Search for the Higgs at the LHC

- 1. The Large Hadron Collider
- 2. The General Purpose Detectors
- 3. Tools and Algorithms
- 4. Search for the SM Higgs
- 5. Search for the Supersymmetric Higgs"
- 6. Conclusions

Tejinder S. Virdee CERN/Imperial College

1. The Large Hadron Collider

- i. The Machine Parameters
- ii. Machine Schedule
- iii. Experimental Challenge

Energy Frontier

New Energy Domain

Search for the unexpected Cover domain ~ 1 TeV in which SM without the Higgs (or equivalent) gives nonsense

Exploratory machine required ⇒ hadron-hadron collider with: Largest possible primary energy Largest possible luminosity

Year of First Physics

Energy and Luminosity

Hadron colliders are broad-band exploratory machines May need to study W_L - W_L scattering at a cm energy of ~ 1 TeV

⇒ pp collisions at 7 + 7 TeV

Event Rate = L. σ .BR e.g. H(1 TeV) \rightarrow ZZ \rightarrow 2e+2 μ or 4e or 4 μ For L ~10³⁴, Evts/yr = 10³⁴ 10⁻³⁷.10⁻³.10⁷ ~ 10 /yr !!

GIF – Annecy 2001

CERN Accelerator Complex

LHC Layout and Parameters

$$L = \frac{\gamma f k_b N_p^2}{4\pi\varepsilon_n \beta^*} F$$

- $\begin{array}{ll} f & revolution frequency \\ k_b & no. of bunches \\ N_p & no. of protons/bunch \\ \epsilon_n & norm transverse emittance \\ \beta^* & betatron function \end{array}$
- F reduction factor xing angle

Magnetic Field p (TeV) = 0.3 B(T) R(km) For p= 7 TeV, R= 4.3 km ⇒ B = 8.4 T

Beam-beam tune shift
$$\xi = \frac{Nr_p}{4\pi\varepsilon_n}$$

Energy at collisionE7TeVDipole field at 7 TeVB
$$8.33$$
TLuminosityL 10^{34} $cm^{-2}s^{-1}$ Beam beam parameter ξ 3.6 10^{-3} DC beam current I_{beam} 0.56 ABunch separation I_{beam} 0.56 ANo. of bunches k_b 2835 NNo. of bunches N_p 1.1 10^{11} Normalized transverse m 3.75 μm emittance (r.m.s.) β^* 0.5 mCollisions β^* 0.5 m β -value at IP β^* 0.5 mr.m.s. beam radius at IP σ^* 16 μm Number of evts/crossing 17 10 hNumber of evts/crossing 17 7 keV Stored energy per beam 3.0 MJ

1

LHC Beam Structure

Detailed beam structure is determined by injection scheme and properties of the dump system. Bunches are formed in the 26 GeV PS with the correct 25ns spacing.

Beam is subsequently accelerated to 450 GeV and transferred to the LHC. This operation is repeated 12 times for each counter-rotating beam.

At each transfer, enough space has to be reserved to accommodate rise time of injection kickers Finally a longer gap of 3.17 μ s is reserved for rise time of dump kicker by eliminating 1 PS batch GIF - Annecy 2001

Dipole Magnets

1232 superconducting dipoles

Dipole Magnets

Dipole/quadrupole Interconnect

Pre-series Dipole Magnets

String 2

String 2: under construction

- ◆ Full LHC cell
 - 6 dipoles + 4 quads
- Last tests before commissioning

 String 2 has the same layout as a LHC cell in the regular part of an arc and follows the curvature of the tunnel. The first half-cell starts with a Short Straight Section (SSS), which is connected to the cryogenic line and is followed by three 15-m dipoles.
 Following the simplified cryogenic scheme, the second half-cell is not connected to the cryogenic line.

