
PHYSICS 715

Problem Set 2 Due Friday, February 3, 2006

Reading: Landau and Lifshitz, Chap. 2; Chap. 3, Secs. 28–31
Huang, Secs. 7.1–7.6 (suggested)

LD 4: Hawking radiation and the lifetime of black holes

(a) It was observed by J. Bekenstein, Phys. Rev. D 7, 2333 (1973), that the entropy
of matter falling into a black hole should increase the entropy of the black hole,
and that the entropy of the hole should be proportional to its area. The resulting
temperature of a black hole of mass M or energy Mc2 is T = h̄c3/8πkGM , where
G is Newton’s constant.

Determine the entropy S assuming that S = 0 for a zero-mass black hole, and
find the dependence of the area A = 4SL2

P l/k on M . Here LP l is the Planck
length, Lpl = (h̄G/c3)1/2 ≈ 1.6 × 10−33 cm. Estimate the size of a black hole of
solar mass, M = 2 × 1033 gm.

(b) A black hole with T > 0 will radiate photons (and neutrinos) with a thermal
spectrum [S.W. Hawking, Nature 248, 30 (1974); Comm. Math. Phys. 43, 199
(1975); Phys. Rev. D 13, 191 (1975)]. The power radiated per unit area in this
“Hawking radiation” is given by the expression for blackbody radiation, P =
σT 4, up to a factor of order unity. Here σ is the Stefan-Boltzmann constant
σ = π2k4/60h̄3c2. Use this result to estimate how massive a black hole formed in
the big bang must be if it is to have survived ≈ 13.7 × 109 yr to the present.

LD 5: Increase of entropy and heat flow.

Two large many-particle systems A and B with initial energies E0

A and E0

B are brought
into contact. Assume that there is no mixing of the constituents (for example, A and
B could be solids), but that energy can be transferred between A and B. State your
physical assumptions, and use the Boltzmann definition of entropy in terms of ΓAB to
show

(i) that entropy increases when the two systems are combined, i.e., that SAB is greater
than or equal to the total entropy of the separate systems once AB reaches equi-
librium,

SAB(E) ≥ SA(E0

A) + SB(E0

B), E = EA + EB;

(ii) that energy flows from the hotter to the colder system. [Hint: use ∆S ≥ 0, the
extensive property of the entropy, and appropriate Taylor series expansions to
show that

(

1

T 0

A

−
1

T 0

B

)

(ĒA − E0

A) ≥ 0,

for ĒA − E0

A small and discuss the consequences.]
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LD 6: Excluded volumes and the equation of state for a hard-sphere gas.

For “hard” molecules of finite size, the factor V N in the statistical weight Γ(E, N, V )
is changed. The first molecule can be anyplace in the volume V . Once its location is
fixed, the center of the second molecule must be at least a distance 2R away, where
R is the molecular radius. That is, the second molecule can be anyplace in a reduced
volume V − β where β = 8v with v the volume of a single molecule, the third can be
anyplace in a volume V − 2β, . . . . (This neglects possible simultaneous overlaps of
3, 4, . . . , N molecules.) Evaluate

∫

d3x1 · · · d
3xN in this approximation and determine

the equation of state of the hard sphere gas from the relation P = T (∂S/∂V )E from
the second law.

[Hint: it will be useful to factor (8v)N out of your expression, write the remainder as
a ratio of factorials, and use Stirling’s approximation.]

Expand your expression for P for a dilute gas, 8Nv ≪ V , and relate v to the constant
b in the phenomenological van der Waals equation of state (Landau and Lifshitz, §76).

LD 7: Energy distribution function and fluctuations for the ideal gas.

The energy distribution function W (E) for the canonical distribution is defined as

W (E) =
∫

′

δ(E − H)e−H/kT d3q1 . . . d3qNd3p1 . . . d3pN

h3NZN
,

where E is the total energy of the system, and W (E)dE is the probability of finding
the system in the energy interval dE at E. ZN is the canonical partition function.

(a) Determine W (E) for a system of N indistinguishable noninteracting particles in
a box of volume V . The particles have the Hamiltonian

H =
N
∑

i=1

p 2

i

2m
.

[ Hint: use spherical coordinates in the 3N-dimensional momentum space. Recall
that Γ(x) =

∫

∞

0
tx−1e−tdt defines the gamma function.]

(b) Calculate the most probable total energy Em for the system (the energy for which
W (E) has its maximum value), the average energy Ē, and their fractional devia-
tion |Em − Ē|/Ē. Comment on the N dependence.

(c) Show by direct calculation using W (E) that the mean square fluctuation 〈(E −
Ē)2〉 of E about Ē is equal to kT 2CV , where CV is the specific heat at constant
volume given by elementary kinetic theory, CV = 3

2
Nk. [This is an example of the

general fluctuation-dissipation theorem, which relates fluctuations in a variable
to the linear response of the system to changes in an associated quantity.]
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