PHYSICS 715

Problem Set 5

Due Friday, March 3, 2006
Reading: Landau and Lifshitz, Secs. 32, 74-79

LD 14: The virial theorem and the equation of state of a neutral plasma.

A neutral plasma consists of N electrons with mass m_{e} and charge $-e$, labelled $i=$ $1, \ldots, N$, and N ions with mass M and charge $+e$, labelled $i=N+1, \ldots, 2 N$, all confined at temperature T in an insulating box of volume V. The internal Hamiltonian for the system is

$$
H=\sum_{i=1}^{N} \frac{\mathbf{p}_{\mathbf{i}}^{2}}{2 m_{\mathrm{e}}}+\sum_{i=N+1}^{2 N} \frac{\mathbf{P}_{\mathbf{i}}^{2}}{2 M}+\sum_{\substack{i, j=1 \\ i<j}}^{2 N} \frac{e_{i} e_{j}}{\left|\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{j}}\right|} .
$$

(Neutral species and more charged species could also be included.) Show that the equation of state for the plasma can be written as

$$
P=n k T\left(1+\frac{E_{\mathrm{Coulomb}}}{3 k T}\right), \quad \text { where } \quad E_{\text {Coulomb }}=\frac{1}{2 N}\left\langle\sum_{i<j} \frac{e_{i} e_{j}}{\left|\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{j}}\right|}\right\rangle
$$

is the average Coulomb interaction energy per particle in the exact distribution, and $n=2 N / V$ is the total number density of the particles. [Hint: use the general form of the virial theorem.] Obtain an explicit expression for $E_{\text {Coulomb }}$ in terms of electron-electron, ion-ion, and electron-ion interaction integrals, with all equivalent terms counted and combined as much as possible. Is the pressure increased or reduced by the interactions? Explain.

LD 15: The grand partition function $\mathcal{Y}(T, P, N)$, density fluctuations, and a meanfield description of critical opalescence.
We can define a grand partition function \mathcal{Y} for systems in which T and N are fixed, but in which V can vary (e.g., a small sample of a larger volume of gas) in a way similar to that in which we introduced the grand partition function \mathcal{Z}. We calculate the canonical partition function $Z(T, V, N)$ for a given V, multiply by a factor $y^{V}=e^{-\beta P V}$, sum (integrate) over all possible volumes, and define

$$
\mathcal{Y}(T, P, N)=\frac{1}{V_{0}} \int_{0}^{\infty} e^{-\beta P V} Z(T, V, N) d V
$$

where V_{0} is an arbitrary small volume included for dimensional reasons.
(a) It may be shown that $G(T, P, N)=-k T \ln \mathcal{Y}$ is the Gibbs free energy of the system, $G=E-T S+P V$. Show that this identification is correct for the ideal monotonic gas by calculating \mathcal{Y} and G explicitly, and showing that the appropriate derivatives of G give the correct values for the specific volume $v=V / N$, the entropy, and the chemical potential.
(b) Density fluctuations lead to the scattering of light in fluids, e.g., the blueness of the sky or critical opalescence near a liquid-gas phase transition, and a corresponding attenuation of the intensity of a beam of light with an attenuation coefficient

$$
\alpha=\frac{8 \pi^{3}}{3} \frac{1}{\lambda^{4}}\left|\frac{(\epsilon-1)(\epsilon+2)}{3}\right|^{2} \frac{\Delta V^{2}}{V}, \quad \text { (Gaussian units) }
$$