Civil Engineering

Civil Engineering: Progress

CMS Underground Hall Ready in mid-04

PX

ATLAS Underground Hall Ready in mid-03

LHC Schedule

01/04/04 to 30/09/04	Octant test	
31/03/05	Last dipole delivered	
31/12/05	Ring closed and cold	Full access to
		experimental caverns
01/01/06 to 31/01/06	Full machine commissioning	Full access to
	Beam pipes in place	experimental caverns
01/02/06 to 31/03/06	1 beam (2 months)	Restricted access to
		experimental caverns
01/04/06 to 30/04/06	First Collisions	Luminosity:
	1 month Pilot run	5x10 ³² to 2x10 ³³
01/05/06 to 31/07/06	Shutdown	Full access to
		experimental caverns
01/08/06 to 28/02/07	Physics run: 7 months	Luminosity:
		≥2x10 ³³
		(≥10 fb⁻¹)
01/03/07 to 12/04/07	Lead ion run, 6 weeks	

LHC Schedule

Experimental Challenge

High Interaction Rate

Large Particle Multiplicity

~ <20> superposed events in each crossing
 ~ 1000 tracks stream into the detector every 25 ns
 need highly granular detectors with good time resolution for low occupancy
 ⇒ large number of channels

High Radiation Levels

⇒ radiation hard (tolerant) detectors and electronics

Radiation Levels: Dose

1.2E+08 1.0E+06 1.0E+05 1.0E+04 1.0E+03 1.0E+02 1.0E+01 1.0E+00 1.0E-01 1.0E-02 1.0E-03 9.3E-12

Dose in CMS for an integrated luminosity of 5.10⁵ pb⁻¹ (~ 10 years)

Radiation Levels: Neutron Fluence

n fluence in CMS for an integrated luminosity of 5.10⁵ pb⁻¹ (~ 10 years)

3.0E+17 1.0E+17 1.0E+16 1.0E+15 1.0E+14 1.0E+13 1.0E+12 1.0E+11 1.0E+10 1.0E+09 1.0E+08 2.9E+07

2. The General Purpose Detectors

- i. Physics Requirements
- ii. GPDs: ATLAS and CMS
- iii. Physics Performance of GPDs

Physics Requirements I

At the LHC the SM Higgs provides a good benchmark to test the performance of a detector

Physics Requirements II

Very good muon identification and momentum measurement trigger efficiently and measure sign of a few TeV muons

High energy resolution electromagnetic calorimertry $\sim 0.5\%$ @ E_T ~ 50 GeV

Powerful inner tracking systems factor 10 better momentum resolution than at LEP

Hermetic calorimetry good missing E_{τ} resolution

(Affordable detector)

Designs of General Purpose Detectors

Complementary Conception

ATLAS

Standalone p measurement; safe for high multiplicities; Air-core toroid Property: σ_p flat with η

CMS

Measurement of p in tracker and B return flux; Solenoid with Fe flux return Property: muon tracks point back to vertex

Onion-like Structure of HEP Experiments

Transverse View of CMS

The ATLAS Detector

This seattle to

CMS

The CMS Detector

Choice of the Magnets

Design goal: measure 1 TeV muons with 10% resolution ATLAS: ~0.6T over 4.5 m \rightarrow s=0.5mm \rightarrow need σ_s =50µm

- Ampere's thm: $2\pi RB = \mu_0 nI \rightarrow nI = 2x10^7 At$
- With 8 coils, 2x2x30 turns: I=20kA (superC)
- Challenges: mechanics, 1.5GJ if quench, spatial & alignment precision over large surface area

CMS: **B=4T** (E=2.7 GJ!)

• B= μ_0 nI; @2168 turns/m \rightarrow I=20kA (SuperC)

•Challenges: 4-layer winding to carry enough I, design of reinforced superC cable

Magnet Construction

Completed ATLAS solenoid and cryogenics chimney during tests at Toshiba (for KEK)

CMS barrel yoke wheels assembled at SX5 (point 5) Central wheel supports the coil, barrel HCAL, ECAL and tracker

Tracking at LHC

Factors that determine performance

Track finding efficiency – occupancy Momentum resolution Secondary vertex reconstruction

Trackers at LHC

ATLAS

Pixels: ~ 2.3 m² of silicon sensors, 140 M pixels, 50x300 μ m², r = 4, 10, 13 cm Si μ -strips : 60 m² of silicon sensors, 6 M strips, 4 pts, r = 30 - 50 cm Straws TRT: 36 straws/track, Xe-CO₂-CF₄ ϕ =4mm, r = 56 - 107 cm

CMS: Si pixels surrounded by silicon strip detectors

Pixels: ~ 1 m² of silicon sensors, 40 M pixels, 150x150 μ m², r = 4, 7, 11 cm Si μ -strips : 223 m² of silicon sensors, 10 M strips, 12 pts, r = 20 - 120 cm

