

Wesley Smith, *U. Wisconsin* CMS Trigger Project Manager

Outline:

- System Overview
- Organization
- Milestones
- Status and Progress
- WBS Summary
- Schedule (MS Project) summary
- Manpower Profile
- Obligation Profile
- Concerns and actions taken

CMS Trigger Levels

40 MHz

Level-1. Specialized processors

- Particle ID: electron/ γ , muon, jets, missing E_{τ}
- Coarse granularity to reduce data volume
- Local pattern recognition and energy sums

Electron & Jet Triggers

Calorimeter Trigger Overview

Regional Calorimeter Crate

Data from calorimeter FE on Cu links @ 1.2 Gbaud

Into rear-mounted Receiver Cards (proto. being built)
160 MHz point to point backplane (built!)

- Clock&Control (built!), Electron Identification, Jet/Summary, Receiver Cards operate @ 160 MHz
 Output to calorimeter global trigger
 - From Jet Summary Card
- Min Ion and Quiet bits to muon trigger

Electron ID & Jet/Summary Cards (U. Wisconsin)

CSC Trigger Layout

Diagram of the first 60° Sector (15-75 degrees)

Glossary and Part Count

TMB:	Trigger Motherboards (432 or 540)
MPC:	Muon Port Cards (48 or 60)
SR:	Sector Receivers for CSC (24)
SR-DT:	Sector Receivers for DT (12 or 24)
SP-CSC:	Sector Processors for CSC region (12)
SP-Over:	Sector Processors for Overlap region (12)
OI, CI, CO	D, BP: Optical in, copper in, copper out, backplane

Muon & Cal. Trigger Rates

High Luminosity: $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

trigger	threshold	rate	cumulative		
type	[GeV]	[kHz]	rate [kHz]		
μ	20	7.8	7.8		
μμ	4	1.6	<u>9.2</u>		
μ e	<u>4, 8</u>	<u>5.5</u>	<u>14.4</u>		
μ j	<u>4, 40</u>	<u>0.3</u>	<u>14.4</u>		
$\mu \mathbf{E_t^{miss}}$	<u>4, 60</u>	<u>1.0</u>	<u>15.3</u>		
μ Σ Ε_t	<u>4, 250</u>	<u>0.2</u>	<u>15.3</u>		
μ	7	9.8	9.5		
μμ	2-4	0.5	<u>10.1</u>		
μ e	<u>2-4, 6</u>	<u>2.5</u>	<u>12.2</u>		
μ e_b	<u>2-4, 5</u>	<u>3.5</u>	<u>13.4</u>		
μ j	2-4, <u>12</u>	<u>2.2</u>	<u>14.5</u>		
$\mu \textbf{E}_{t}^{\ \textbf{miss}}$	<u>2-4, 40</u>	<u>0.8</u>	<u>14.7</u>		
μ Σ Ε_t	<u>2-4, 150</u>	<u>0.8</u>	<u>14.7</u>		

Low Luminosity: $L = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

U.S.Trigger Organization

Cal. Trig. Milestones

Prototype Design Finished May '99 Proto. test w/ECAL Proto. Elect. **Jun '99 Proto. Boards & Tests Finished Nov '99 Begin ASIC Preproduction May '00** Proto. test w/HCAL Proto. Elect. **Jun '00 Begin Backplane & Crate Production May '01** Jun '01 **ASIC Development Complete Finish ASIC Preproduction Oct '01** Mar '02 **Begin Trigger Board Production Begin Tests w/Final ECAL Elect. Jul '02 Begin ASIC Production** Aug '02 **Begin Tests w/Final HCAL Elect. Sep '02 Crate & Backplane Complete Sep '02 Begin Production Board Tests** Jan '03 **Designs Finished May '03** Nov '03 **Finish ASIC Production Finish Trigger Board Production** Feb '04 **Finish Production Board Tests Apr '04 Begin Trigger Installation Apr '04 Begin Final System tests w/E,HCAL May '04 Trigger Installation Finished** Sep '04

Muon Trig. Milestones

Finish Initial System Design May '98 Begin Prototype Design Oct '98 Begin Prototype Construction Apr '99 May '99 **Finish Prototype Design Finish Prototype Construction Oct '99** Jun '00 **Begin Final Design Begin Prototype Test w/Chamb FE Aug '00 Finish Prototype Test w/Chamb FE Jul '01 Begin Production** Jan '02 Jul '02 **Finish Final Design Final Electronics Sector Test Oct '02 Finish Production Nov '03 Begin Installation Aug '03 Finish Installation Apr '04 Apr '04 Begin Trigger System Tests Finish Trigger System Tests Sep '04**

Calorimeter Trigger Status

13 x 8 bit Adder ASIC

• tested > 160 MHz

Receiver Card

Designed for 160 MHz

Being built

Backplane for VME & trigger data

- Prototype constructed
- Prototype Clock & Control Card built
- Signal performance excellent @ 160 MHz
- Confirmation of design feasibility

Muon Trigger Status

16-ch Comparator ASICs ready

- Excellent performance (1mV offsets)
- Comparator board routed, sent to be manufactured

First Cathode LCT card built

- Software being debugged First Anode LCT card built...
 - But not stuffed (1 week)
 - Software being developed