(Einstein, 1910; see Jackson, Classical Electrodynamics, Sec. 10.2 D). Here ϵ is the dielectric constant of the medium, λ is the wavelength of the light, and ΔV^{2} is the mean-square fluctuation $\Delta V^{2}=\left\langle V^{2}\right\rangle-\langle V\rangle^{2}$.
Obtain a general expression for the fluctuation ΔV^{2} in terms of derivatives of \mathcal{Y}. Show that $\Delta V^{2}=k T V \kappa_{T}$, where κ_{T} is the isothermal compressibility of the medium, $\kappa_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$. (This is another example of the relation between fluctuations and the linear response of a system.)
(c) Obtain an expression for κ_{T} in terms of the critical pressure and volume P_{c}, V_{c}, and the scaled variable $\left(V-V_{c}\right) / V_{c}$, for a van der Waals gas near the critical point on its critical isotherm $T=T_{c}$ (see Landau and Lifshitz, Secs. 76, 84). [Hint: expand the expression for $\partial P / \partial V$ which follows from Eq. (84.5) in a Taylor series in powers of $\left(V-V_{c}\right)$, and keep only the first nonzero term. How many derivatives should vanish at the critical point on the $P-V$ diagram?] Estimate the absorption length $\ell=\alpha^{-1}$ for blue light $\left(\lambda=4.5 \times 10^{-5} \mathrm{~cm}\right)$ in $\mathrm{CO}_{2}\left(T_{c}=304 \mathrm{~K}, P_{c}=72.9\right.$ $\left.\mathrm{atm}, n_{c}=8 P_{c} / 3 k T_{c}\right)$ for $\left(V-V_{c}\right) / V_{c}=10^{-2} . \epsilon=1+4 \pi n \gamma$, where $n=N / V$ and γ is the polarizability of the molecule. $\epsilon=1.000985$ for CO_{2} at 273 K and 1 atm (but not at T_{c}, P_{c} !). Gaseous and liquid CO_{2} are normally transparent. Comment-relative to your result - on the transparency near the critical point.

LD 16: Effect of binary collisions on the entropy and energy of a gas

(a) Derive expressions for the chemical potential, entropy, and total energy of a nonrelativistic monatomic gas that take the effects of binary interactions through a potential $V(r)$ into account to first order in the cluster integral b_{2}. Express the results in terms of N, T, and the number density $n=N / V$, and show that the changes from the results for the ideal gas are given by

$$
\begin{aligned}
\Delta E & =N k T \cdot n \lambda^{3}\left(T \frac{d b_{2}}{d T}-\frac{3}{2} b_{2}\right) \\
\Delta S & =N k \cdot n \lambda^{3}\left(T \frac{d b_{2}}{d T}-\frac{1}{2} b_{2}\right)
\end{aligned}
$$

[Hints: Start with the cluster expansion for $\Omega=-k T \ln \mathcal{Z}$. Solve the equation for μ or z by iteration correct to first order in b_{2}. Recall that $E=-(\partial \ln \mathcal{Z} / \partial \beta)_{V, z}$. Eliminate z and introduce N immediately in the expressions for E and S.]
(b) Write the results for ΔS and ΔE in terms of integrals involving $V(r)$. Show that $\Delta S \leq 0$ whether $V(r)$ is attractive or repulsive, i.e., that binary collisions reduce the entropy. Why is this expected? Give a simple interpretation of the result for ΔE. [Hint: The inequality $(1+x) e^{-x} \leq 1$ for all $\mathrm{x},-\infty<x<\infty$ will be useful.]

LD 17: Interatomic potential for ${ }^{4} \mathrm{He}$ from the second virial coefficient.

The following are measured values (in molar units) of the second virial coefficient $B(T)$ for helium gas:

$$
\begin{aligned}
& P V=m N_{A} k T\left(1+\frac{m}{V} B(T)+\cdots\right), \quad m=\# \text { of moles } \\
& T(K) \quad B(T)\left(\mathrm{cm}^{3} / \text { mole }\right) \\
& 15 \quad-8.7 \\
& 20 \quad-2.2 \\
& 30 \quad 3.8 \\
& 40 \quad 6.6 \\
& 50 \quad 8.2 \\
& 100 \quad 11.4 \\
& 200 \quad 12.3 \\
& 273 \quad 12.0 \\
& 373 \quad 11.3
\end{aligned}
$$

Assume that the interaction of the helium atoms can be described by a Lennard-Jones " 6 - 12 potential"

$$
V(r)=-V_{0}\left[2\left(\frac{a}{r}\right)^{6}-\left(\frac{a}{r}\right)^{12}\right]
$$

Approximate the short-distance contributions to $B(T)$ using a hard core interaction, and calculate the long-distance contribution through order $\left(V_{0} / k T\right)^{2}$. Use the measurements of $B(T)$ at 30 K and 50 K to determine the potential depth V_{0} in temperature units (K) and the location of the minimum $(r=a)$. Calculate $B(T)$ at the temperatures above, and compare your results with the data (give a graph). Why are the deviations at large T expected? [Caution: Use sufficient accuracy in your numerical calculations.]