Front-end Electronics

GIF - Annecy 2001

Electromagnetic Calorimetry at LHC

In several scenarios moderate mass narrow states decaying into photons or electrons are expected:

SM : intermediate mass $H \rightarrow \gamma\gamma$, $H \rightarrow Z Z^* \rightarrow 4e$ MSSM: $h \rightarrow \gamma\gamma$, $H \rightarrow \gamma\gamma$, $H \rightarrow Z Z^* \rightarrow 4e$

In all cases the observed width will be determined by the instrumental mass resolution. Need :

good e.m. energy resolution good photon angular resolution

good two-shower separation capability

Hadronic Calorimetry at LHC

Jet energy resolution

- Limited by jet algorithm, fragmentation, magnetic field and energy pileup at high luminosity
- Can use the width of jet-jet mass distribution as a figure of merit
 - Low p_t jets: W, Z \rightarrow Jet-Jet, e.g. in top decays
 - High p, jets: W', $Z' \rightarrow$ Jet-Jet
- Fine lateral granularity (≤ 0.1) high p_t W's, Z's

Missing transverse energy resolution

- · Gluino and squark production
 - Forward coverage up to $|\eta|$ = 5
 - Hermeticity minimize cracks and dead areas
 - Absence of tails in the energy distribution is more important than a low value for the stochastic term
- Good forward coverage is also required to tag processes initiated vector boson fusion

CMS Calorimeters

Parameter	Barrel	Endcap		
η coverage Granularity (Δη×Δφ) Crystal Dims. (cm³) Depth in X ₀	η < 1.48 0.0175×0.0175 2.18×2.18×23 25.8	1.48 < η < 3.0 varies in η 2.85×2.85×22 24.7 (+3X ₀)		
No. of crystals Crystal Volume (m ³)	61,200 8.14	14,950 3.04		
Photodetector	APDs	VPTs		
Modularity	36 supermodules	4 Dees		

HCAL

Central Region ($|\eta|<3$) : Brass/Scintillator with WLS fibre readout, projective geometry, granularity $\Delta\eta x\Delta\phi = 0.0875x0.0875$ **Forward Region** ($3<|\eta|<5$): Fe/Quatz Fibre, Cerenkov light

ATLAS Calorimeters

ECAL

Accordion Pb/LAr $|\eta| < 3.2, 3 \text{ samplings}$ S1: $\Delta \eta x \Delta \phi = 0.025 \times 0.1$ S2: $\Delta \eta x \Delta \phi = 0.025 \times 0.025$ S3: $\Delta \eta x \Delta \phi = 0.05 \times 0.025$

HCAL

Barrel: Fe/Scintillator with WLS fibre readout 3 samplings - $\Delta\eta x \Delta \phi = 0.1 x 0.1$ **Endcap**: Fe/LAr **Forward**: W/LAr 3.1< $|\eta|$ <4.9 $\Delta\eta x \Delta \phi = 0.2 x 0.2$

The Calorimeters

Muons

Muon identification should be easy at L ~ 10³⁴ cm⁻² s⁻¹

Muons can be identified inside jets

b-tagging, control efficiency of isolation cuts

Factors that determine performance

Level-1 Trigger

rate from genuine muons (b,c $\rightarrow \mu X$) is very high \Rightarrow must make a p_T cut with v. high efficiency – flexible threshold (p_T in the range 5 – 75 GeV)

Pattern Recognition

hits can be spoilt by correlated backgrounds (δ s, em showers, punchthrough) and uncorrelated ones (ns and associated photons)

Momentum Resolution

high momenta involved \Rightarrow high B.dl good chamber resolution (~ 100 µm) and good alignment for low momenta precision comes from inner tracking

ATLAS Muon Detectors

Precision chambers

Monitored Drift Tubes ($|\eta| < 2$) with a single wire resolution of 80 μ m 1194 chambers, 5500m² Cathode Strip Chambers ($2 < |\eta| < 2.7$) at higher particle fluxes 32 chambers, 27 m² Each detector has 3 stations. Each station consists of 2-4 layers.

