Physics 107: Ideas of Modern Physics

Exam 3 Nov. 29, 2006

Name	
ID # Sect	tion #

On the Scantron sheet,
1) Fill in your name
2) Fill in your student ID # (not your social security #)

3) Fill in your section # (under ABC of special codes)

Fundamental constants:	c= speed of light = 3x10 ⁸ m/s
	g= accel. of gravity on Earth = 10 m/s ²
	G= gravitational constant = 6.7x10 ⁻¹¹ N-m ² /kg ²

Photon energy E = hc/λ = 1240 eV-nm/ λ

- 1. A
- 2 According to Einstein, increasing the brightness of a beam of light without changing its color will increase
 - a. the number of photons per second
 - b. the energy of each photon
 - c. the photon speed
 - d. the frequency of each photon
 - e. the wavelength of each photon
- 3. A scientist is trying to eject electrons from a metal by shining a light on it. The electrons are bound inside the metal by an energy of 4.2 eV. Which wavelength will eject electrons?
 - a. 640 nm
 - b. 420 nm
 - c. 350 nm
 - d. any of these
 - e. none of these
- 4. A beta particle, an alpha particle and a neutron all have the same kinetic energy. Which has the longest wavelength?
 - a. beta particle.
 - b. neutron.
 - c. alpha particle.
 - d. all the same.
 - e. depends on kinetic energy.
- 5. Particular red (600 nm) and blue (300 nm) lasers both shoot out the same number of photons per second. How does the **power output** of the two lasers compare?
 - a. Both the same.
 - b. Blue has 1/4 the power as red.
 - c. Blue has 1/2 the power as red.
 - d. Blue has 2 times the power as red.
 - e. Blue has 4 times the power as red

2

- 6. A quantum particle in a box is in the lowest energy (ground) state. If the size of the box is increased, the wavelength and energy of the particle change as
 - a. wavelength shorter, energy larger
 - b. wavelength longer, energy smaller
 - c. wavelength shorter, energy smaller
 - d. wavelength longer, energy larger
 - e. wavelength and energy unchanged
- 7. A typical x-ray photon used in a dentist's office to produce an x-ray of your teeth has an energy of 10,000 eV. Its wavelength is about
 - a. 0.1 nm
 - b. 1 nm
 - c. 10 nm
 - d. 100 nm
 - e. 1000 nm
- 8. A hydrogen atom has quantum states with energies $-13.6\text{eV}/n^2$. Which of the following transitions emits the **shortest** wavelength photon?
 - a. *n*=2 to *n*=1
 - b. *n*=3 to *n*=2
 - c. *n*=3 to *n*=1
 - d. n=4 to n=3
 - e. all emit the same
 - wavelength photon
- 9. A particle in a box has quantum states with energies $E=E_0n^2$, with n=1,2,3,4... and $E_0=1$ eV. Which of these photons could in principle be absorbed?
 - a. 1 eV b. 2 eV c. 4 eV
 - d. 5 eV
 - e. 6 eV

- 10. The energy levels of a hydrogen atom are given by $E = -13.6/n^2$ eV. Calculate the wavelength of a photon emitted as a result of the *n*=4 to *n*=3 transition.
 - a. 2700 nm
 - b. 1875 nm
 - c. 360 nm
 - d. 820 nm
 - e. 650 nm
- 11. An electron is confined to a box of length *L*. It is in an excited state. The momentum of the particle is uncertain because
 - a. the particle is not in the quantum ground state.
 - b. the concept of momentum is not well-defined.
 - c. the particle is moving in two different directions.
 - d. the particle has an electrostatic charge.
 - e. the particle could quantum-mechanically tunnel out of the box.
- 12. Here is the first excited state wavefunction for a particle in a box. Compare the probabilities (P) of finding the particle at the indicated locations.
 - a. P(0.25 nm)=P(0.75 nm)
 - b. P(0.25 nm)<P(0.75 nm)
 - c. P(0.25 nm)>P(0.75 nm)
 - d. the probabilities are uncertain
 - e. need to know mass of particle

- 13. The strong force acts between which of the following particles in an atom? (nucleon = proton or neutron)
 - a. between all nucleons
 - b. between protons only
 - c. between neutrons only
 - d. between a proton and a neutron only
 - e. between protons and electrons only

14. Below are three wavefunctions for a particle in a box. Which has the highest energy?

a. A b. B c. C d. A and B equal and highest e. B and C equal and highest

15. ⁸C is an extremely unstable isotope of carbon. It has 6 protons and 2 neutrons in its nucleus. It decays by emitting a positron (anti-particle of electron). After the decay, it becomes

a. ⁷ C p. ⁹ C c. ⁸ B d. ⁸ N	B is the element with 5 protons C is the element with 6 protons N is the element with 7 protons
е. 'В	

- 16. A fossil bone has a ${}^{14}C$: ${}^{12}C$ ratio that is 1/4 of the ${}^{14}C$: ${}^{12}C$ ratio in the bone of a living animal. What is the approximate age of the fossil? (${}^{14}C$ half-life is 5,730 years).
 - a. 11,460 years
 - b. 17,190 years
 - c. 22,920 years
 - d. 45,840 years
 - e. 91,680 years
- 17. Excited ²³⁴U has 92 protons and 234 nucleons total in its nucleus. It decays by emitting a gamma particle. After the decay, it is

234	
a. ²³⁴ U b. ²³² Pa c. ²³⁰ Th d. ²³⁰ Ra e. ²³⁴ Th	U is the element with 92 electrons Pa is the element with 91 electrons Th is the element with 90 electrons Ra is the element with 88 electrons

- 18. A particular radioactive nucleus has 60 neutrons and 50 protons in the nucleus. The particle it emits when it decays is likely to be
 - a. a neutron
 - b. a positron
 - c. an electron
 - d. an alpha particle
 - e. a gamma particle
- 19. The Pauli exclusion principle says that
 - a. no two particles are exactly identical
 - b. fermions are excluded from the quantum ground state
 - c. electrons are fermions
 - d. no two fermions can be in the same quantum state
 - e. all bosons have spin
- 20. In a hypothetical nuclear fission event, the original nucleus (binding energy 6 MeV/ nucleon) has 250 nucleons, and splits into two nuclei, each with 125 nucleons (binding energy 6.2 MeV/nucleon). The TOTAL energy released in the fission of ONE nucleus is
 - a. 50 MeV
 - b. 25 MeV
 - c. 0.5 MeV
 - d. 620 MeV
 - e. 0.2 MeV
- 21. An energy band in a solid is
 - a. A band connecting atoms in the crystal
 - b. A region of high energy concentration in the crystal
 - c. An energy range densely packed with quantum states
 - d. A band of low-energy atoms in a crystal.
 - e. A single quantum state on a group of atoms in the crystal.