
PHYSICS 715

Problem Set 5 Due Friday, March 3, 2006

Reading: Landau and Lifshitz, Secs. 32, 74–79

LD 14: The virial theorem and the equation of state of a neutral plasma.

A neutral plasma consists of N electrons with mass me and charge −e, labelled i =
1, . . . , N , and N ions with mass M and charge +e, labelled i = N + 1, . . . , 2N , all
confined at temperature T in an insulating box of volume V . The internal Hamiltonian
for the system is
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(Neutral species and more charged species could also be included.) Show that the
equation of state for the plasma can be written as

P = nkT
(

1 +
ECoulomb

3kT

)

, where ECoulomb =
1

2N

〈

∑

i<j

eiej
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〉

is the average Coulomb interaction energy per particle in the exact distribution, and
n = 2N/V is the total number density of the particles. [Hint: use the general
form of the virial theorem.] Obtain an explicit expression for ECoulomb in terms of
electron-electron, ion-ion, and electron-ion interaction integrals, with all equivalent
terms counted and combined as much as possible. Is the pressure increased or reduced
by the interactions? Explain.

LD 15: The grand partition function Y(T, P, N), density fluctuations, and a mean-

field description of critical opalescence.

We can define a grand partition function Y for systems in which T and N are fixed, but
in which V can vary (e.g., a small sample of a larger volume of gas) in a way similar to
that in which we introduced the grand partition function Z. We calculate the canonical
partition function Z(T, V, N) for a given V , multiply by a factor yV = e−βPV , sum
(integrate) over all possible volumes, and define

Y(T, P, N) =
1

V0

∫

∞

0

e−βPV Z(T, V, N)dV,

where V0 is an arbitrary small volume included for dimensional reasons.

(a) It may be shown that G(T, P, N) = −kT lnY is the Gibbs free energy of the
system, G = E − TS + PV . Show that this identification is correct for the ideal
monotonic gas by calculating Y and G explicitly, and showing that the appropriate
derivatives of G give the correct values for the specific volume v = V/N , the
entropy, and the chemical potential.
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(b) Density fluctuations lead to the scattering of light in fluids, e.g., the blueness of the
sky or critical opalescence near a liquid-gas phase transition, and a corresponding
attenuation of the intensity of a beam of light with an attenuation coefficient
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(Einstein, 1910; see Jackson, Classical Electrodynamics , Sec. 10.2 D). Here ε is
the dielectric constant of the medium, λ is the wavelength of the light, and ∆V 2

is the mean-square fluctuation ∆V 2 = 〈V 2〉 − 〈V 〉2.

Obtain a general expression for the fluctuation ∆V 2 in terms of derivatives of
Y . Show that ∆V 2 = kTV κT , where κT is the isothermal compressibility of
the medium, κT = − 1

V

(

∂V
∂P

)

T
. (This is another example of the relation between

fluctuations and the linear response of a system.)

(c) Obtain an expression for κT in terms of the critical pressure and volume Pc, Vc, and
the scaled variable (V − Vc)/Vc, for a van der Waals gas near the critical point
on its critical isotherm T = Tc (see Landau and Lifshitz, Secs. 76, 84). [Hint:
expand the expression for ∂P/∂V which follows from Eq. (84.5) in a Taylor series
in powers of (V −Vc), and keep only the first nonzero term. How many derivatives
should vanish at the critical point on the P−V diagram?] Estimate the absorption
length ` = α−1 for blue light (λ = 4.5 × 10−5 cm) in CO2 (Tc = 304 K, Pc = 72.9
atm, nc = 8Pc/3kTc) for (V − Vc)/Vc = 10−2. ε = 1 + 4πnγ, where n = N/V
and γ is the polarizability of the molecule. ε = 1.000985 for CO2 at 273 K and
1 atm (but not at Tc, Pc !). Gaseous and liquid CO2 are normally transparent.
Comment—relative to your result—on the transparency near the critical point.

LD 16: Effect of binary collisions on the entropy and energy of a gas

(a) Derive expressions for the chemical potential, entropy, and total energy of a non-
relativistic monatomic gas that take the effects of binary interactions through a
potential V (r) into account to first order in the cluster integral b2. Express the
results in terms of N , T , and the number density n = N/V , and show that the
changes from the results for the ideal gas are given by

∆E = NkT · nλ3

(

T
db2

dT
− 3

2
b2

)

,

∆S = Nk · nλ3

(

T
db2

dT
− 1

2
b2

)

.

[Hints: Start with the cluster expansion for Ω = −kT lnZ. Solve the equation for
µ or z by iteration correct to first order in b2. Recall that E = −(∂ lnZ/∂β)V,z.
Eliminate z and introduce N immediately in the expressions for E and S.]
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(b) Write the results for ∆S and ∆E in terms of integrals involving V (r). Show that
∆S ≤ 0 whether V (r) is attractive or repulsive, i.e., that binary collisions reduce
the entropy. Why is this expected? Give a simple interpretation of the result for
∆E. [Hint: The inequality (1 + x)e−x ≤ 1 for all x, −∞ < x < ∞ will be useful.]

LD 17: Interatomic potential for 4He from the second virial coefficient.

The following are measured values (in molar units) of the second virial coefficient B(T )
for helium gas:

PV = mNAkT
(

1 +
m

V
B(T ) + · · ·

)

, m = # of moles

T (K) B(T ) (cm3/mole)

15 -8.7
20 -2.2
30 3.8
40 6.6
50 8.2
100 11.4
200 12.3
273 12.0
373 11.3

Assume that the interaction of the helium atoms can be described by a Lennard-Jones
“6–12 potential”

V (r) = −V0

[

2
(

a

r

)6

−
(

a

r

)12
]

.

Approximate the short-distance contributions to B(T ) using a hard core interaction,
and calculate the long-distance contribution through order (V0/kT )2. Use the measure-
ments of B(T ) at 30 K and 50 K to determine the potential depth V0 in temperature
units (K) and the location of the minimum (r = a). Calculate B(T ) at the temper-
atures above, and compare your results with the data (give a graph). Why are the
deviations at large T expected? [Caution: Use sufficient accuracy in your numerical
calculations.]
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