Trigger chambers

Resistive Plate Chambers ($|\eta| < 1.05$) with a good time resolution of 1 ns 1136 chambers, 3650 m² Thin Gap Chambers (1.05 < $|\eta| < 2.4$) at higher particle fluxes 1584 chambers, 2900 m²

CMS Muon Detectors

Muon Chambers

3. Tools and Algorithms

- i. Minimum Bias Events
- ii. Isolation Criteria
- iii. Muon/electron/gamma reconstruction
- iv. Jet reconstruction and Missing E_T
- v. b/t tagging
- vi. Triggering

Production Cross-sectons

At sqrt(s)=14 TeV

$\sigma_{ m tot}$	~ 105 mb
$\sigma_{\epsilon\lambdalpha\sigma au}$	~ 28 mb
$\sigma_{\text{single diffractive}}$	~ 12 mb
$\sigma_{\text{double diffractive}}$	~ mb
σ_{inel}	~ 60 mb

Evt rate = $L.\sigma = 10^{34} \times 60 \ 10^{-27} /s$ = $6 \times 10^8 /s$

Not all bunches are full (2835/3564) ⇒ events/crossing ~ 20

Operating Conditions

For every 'good' event containing a Higgs decay there are ~ 20 extra 'bad' minimum bias interactions superposed

Characteristics of MB Events: Tracks

Event Pileup

Characteristics of MB Events: Energy

CMS: Transverse energy flow in $\Delta\eta x\Delta\phi \sim 0.1x0.1$ at L=10³⁴ cm ⁻²s⁻¹

Isolation Criteria

Isolation is one of the most powerful tools at Hadron Colliders – leptons and photons from sub-processes are isolated

e.g. γ isolation using charged tracks (CMS) – energy deposits can also be used

46

Material in Trackers

Charged Track Reconstruction

Electron Reconstruction

Reconstruction of electrons that radiate little (and unconverted γ s) is simple : eg. CMS -collect energy in an array of 5 x 5 crystals centred on ~ impact point

For 'bremming' e's and converting γ 's, challenge is in coping with the combined result of tracker material and the 4T magnetic field (CMS) – problem is not energy loss but spraying/spreading of energy

GIF - Annecy 2001

Gamma Reconstruction

Jet Reconstruction

 Classical 'cone' algorithm - jet built around a seed
 parameters: E_T^{seed} cut, cone opening radius ∆R ATLAS: W → jet-jet mass resolution

p _T ^W (GeV)	ΔR	σ_{LoL}	σ _{HiL} (GeV)
р _т <50	0.4	9.5	13.8
100 <p<sub>T<200</p<sub>	0.4	7.7	12.9
200 <p<sub>T<700</p<sub>	0.3	5.0	6.9

Missing E_T

 $A \rightarrow \tau \tau$ m_A=150 geV full simulation in $|\eta|{<}3$

γ-Jet Rejection

Cuts (ATLAS)

$$\begin{split} & \mathsf{E}_{\mathsf{T}\gamma\mathsf{1}}, \mathsf{E}_{\mathsf{T}\gamma\mathsf{2}} > 40, 25 \text{ GeV with } |\eta| < 2.5 \\ & \mathsf{E}_{\mathsf{H}1}/\mathsf{E}_{\mathsf{em}} \\ & \mathsf{E}_{\mathsf{em2}}{}^{3x3}/\,\mathsf{E}_{\mathsf{em2}}{}^{7x7} \\ & \mathsf{Shower width in } \eta \\ & \mathsf{Track Veto} \end{split}$$

ATLAS EM calorimeter

4 mm η-strips in first compartment 3 longitudinal segments

 \Rightarrow (γ -jet + jet-jet) < 40% $\gamma\gamma$

Isolated π^{0} 's - detect presence of 2 em showers.