First Trigger Motherboard built

 Ready for test w/LCT cards

Operation in Summer '98 test beam

WBS Number	Description	Mfg M&S (k\$)	EDIA (k\$)	Base Cost (k\$)	Cont (k\$)	Cont (%)	Total Cost (k\$)	DOE Request (k\$)
3	Trigger and Data Acquisition	7,461	3,454	10,915	5,711	52	16,626	15,663
3.1	Trigger	3,953	2,185	6,137	3,128	51	9,265	9,265
3.1.1	CSC Muon Trigger	812	937	1,749	885	51	2,634	2,634
3.1.1.1	Muon Port Cards (MPC)	292	215	507	253	50	760	760
3.1.1.2	Sector Receivers (SR)	208	202	410	205	50	615	615
3.1.1.3	CSC Sector Processors (SP-CSC)	76	170	246	160	65	406	406
3.1.1.4	Overlap Sector Processors (SP-OVR)	76	170	246	160	65	406	406
3.1.1.5	Clock&Control Cards (CCC)	36	78	114	34	30	148	148
3.1.1.6	Crate Monitor Cards	10		10	3	30	13	13
3.1.1.7	Muon Backplanes	20	60	80	34	43	114	114
3.1.1.8	Crate Controllers	35		35	11	30	46	46
3.1.1.9	Muon Crates	6		6	1	10	7	7
3.1.1.10	Muon Power Supplies	23		23	2	10	25	25
3.1.1.11	Additional Cables	30		30			30	30
3.1.1.12	Trigger System Tests		43	43	21	50	64	64
3.1.1.13	Trigger Project Management							
3.1.2	Calorimeter Regional Trigger	3,141	1,247	4,388	2,244	51	6,631	6,631
3.1.2.1	Prototypes	140	301	441	193	44	635	635
3.1.2.2	Preproduction ASICs	310	243	553	258	47	811	811
3.1.2.3	Test Facilities	60	18	78	39	50	117	117
3.1.2.4	Power Supplies	79	3	82	8	10	90	90
3.1.2.5	Crates	13	21	35	3	10	38	38
3.1.2.6	Backplane	130	64	194	83	43	277	277
3.1.2.7	Clock & Control Card	65	67	132	40	30	172	172
3.1.2.8	Receiver Card	1,561	109	1,670	1,019	61	2,688	2,688
3.1.2.9	Electron Identification Card	649	95	744	372	50	1,116	1,116
3.1.2.10	Jet Summary Card	103	67	170	85	50	254	254
3.1.2.11	Cables	7		7	2	30	9	9
3.1.2.12	DAQ Processor							
3.1.2.13	Crate Monitor Card							
3.1.2.14	Trigger Tests	22	260	282	141	50	423	423
3.1.2.15	Trigger Project Management							

WBS	Task Name	1998	1999	2000	2001	2002	2003	200	4
3.1.1	CSC Muon Trigger								
3.1.1.1	Muon Port Cards (MPC)								Apr
3.1.1.2	Sector Receivers (SR)							UCt 7	,
3.1.1.3	CSC Sector Processors (SP-CSC)	ar 5 🖊						-	🕨 Арі
3.1.1.4	Overlap Sector Processors (SP-OVR)	lay 14 🗰		-		-			Feb 1
3.1.1.5	Clock&Control Cards (CCC)			Jul 24 📻					Mar 1
3.1.1.6	Crate Monitor Cards					Jul 23 💼	Dec 9	,	
3.1.1.7	Muon Backplanes					May 14 🕊		De	c 9
3.1.1.8	Crate Controllers					Nov 19	Apr	22	
3.1.1.9	Muon Crates					Nov 19	Apr	22	
3.1.1.10	Muon Power Supplies					Nov 19	Apr	22	
3.1.1.11	Additional Cables					Nov 19			Mar 4
3.1.1.12	Trigger System Tests							Apr 30	
3.1.1.13	Trigger Project Management								

Peak Engineering Level

Muon Trigger

WBS 3.1.1

Calorimeter Trigger WBS 3.1.2

Obligations Profile

Obligations for Muon & Cal Triggers

Trigger M&S and EDIA Obligations

Calorimeter Trigger

- Processing Data at 160 MHz
 - Built 160 MHz Adder ASIC
 - Built 160 MHz Backplane
 - Receiver Card being built
- Input data on 1.2 Gbaud Cu links
 - Receiver Card Test
 - Links on daughter cards
 - Card being built

• Trigger performance

- Simulation studies
- Safety factor of 3

Muon Trigger

- Chamber/Trigger Performance
 - Prototype test in Summer '98
- Integration of DT/CSC's
 - Design collaboration with Vienna
- Algorithm finalization
 - New Simulation effort (FPGA's are flexible)
- FPGA vs. ASIC
 - Rapidly changing market....

WELL DONE FRIEDMAN! CONVERTING THE FPGA TO AN ASIC BOUGHT US MORE FIREPOWER. THIS SECTOR IS SAFE!!

2000

0

THAT'S NOTHING GENERAL! BY CONVERTING TO AN AMI ASIC, WE SAVED 80% OVER AN FPGA. OUR BUDGET IS SAFE!!

.....

OUR BUDGET IS SAFE. Victories are claimed when products deliver. But so often the real battles are fought behind the lines. FPGA conversions can make or break budgets. Thanks to AMI's NETRANS conversion services, industry leaders are seizing up to 80% cost savings over FPGAs, and consistent savings over masked FPGAs. Plus, AMI ASICs provide a higher performance with impeccable aim on schedules. War is hell. Converting to an ASIC is not.

..."our budget is safe"

• Design progress good

- Design matched to physics performance
 - extensive simulation
- All parts have at least a conceptual design
- Many are prototyped or engineering design

• Extensive prototyping

- Many critical items
- Comprehensive testing program
- Long R&D program
 - Extends back to SSC
 - Muons: GEM
 - Calorimeter: SDC

• Well developed cost & schedule

- Fully resource-loaded
- Contingency by item at lowest level
- Experience Driven:
 - Muons: CDF XFT
 - Calorimeter: ZEUS
- Management structures in place
 - Well-integrated with CMS