PHYSICS 715

Problem Set 6

Due Friday, March 10, 2006

Reading: Landau and Lifshitz, Secs. 30, 33, 78, 79

LD 18: Thermal properties of rubber - a model.

A simple one-dimensional model of rubber treats the rubber molecule (a long-chain polymer) as a limp chain with n links of length a which can be oriented either to the right $\left(n_{+}\right)$or to the left $\left(n_{-}\right)$. The separation ℓ between the ends of the folded molecule is $\ell=\left(n_{+}-n_{-}\right) a$. Determine the number of ways $\Gamma\left(n_{+}, n_{-}\right)$of obtaining a configuration with a given ℓ and show that, when only the average value of ℓ is specified, the appropriate grand partition function for the molecule is

$$
\mathcal{Y}(\tau, T)=\sum_{\substack{n_{+}, n_{-} \\ n_{+}+n_{-}=n}} \Gamma\left(n_{+}, n_{-}\right) e^{\beta \tau\left(n_{+}-n_{-}\right) a}
$$

τ may be identified as the tension in the chain through the first law, $d G=-S d T-$ $\ell d \tau+\mu d n$ with Gibbs free energy $G=-k T \ln \mathcal{Y}$.

Evaluate the sum above and use the result to determine $\bar{\ell}=\langle\ell\rangle$ as a function of T and τ. Determine the coefficient of thermal expansion $(1 / \ell)(\partial \bar{\ell} / \partial T)_{\tau}$ and comment on the result.

LD 19: Electric dipole interactions of polar molecules

The dipole interaction between polar diatomic molecules with electric dipole moments \mathbf{p} is given approximately by

$$
V_{12}(\mathbf{r})=\left\{\begin{array}{c}
-\frac{1}{r^{3}}\left[3\left(\mathbf{p}_{\mathbf{1}} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{p}_{\mathbf{2}} \cdot \hat{\mathbf{r}}\right)-\left(\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right)\right], \quad r>r_{0} \\
+\infty, \quad r<r_{0}
\end{array}\right.
$$

Here $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$ is the relative coordinate giving the separation of the centers of mass of molecules 1 and 2 and $\hat{\mathbf{r}}=\mathbf{r} / r$. The moments \mathbf{p}_{i} have the same magnitude but may have different orientations. The canonical partition function for the N-particle classical gas confined in a volume V can be reduced to the form

$$
Z_{N}=\frac{Z_{\mathrm{rot}}^{N}}{N!\lambda^{3 N}} \frac{1}{(4 \pi)^{N}} \int d^{3} r_{1} \cdots d^{3} r_{N} \int d \Omega_{1} \cdots d \Omega_{N} e^{-\beta \sum_{i<j} V_{i j}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)}
$$

where $d \Omega_{i}=d(\cos \theta)_{i} d \phi_{i}$ with θ_{i} and ϕ_{i} the polar and azimuthal angles that specify the orientation of \mathbf{p}_{i}, here averaged over.
Calculate the second virial coefficient for this gas correct to order $\left(V_{12} / k T\right)^{2}$.

LD 20: The Coulomb energy and equation of state of a neutral plasma. Definition and use of the radial distribution function.

The equation of state of a neutral plasma with an average of $N_{\mathrm{e}} / V=N_{\text {ion }} / V=\frac{1}{2} n$ electrons and singly charged positive ions per unit volume is given by the virial theorem as

$$
\begin{aligned}
P & =n k T+\frac{1}{3} \frac{1}{V} \sum_{i<j}\left\langle\frac{e_{i} e_{j}}{\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|}\right\rangle \\
& =n k T+\frac{1}{6} n N\left(\left\langle\frac{e^{2}}{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|}\right\rangle_{\mathrm{ee}}-\left\langle\frac{e^{2}}{\left|\mathbf{x}_{1}-\mathbf{x}_{N+1}\right|}\right\rangle_{\mathrm{e}-\text {-ion }}\right) .
\end{aligned}
$$

The average is over the exact canonical distribution. We have counted the numbers of pairs of each type, hence the factor $n N$, and have used the identity of the electronelectron and ion-ion distributions to combine the e-e and ion-ion terms. Electrons are labeled $1, \ldots, N$, and ions, $N+1, \ldots, 2 N$. (See Prob. LD 14.)
(a) Write out explicitly what $\langle\cdots\rangle$ means in terms of integrals involving the potentials, and give an argument to show that P can be written exactly as

$$
P=n k T+\frac{1}{6} n\left(\int d^{3} r \frac{e^{2}}{r}\left[n_{\mathrm{ee}}(r)-n_{\mathrm{e}, \mathrm{ion}}(r)\right]\right)
$$

where $n_{\mathrm{ee}}(r)$ and $n_{e, i o n}(r)$ are the radial distributions of electrons and ions relative to a given electron, that is, the numbers of particles per unit volume a distance r from the chosen particle. Give the definition of n_{ee}.
(b) Evaluate the integrals using the Debye-Hückel expressions for the distribution functions, and determine the temperature dependence of the correction to the ideal gas expression for P.

LD 21: Properties of the quantum density matrix

A quantum system has the probabilities p_{i} of being in the normalized pure states $\left|\Psi_{i}\right\rangle, i=1,2, \ldots$, with $\sum_{i} p_{i}=1$. The state $\left|\Psi_{i}\right\rangle$ are not necessarily orthogonal, but the Ψ 's can be expanded using a complete orthonormal set of basis states $\left|\phi_{m}\right\rangle,\left|\Psi_{i}\right\rangle=$ $\sum_{m}\left|\phi_{m}\right\rangle c_{m}^{i}$ with $c_{m}^{i}=\left\langle\phi_{m} \mid \Psi_{i}\right\rangle$. The density matrix for this system is $\rho_{m n}=\sum_{i} p_{i} c_{m}^{i} c_{n}^{i *}$ Show that the following relations hold.
(i) $\operatorname{Tr} \rho=1$.
(ii) $\operatorname{Tr} \rho^{2} \leq 1$ with $\operatorname{Tr} \rho^{2}=1$ if and only if ρ describes a pure state.
(iii) $\hat{\rho}$ is a positive Hermitian operator, $\langle\chi| \hat{\rho}|\chi\rangle \geq 0$ for any $|\chi\rangle$, and $\hat{\rho}^{\dagger}=\hat{\rho}$ where $\hat{\rho}$ is the operator with matrix elements $\rho_{m n}$.
(iv) $\langle\hat{f}\rangle \equiv \sum_{i} p_{i}\left\langle\Psi_{i}\right| \hat{f}\left|\Psi_{i}\right\rangle=\operatorname{Tr} \rho f$ for any observable, where $f_{n m}=\left\langle\phi_{n}\right| \hat{f}\left|\phi_{m}\right\rangle$.
(v) the trace formula in (d) is unchanged by a change in basis $\left\{\phi_{n}\right\} \rightarrow\left\{\chi_{m}\right\}$, that is, $\operatorname{Tr} \rho^{\prime} f^{\prime}=\operatorname{Tr} \rho f$ where $\rho^{\prime}, f^{\prime}$ are calculated in the new basis.