CMS Barrel

• use fine transverse crystal granularity (2.2×2.2 cm²)

• Compare energy deposited by single γ and π^0 in 3×3 crystal array variables - 9-energies, x and y position, and a pair measuring the shower width

CMS Endcap

 use preshower - two planes of Si strips with fine pitch (≈2mm) compare signal (summed in 1,2 or 3 adjacent strips with the total signal in 21 adjacent strips centred on strip with highest signal

b-jets

Likelihood method Form significance S_i for i-th trk in jet Form $r_i=f_b(S_i)/f_u(S_i)$ Form Jet weight W = Slog r_i

τ -jets

$\tau - \tau$ mass reconstruction

Forward Jet Tagging

Level-1 Isolated Electron Trigger

Level-1 Muon Trigger

Trigger based on tracks in external muon detectors that point to interaction region

- Low- p_{T} muon tracks don't point to vertex
 - Multiple scattering
 - Magnetic deflection
- Two detector layers
 - Coincidence in "road"

Detectors: RPC (pattern recognition) DT(track segment)

Level-1 Muon Trigger

Level-1 Trigger Rates

Physics

efficiencies

	е	ee	τ	ττ	j	jj	iii	jijj
$\text{Low }\mathcal{L}$	24	18	95	75	150	115	95	75
High $\mathcal L$	35	20	180	110	285	225	125	105
	τ e	je	MET	e +Met	ј+мет	e(NI)	ee(NI)	Σετ
$\text{Low }\mathcal{L}$	80,14	125,14	275	12,175	65,175	NA⁺	NA*	1000
High $\mathcal L$	125,20	165,20	350	18,250	95,250	58	28	1500
	μ	μμ	μ e	μτ	μ j	µ+ET	μ+МЕТ	Rate:
$\text{Low }\mathcal{L}$	10	3	4,12	4,80	4,80	4,600	4,140	25 kHz
High $\mathcal L$	25	8,5	5,32	5,140	5,155	5,800	5,200	25 kHz

75 kHz x 33% safety factor = 25 kHz target for simulated rates Threshold is defined as either 95% (e/ γ , τ , j) & 90% (MET, μ) efficiency

Channel	10 ³³	10 ³⁴
H(200)→ <i>ττ</i> →hadrons	0.93	0.60
H(500)→ <i>ττ</i> →hadrons	0.99	0.86
H(170)→ <i>eeee</i>	1.00	0.99
$H(110) \rightarrow \gamma\gamma$	0.99	0.98
H(135)→ <i>ττ</i> →e, hadron	0.96	0.72
H(200)→ <i>ττ</i> → <i>e, hadron</i>	0.96	0.74
H(120)→Invisible (tag j)	0.96	0.58
tt →e, X	0.97	0.82

61

Trigger Architectures

- 30 Collisions/25ns

(10⁹ event/sec)

10⁷ channels (10¹⁶ bit/sec)

Multilevel trigger and readout systems

Data Acquisition

Higher Level Trigger

Example: inclusive electron trigger from LvI-1

- Step 1: fetch calo (& muon data)
 - Apply Lvl-1 verification; sharper threshold
 - Apply π^0 rejection (based on crystals only)
 - Apply isolation but skip if pixel info can be used immediately
- Accept (say) 10-20% of the events
 - Draw road inside tracker (this road would contain all hits from the electron track if this is indeed an electron)
 - Fetch all tracker modules that have geometrical boundaries inside the road
- Find charged particle track
 - From CDF: track gives factor ~50; but factor 5 above, so this is factor 10 now. If event passes, read in rest of the tracker

HLT – Electron Trigger

If compatible hits found in two different pixel layers: accept, if not: reject.

Physics Selection at LHC

Physics Studies : Simulation

From an in-time pulse to observable at 10³⁴ cm⁻²s⁻¹

- Gaussian, uncorrelated noise injected in each time-sample
 - Energy extracted from 3 pedestal + 5 signal samples(ECAL)
 - Weights chosen for optimal energy resolution;
 - Timing and goodness-of-fit also available

- Trigger evt generated at bx=0, Pile-Up generated from bx=-5 to bx=+3;
- Pulse shape computed every 25ns (time-samples) for each hit;
- Signal processing: Add samples if several hits in same cell; Pile-Up treated like Trigger evt, i.e. add samples;

Physics Performance

Muon Momentum Resolution

SOLENOID B = 4 Tesla, R=3m

Radius of tracking cavity = 1.3 m

High Granularity Tracker

 $p_{r} > 2 \text{ GeV}, |\eta| < 2.5$

98%

92%

isolated µ tracks isolated h[±] tracks trks in 300 GeV b-jets

b - tagging

50% efficiency for a rejection factor of 100 against u, d and s jets

Momentum Resolution

 $\Delta p_{f}/p_{f} - 0.15p_{f} \oplus 0.5\%$ (p_f in TeV)

