Problem Set 2

Reading: Landau and Lifshitz, Chap. 2; Chap. 3, Secs. 28-31
Huang, Secs. 7.1-7.6 (suggested)

LD 4: Hawking radiation and the lifetime of black holes

(a) It was observed by J. Bekenstein, Phys. Rev. D 7, 2333 (1973), that the entropy of matter falling into a black hole should increase the entropy of the black hole, and that the entropy of the hole should be proportional to its area. The resulting temperature of a black hole of mass M or energy $M c^{2}$ is $T=\hbar c^{3} / 8 \pi k G M$, where G is Newton's constant.
Determine the entropy S assuming that $S=0$ for a zero-mass black hole, and find the dependence of the area $A=4 S L_{P l}^{2} / k$ on M. Here $L_{P l}$ is the Planck length, $L_{p l}=\left(\hbar G / c^{3}\right)^{1 / 2} \approx 1.6 \times 10^{-33} \mathrm{~cm}$. Estimate the size of a black hole of solar mass, $M=2 \times 10^{33} \mathrm{gm}$.
(b) A black hole with $T>0$ will radiate photons (and neutrinos) with a thermal spectrum [S.W. Hawking, Nature 248, 30 (1974); Comm. Math. Phys. 43, 199 (1975); Phys. Rev. D 13, 191 (1975)]. The power radiated per unit area in this "Hawking radiation" is given by the expression for blackbody radiation, $P=$ σT^{4}, up to a factor of order unity. Here σ is the Stefan-Boltzmann constant $\sigma=\pi^{2} k^{4} / 60 \hbar^{3} c^{2}$. Use this result to estimate how massive a black hole formed in the big bang must be if it is to have survived $\approx 13.7 \times 10^{9}$ yr to the present.

LD 5: Increase of entropy and heat flow.

Two large many-particle systems A and B with initial energies E_{A}^{0} and E_{B}^{0} are brought into contact. Assume that there is no mixing of the constituents (for example, A and B could be solids), but that energy can be transferred between A and B. State your physical assumptions, and use the Boltzmann definition of entropy in terms of $\Gamma_{A B}$ to show
(i) that entropy increases when the two systems are combined, i.e., that $S_{A B}$ is greater than or equal to the total entropy of the separate systems once $A B$ reaches equilibrium,

$$
S_{A B}(E) \geq S_{A}\left(E_{A}^{0}\right)+S_{B}\left(E_{B}^{0}\right), \quad E=E_{A}+E_{B}
$$

(ii) that energy flows from the hotter to the colder system. [Hint: use $\Delta S \geq 0$, the extensive property of the entropy, and appropriate Taylor series expansions to show that

$$
\left(\frac{1}{T_{A}^{0}}-\frac{1}{T_{B}^{0}}\right)\left(\bar{E}_{A}-E_{A}^{0}\right) \geq 0
$$

for $\bar{E}_{A}-E_{A}^{0}$ small and discuss the consequences.]

LD 6: Excluded volumes and the equation of state for a hard-sphere gas.

For "hard" molecules of finite size, the factor V^{N} in the statistical weight $\Gamma(E, N, V)$ is changed. The first molecule can be anyplace in the volume V. Once its location is fixed, the center of the second molecule must be at least a distance $2 R$ away, where R is the molecular radius. That is, the second molecule can be anyplace in a reduced volume $V-\beta$ where $\beta=8 v$ with v the volume of a single molecule, the third can be anyplace in a volume $V-2 \beta, \ldots$. (This neglects possible simultaneous overlaps of $3,4, \ldots, N$ molecules.) Evaluate $\int d^{3} x_{1} \cdots d^{3} x_{N}$ in this approximation and determine the equation of state of the hard sphere gas from the relation $P=T(\partial S / \partial V)_{E}$ from the second law.
[Hint: it will be useful to factor $(8 v)^{N}$ out of your expression, write the remainder as a ratio of factorials, and use Stirling's approximation.]
Expand your expression for P for a dilute gas, $8 N v \ll V$, and relate v to the constant b in the phenomenological van der Waals equation of state (Landau and Lifshitz, §76).

LD 7: Energy distribution function and fluctuations for the ideal gas.

The energy distribution function $W(E)$ for the canonical distribution is defined as

$$
W(E)=\int^{\prime} \delta(E-H) e^{-H / k T} \frac{d^{3} q_{1} \ldots d^{3} q_{N} d^{3} p_{1} \ldots d^{3} p_{N}}{h^{3 N} Z_{N}}
$$

where E is the total energy of the system, and $W(E) d E$ is the probability of finding the system in the energy interval $d E$ at $E . Z_{N}$ is the canonical partition function.
(a) Determine $W(E)$ for a system of N indistinguishable noninteracting particles in a box of volume V. The particles have the Hamiltonian

$$
H=\sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{2 m}
$$

[Hint: use spherical coordinates in the 3N-dimensional momentum space. Recall that $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$ defines the gamma function.]
(b) Calculate the most probable total energy E_{m} for the system (the energy for which $W(E)$ has its maximum value), the average energy \bar{E}, and their fractional deviation $\left|E_{m}-\bar{E}\right| / \bar{E}$. Comment on the N dependence.
(c) Show by direct calculation using $W(E)$ that the mean square fluctuation $\langle(E-$ $\left.\bar{E})^{2}\right\rangle$ of E about \bar{E} is equal to $k T^{2} C_{V}$, where C_{V} is the specific heat at constant volume given by elementary kinetic theory, $C_{V}=\frac{3}{2} N k$. [This is an example of the general fluctuation-dissipation theorem, which relates fluctuations in a variable to the linear response of the system to changes in an associated quantity.]

