Physics 107: Ideas of Modern Physics

Practice Exam 3

Fundamental constants:

c= speed of light = $3x10^8$ m/s g= accel. of gravity on Earth = 10 m/s^2 G= gravitational constant = $6.7x10^{-11}$ N-m²/kg²

Photon energy E = hc/λ = 1240 eV-nm/ λ

- 1. A scientist is trying to eject electrons from a metal by shining a light on it, but none are coming out. To eject electrons, she should change the light by...
 - a. decreasing the frequency
 - b. increasing the frequency
 - c. increasing the intensity
 - d. increasing the wavelength
 - e. asking Einstein
- 2. A beta particle, gamma ray, and alpha particle all have the same momentum. Which has the longest wavelength?
 - a. beta particle.
 - b. gamma ray.
 - c. alpha particle.
 - d. all the same.
 - e. depends on gamma ray energy.
- 3. Particular red (600 nm) and blue (300 nm) lasers both produce 10 mW of power. How do the number of photons per second from each compare?
 - a. Both the same.
 - b. Blue has one quarter as many as red.
 - c. Blue has half as many as red.
 - d. Blue has twice as many as red..
 - e. Blue has four times as many as red
- 4. A quantum particle in a box is in the lowest energy (ground) state. If the size of the box is decreased, momentum uncertainty of the particle?
 - a. becomes larger
 - b. becomes smaller
 - c. is unchanged
 - d. becomes negative
 - e. cannot be measured
- 5. A photon is found to have 100 eV of energy. Which answer is closest to its wavelength?
 - a. 12000 nm
 - b. 1200 nm
 - c. 120 nm
 - d. 12 nm
 - e. 1.2 nm

- 6. Quantum wave-particle duality was the first adequate explanation of which of the following properties of a hydrogen atom?
 - a. An infinite number of possible orbits exist for the electron.
 - b. More than one possible orbit exists for the electron.
 - c. Only certain energies are possible for the electron.
 - d. More than one momentum is possible for the electron.
 - e. All of the above.
- 7. A particular quantum system has quantum states with energies $E_{(n=1)}=1 \text{ eV}$, $E_{(n=2)}=4 \text{ eV}$, $E_{(n=3)}=9$, $E_{(n=4)}=16 \text{ eV}$, ... This is NOT a hydrogen atom. Calculate the wavelength of a photon emitted as a result of the n=3 to n=2 transition.
 - a. 140 nm
 - b. 410 nm
 - c. 250 nm
 - d. 1240 nm
 - e. 620 nm
- 8. For the wavefunction shown below, at which point is the probability of finding the particle the smallest?
 - a. A
 - b.B
 - c. C
 - d. D
 - e. Cannot be determined only from the wavefunction.

- 9. The force binding together neutrons and protons in the nucleus is
 - a. the Coulomb force
 - b. the gravitational force
 - c. the strong force
 - d. the weak force
 - e. none of the above

- 10. Neutral hydrogen has one electron orbiting around it's nucleus. Which of the following is NOT the nucleus of an isotope of hydrogen?
 - a. One proton.
 - b. One proton, one neutron
 - c. One proton, two neutrons
 - d. Two protons, two neutrons
 - e. All of them are isotopes of hydrogen
- 11.²³⁴U has 92 protons and 234 nucleons total in its nucleus. It decays by emitting an alpha particle. After the decay, it becomes

a. ²³² U b. ²³² Pa c. ²³⁰ Th d. ²³⁰ Ra e. ²³⁴ Th	U is the element with 92 electrons Pa is the element with 91 electrons Th is the element with 90 electrons Ra is the element with 88 electrons
---	---

- 12.²⁴¹Am is used in smoke detectors to ionize gas atoms with alpha particles it emits from its nucleus. In the ²⁴¹Am nucleus, there are 95 protons and 241 total nucleons. After the alpha emission, ²⁴¹Am becomes
 - a. ²³⁹Np b. ²³⁷Np c. ²³⁹Pa d. ²³⁷Pa e. ²³⁷U
- 13. Nuclear fission occurs most commonly
 - a. after nuclear fusion
 - b. after neutron capture
 - c. in low-mass nuclei
 - d. after collision of two nuclei
 - e. at extremely high temperatures
- 14. That energy is released as a result of nuclear fission is most clearly explained as
 - a. Daughter nuclei bound more tightly than initial nucleus.
 - b. Total number of nucleons changes
 - c. Neutrons ejected during fission can induce a chain reaction
 - d. Incoming neutron transfers energy to the nucleus
 - e. Heavy nuclei can be unstable

4

15. Which is not a reason that a typical metal at room temperature has a resistance to conducting an electrical current.

a. the spaces between the atoms are not the proper size to fit the wavelength of the electrons.

- b. the atoms are vibrating.
- c. the metal has impurities
- d. there are missing spaces in the metals crystal matrix
- e. all of the above
- 16. A pure semiconductor is an insulator, but becomes useful electrically when
 - a. it is cooled to low temperature
 - b. not too large a magnetic field is applied
 - c. some of its atoms are replaced with different atoms
 - d. quantum states are created in it
 - e. it is patterned to very small (nanometer) sizes