from web site and take them closed-book, with note sheet only. Solution for Exams will all be posted this week.

From the last time...

The forces

- Matter particles interact via the forces according to the types of charge they carry.
- Each force carried by a particle.
- Matter particles are fermions, force carriers are bosons. Described by quantum field theories.
- Unification
 - Noticed that electromagnetic force and weak force carried by Z boson are nearly identical.
 - At high energy they are identical. Same types of interactions and same strength
 - Requires an extra particle. The Higgs boson.

• What kind of theory is needed to unify this?

Phy107 Fall 2006

11

Grand Unified Theories

- Flavor changing interactions in quarks (e.g. changing a top quark to a bottom quark by emitting a *W*⁴) suggest that quarks can be viewed as different 'orientations' of the same object.
- · Have found the same thing for leptons.
- But maybe there should be a lepto-quark field?
 - Quarks could turn into leptons, leptons into quarks
 All matter particles would be different 'orientations' of the same fundamental object.
- If we unify leptons and quarks then weak and strong forces may be shown to be two aspects of one force.

The price of unification

- When the SM unified EM and weak interactions, we ended with more force-carrying bosons (e.g. the Z⁰)
- This is because our fundamental 'particle' increased in complexity
 - e.g. from an electron to an electron-neutrino pair
- If our 'particle' now encompasses both leptons and quarks, the interaction also becomes more complex.
- In one particular GUT, we get 24 exchange bosons (W⁺, W⁻, Z⁰, photon, 8 gluons, and 12 new ones)

Phy107 Fall 2006

14

Beyond the standard model?

- Standard model has been enormously successful.
- Consistent picture of particles and their interactions.
- Predictive power with unusual accuracy.
- Questions:
 - Why 3 generations?
 - What determines all the
 - mass values and interaction strengths?

- Can we relate the quarks and leptons and the forces?

What does the SM say?

- We can calculate how interactions would work at energies like those of the big bang.
 The results don't make sense.
- Astrophysics observations indicate that there is more mass in the galaxy and universe than we can see: Dark Matter
 - No standard model particle could explain this.
- All the standard model interactions create electrons and positrons or quarks and antiquarks in pairs.
 - However, everything around us is made of quarks and electrons. Where did the positrons and antiquarks go?

None of these things can be explained by the SM!

· Explain physics at very high energy - big bang

Phy107 Fall 2006

17

Phy107 Fall 2006

Results of the theory

- The first string excitation is a particle with imaginary mass — a tachyon (negative mass squared = negative energy)
 - Could go backwards in time: seems unlikely!
- But the next excitation is a massless spin-2 particle satisfying general relativity
 The graviton!
- · So string theory became a theory of gravity

Phy107 Fall 2006

37

20

Superstrings

- Combine string theory with some of our other theories.
- Imposing supersymmetry on strings gets rid of the tachyon it is no longer a solution.
- Additionally, the number of dimensions required for consistency drops from 26 to 10!
- Fundamental object is now a 'superstring'
- · Get some of results of SuSy
 - Fix behavior at high energy
 - Dark matter

38

40

Phy107 Fall 2006

Extra dimensions in string theory

• Superstring theory has a 10 dimensional spacetime,

- How do we get from 10 dimensions down to 4?
- Introduce some of the ideas from Kalaza-Klein theory
 Roll up the extra dimensions into some very tiny space of their own.
 Kaluza-Klein compactification.
- Add some of the advantages of Kaluza-Klein theory - Unification of electromagnetism force and gravity

Phy107 Fall 2006

Checklist String Theory

- Unify all the forces: strong force gravity
- Quantize the forces QFT very successful
- Unify the particles: quarks, leptons 3 generations
- Explain all the different masses and strengths
- Explain dark matter
- Explain why universe is mostly matter
- Explain physics at very high energy big bang

Phy107 Fall 2006