

Phy107 Fall 2006

- Quarks and leptons
- The strong and weak interaction
- Unification and mass
- String theory

Particles as fields

- Electromagnetic field spread out over space.
- Stronger near the the source of the electric/magnetic charge weaker farther away.
- Electromagnetic radiation, the photon, is the quanta of the field.
- Describe electron particles as fields:
- Makes sense the electron was spread out around the hydrogen atom.
- Wasn't in one place had locations it was more or less probable to be. Stronger and weaker like the electromagnetic field.

Phy107 Fall 2006

• Electron is the quanta of the electron field.

- To make a very short pulse in time, need to combine a range of frequencies.
- Frequency related to quantum energy by *E*=h*f*.
- Heisenberg uncertainty relation can also be stated

(Energy uncertainty)x(time uncertainty) ~ (Planck's constant)

In other words, if a particle of energy E only exists for a time less than h/E,

it doesn't require any energy to create it!

These are the virtual particles that propagate fields

The 'generations'								
FERMIONS matter constituents spin = 1/2, 3/2, 5/2,								
	Leptons spin = 1/2			Quarks spin = 1/2				
	Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge		
Light	v_e electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3		
5	e electron	0.000511	-1	d down	0.006	-1/3		
Heavier	v_{μ} muon neutrino	<0.0002	0	C charm	1.3	2/3		
	μ muon	0.106	-1	S strange	0.1	-1/3		
Heaviest	$v_{\tau}^{tau}_{neutrino}$	<0.02	0	t top	175	2/3		
	au tau	1.7771	-1	b bottom	4.3	-1/3		
I								
Phy107 Fall 2006 9						9		

Many Charges

- In this language, we say that the electrical charge is a 'source' of an EM field.
- · A mass 'charge' is the source of a gravitational field
- A weak 'charge' (sometimes called 'flavor') is the source of a weak interaction field
- A strong 'charge' (sometimes called 'color') is the source of a strong interaction field

Phy107 Fall 2006

Color

None

Electric

mass

12

Z boson

Particles & their Interactions (Summary)						
	quarks	Charged leptons (e,µ, t)	Neutral leptons (v)			
Color Charge ?	Y	N	N			
EM Charge ?	Y	Y	Ν			
'Weak' Charge ?	Y	Y	Y			
 Quarks can participate in Strong, EM & Weak Interactions. All quarks & all leptons carry weak charge. Neutrinos only carry weak charge. 						

Comparison of the Force Carriers								
	EM	Strong	Weak					
Force Carrier	Photon (y)	Gluon (g)	₩⁺, ₩⁻	Z ⁰				
Charge of force carrier	None	Color	Electric & Weak	None				
Couples to:	Particles w/elect. charge	Particles w/color charge (Quarks,gluons)	Particles w/weak charge (Quarks, leptons) W,Z)	Particles w/weak charge (Quarks, leptons W,Z)				
Range	Infinite (1/d²)	<10 ⁻¹⁴ m (inside hadrons)	< 2x10 ⁻¹⁸ m	< 2x10 ⁻¹⁸ m				
	26							

Key Points

- Differences between particles connected to how they interact, what charges they have.
- Quarks have all the charges.
 - Color charge: Quarks form composite states hadrons via the strong force.
 - Flavor charge: Heavy quarks decay to lighter quarks via the weak force.
- Leptons have no color change.
- Don't form any composite states.
- Neutrinos only interact via the weak force which means they rarely interact at all.
 Phyl07 Fall2006

Key Points Cont.

- Properties of the force carriers determine the aspects of that force.
- · Gluons and the strong force.
 - Gluon can interact with other gluons. Limits the range of that force and makes it stronger.
- W, Z and the weak force.
 - Force carriers are massive. Limits the range they can travel and makes the force weaker.
- Photon and the electromagnetic force.
 - Happy middle ground between strong and weak.

Phy107 Fall 2006

Phy107 Fall 2006

Checklist for a theory of everything

- Unify all the forces: strong force gravity
- Quantize the forces QFT very successful
- Unify the particles: quarks, leptons 3 generations
- Explain all the different masses and strengths
- · Explain dark matter
- · Explain why universe is mostly matter
- · Explain physics at very high energy big bang

Phy107 Fall 2006

Kaluza-Klein: EM & gravity

- Connect electromagnetism and gravity in a classical relativistic theory.
- Kaluza and Klein found a theory in five dimensions (four space & one time) with one interaction (5-dimensional gravity).
- When one of the dimensions was 'compactified', two interactions resulted: gravity and electromagnetism.
- What appears to us as two distinct interactions originate from only one.

Kaluza & Klein, 1920

Only unifies gravity. Can't be quantized. Doesn't answer all the other questions!

Phy107 Fall 2006

String theory

- A string is a fundamental quantum mechanical object that has a small but nonzero spatial extent.
- Just like a particle has a mass, a string has a 'tension' that characterizes its behavior.
- Quantum mechanical vibrations of the string correspond to the particles we observe
- Can include Kaluza Klein theory and Supersymmetry.

Checklist String Theory

- Unify all the forces: strong force gravity
- Quantize the forces QFT very successful
- Unify the particles: quarks lepton 3 generations
- Explain all the different masses and strengths
- Explain dark matter
- Explain why universe is mostly matter
- Explain physics at very high energy big bang
- Building experiments to explore all these theories including the Standard Model - Higgs not found yet!
 Phyl07 Fall 2006
 36