HOUR EXAM IN CLASS ON WEDNESDAY, APRIL 12

Reading: Landau and Lifshitz, Secs. 53-57, 85-88, 94
LD 29: Frenkel defects in crystalline solids: the density of defects and the equilibrium between holes and interstitial atoms (Frenkel pairs).

Consider a crystalline solid with N lattice sites per unit volume and M interstitial sites per unit volume. There are N atoms per unit volume in the solid. An atom displaced from a normal lattice site to an interstitial site (a Frenkel defect) has an energy $+\epsilon$ relative to the energy it would have at a lattice site. (That is, its binding energy is smaller by ϵ.)
(a) Determine the equilibrium density of defects by minimizing the Helmholtz free energy F_{m} for m defects, or equivalently, by maximizing Z_{m} with respect to m. The relation $N!/(N-n)!\approx N^{n}, N \gg n$, will be useful. M and N are comparable and have a fixed ratio which depends on the geometry of the lattice. The number of defects m must be much smaller than M (or N) for the physical picture to be useful.
(b) Recalculate the density of defects by finding the equilibrium configuration for a "gas" of n holes (unoccupied lattice sites) mixed with a second "gas" of m interstitial atoms. The binding energy of an atom at a lattice site is ϵ_{ℓ}; the binding energy at an interstitial site is ϵ_{int}. $\epsilon_{\mathrm{int}}=\epsilon_{\ell}-\epsilon$. [Hint: calculate the grand partition function for the system with the interstitial atoms and the holes treated as independent, and then use the constraint $\bar{n}=\bar{m}$ to determine the condition for equilibrium.]
(c) Calculate the contribution of the defects to the entropy and specific heat of the system. $C_{X}=T\left(\frac{\partial S}{\partial T}\right)_{X} . M$ and N are fixed; m is not.

LD 30: Thermal dissociation of H_{2} as a source for a beam of monatomic hydrogen
(a) Suppose you wish to form a thermal beam of neutral hydrogen atoms (atomic beam) by dissociating molecular hydrogen in a tungsten oven and allowing the dissociated atoms to escape through a small opening. Derive the "chemical" relation which connects the equilibrium partial pressures of H_{2} and H in the oven to T and P directly, that is, without using the stoichiometric coefficients, by minimizing the Gibbs free energy $G\left(T, P, N_{H_{2}}, N_{H}\right)=\mu_{H_{2}} N_{H_{2}}+\mu_{H} N_{H}$ at fixed
T and P subject to the constraint that the number of hydrogen atoms remains constant, $N_{H}+2 N_{H_{2}}=2 N_{H_{2}}^{0}$. [Hint: Start with the expressions for the chemical potentials for the two component gases expressed in terms of T, P, N_{H}, and $N_{\mathrm{H}_{2}}$, eliminate V and N_{H}, and minimize with respect to $N_{\mathrm{H}_{2}}$. Do not forget to include the dissociation or binding energy of H_{2}.]
(b) Determine the temperature at which you must operate the oven to have 90% dissociation of the H_{2} molecules, $N_{\mathrm{H}_{2}}=0.1 N_{\mathrm{H}_{2}}^{0}$, for $P=10^{-3} \mathrm{~atm}$. Include the effects of rotation and vibration of the H_{2} molecule. Treat the rotation as classical, but include any relevant spin and symmetry effects. The melting point of tungsten is 3680 K . [Hint: Solve the equation which determines T by numerical iteration. It is useful to measure T in units of $10^{3} \mathrm{~K}$, i.e., $T \equiv 10^{3} T_{3}$.]
Calculate the fractional occupation of the lowest five vibrational levels in H_{2}. Why is the unexpectedly low occupation of the higher excited levels consistent with nearly total dissociation of the H_{2} ?
Useful information: binding energy of $\mathrm{H}_{2}=4.48 \mathrm{eV}$, mean separation of the nuclei in the ground state of $\mathrm{H}_{2}=0.75 \AA$, spacing of lowest vibrational levels $\Delta E=0.5$ eV , electronic spin of $\mathrm{H}_{2}=0\left({ }^{1} \Sigma_{g}\right.$ ground state), lowest excited electronic states at $11.37 \mathrm{eV}\left({ }^{1} \Sigma_{u}\right)$ and $12.40 \mathrm{eV}\left({ }^{1} \Pi_{u}\right.$, rotation about the symmetry axis). See G. Herzberg, Molecular Structure and Molecular spectra, Vol. I, Spectra of Diatomic Molecules, pp. 339, 349). For a classic Noble Prize experiment using this method, see W.E. Lamb and R.C. Retherford, Phys. Rev. 79, 549 (1950) (the measurement of the "Lamb shift" splitting of the $2 S_{1 / 2}$ and $2 P_{1 / 2}$ energies in the hydrogen spectrum).

LD 31: The virial expansion for ideal quantum gases.

The virial expansion of the equation of state for a gas is

$$
P V=N k T\left(1+\frac{B(T)}{V}+\cdots\right)
$$

where $B(T)$ is the second virial coefficient. Calculate the first quantum correction to the classical expression for $\ln \mathcal{Z}$ for the ideal nonrelativistic Bose-Einstein and FermiDirac gases with spin degeneracy g, and the corrected expressions for N and $P V$. Solve for $e^{\mu \beta}$ by iteration, and calculate the second virial coefficient for the quantum gases. How do the results reflect the fact that "fermions repel" and "bosons attract"? [Hint: be consistent in the orders of $e^{\mu \beta}$ kept in all expansions!]

