

CMS Level 1 Trigger Wesley Smith, *U. Wisconsin, 19.1.99*

DIENOI **Overview & Recent Progress:** Calorimeter Trigger Muon Trigger Global Trigger **Organization, Cost, Schedule**

The pdf file of this talk is available at: http://cmsdoc.cern.ch/~wsmith/LHCC_Jan99.pdf See also CMS Level 1 Trigger Home page at http://cmsdoc.cern.ch/ftp/afscms/TRIDAS/html/level1.html

CMS Trigger & DAQ

Basic Structure

Collision rate	40 MHz
Level-1 Maximum trigger rate	100 kHz
Average event size	≈ 1 Mbyte
No. of In-Out units (200-5000 byte/event)	1000
Readout network (512-512 switch) bandwidth	≈ 500 Gbit/s
Event filter computing power	$\approx 5 \ 10^6 \ \text{MIPS}$
Data production	≈ Tbyte/day
No. of readout crates	≈ 250
No. of electronics boards	≈ 10000

CMS Trigger Levels

High trigger levels. Network and CPU farms

- Clean particle signature
- Finer granularity precise measurement
- Kinematics. effective mass cuts and event topology
- Track reconstruction and detector matching
- Event reconstruction and analysis

 \approx 100 Hz

Level-1 trigger system

Communication Loop:

Synchronous 40 MHz digital system

- 160 MHz internal pipeline
- Readout and processing latency < 1 μ s
- Signal distribution latency \approx 2 μs

Level 1 Latency

CMS/LHC Trigger Physics

Standard model Higgs (high luminosity)

- H (80 GeV) $\rightarrow \gamma \gamma$
- H (120 GeV) \rightarrow Z Z* (4 leptons)
- H (>500 GeV) \rightarrow leptons (+ v's)
- H (< 2M_w Associated t or W or Z) \rightarrow b b (lepton + X)
- SUSY Higgs (low luminosity)
 - (standard model Higgs like channels)
 - h, H, A $\rightarrow \tau \, \tau$ (lepton + X) or $\rightarrow \mu \mu$
 - A \rightarrow Z h ; h \rightarrow bb (lepton + X)

• p p \rightarrow t t X; t \rightarrow H⁺ b; H⁺ \rightarrow τ ν ; t \rightarrow lepton + X; $\tau \rightarrow$ X SUSY sparticle searches (low luminosity)

- MSSM sparticle \rightarrow LSP (Missing E,) + n jets
- MSSM sparticle \rightarrow Same sign dileptons + X Other new particles
 - $\bullet \, \textbf{Z'} \to \textbf{dileptons}$
- Leptoquarks: dileptons Top physics (low luminosity)
 - t \rightarrow lepton + X
 - $\bullet \, t \to multijets$
- **Bottom physics (low luminosity)**
 - $\bullet \, b \rightarrow lepton + X$
 - **b** $\rightarrow \psi \mathbf{k}_{s}$ (leptons + X)
- QCD
 - Low luminosity 100 GeV jets
 - High luminosity 200 GeV jets
- \Rightarrow Trigger candidate requirements:
 - High luminosity: lepton/γ (30 GeV), dileptons/γγ (15 GeV) missing E, (100 GeV), jets (200 GeV)
 - Low luminosity: lepton/γ (15 GeV), dileptons/γγ (10 GeV) missing E, (50 GeV), jets (100 GeV)

Input

- ECAL trigger towers, 0.087 ϕ x 0.087 η
- Matching HCAL towers
- Data every 25ns including any corrections for time development of calorimeter signal
 - 8 bit transverse energy
 - 1 bit finegrain charecterization of energy deposit
- Data presynchronized across all channels, ECAL and HCAL

Output

- Top 4 nonisolated electrons/photons (E, and location)
- Top 4 isolated electrons/photons (E, and location)
- Top 6 jets (E, and location) & no. above threshold
- Total and missing transverse energy (E_t, E_x, E_y)
- Minimimum ionization ID and isolation bits for use with muon trigger

Outut rate

- 75/2=37.5 kHz maximum for calorimeter trigger
- Simulations should indicate significant safety margin i.e., ~15 kHz rate from calorimeter trigger simulation

Efficiency

- Trigger should contribute no more than a few percent inefficiency for any physics channel compared to other offline analysis cuts.
- Trigger efficiencies should be measurable

Calorimeter Triggers

Wesley Smith, U. Wisconsin

January, 1999

NS/	
Ő	

High Luminosity Cal Trigger

	Efficiency (%) Nominal Et Rate Et Cutoffs Cutoffs				88 70*		94		77		72			
					93	76*			95	82		76		
	Process					H (80 GeV) $ ightarrow \gamma \gamma$	H (120 GeV) \rightarrow Z Z \rightarrow e e μ μ			H (200 GeV) \rightarrow Z Z \rightarrow e e j j	$p \ p \rightarrow t \ t \rightarrow e \ X$	· · · · · · · · · · · · · · · · · · ·	$p \ p \rightarrow t \ t \rightarrow H, \ X \rightarrow t \ X$	Signal Efficiency:
	d Rate	Incremental	Rate (kHz)	0.3	0.9	2.5	1.2	10		0.4	0.1	0.5	0.5	4
	Reduce	Trigger Et	Cutoff (GeV)	400	80	30	15	100	00-	65	45	25	50 & 10	7.
	linal	Incremental	Rate (kHz)	0.3	0.9	9.3	1.8	0	<u>.</u>	0.7	1.3	1.1	0.3	7.
	Nom		Cutoff (GeV)	400	80	25	12	100	20-	60	30	20	50 & 12	16
	Trigger	adkı		Sum Et	Missing Et	Electron	DiElectron	Single iet		Dijet	Trijet	Quadjet	Jet+Elctrn	Cumulative Rate (kHz)

QCD Background:

CMSIM results: Total calorimeter trigger rate at 15 kHz nominal and limited to 7.5 kHz

with electrons and photons. The difficult-to-trigger top decay events keep high efficiency, enabling studies of associated Higgs production. *Inclusion of muon trigger gives full efficiency

High efficiency remains for all channels

Wesley Smith, U. Wisconsin

$\langle X \rangle$

Low luminosity Cal. Trigger (Luminosity = 10³³ cm⁻² s⁻¹)

Trigger	Non	ninal	Reduce	ed Rate		Efficier	cy (%)
adyı	Trigger Et Cutoff (GeV)	Incremental Rate (kHz)	Trigger Et Cutoff (GeV)	Incremental Rate (kHz)	Process	Nominal Et Cutoffs	Reduced Rate Et Cutoffs
Sum Et	150	1.0	150	1.0	b b → t t → e X	98	97
Missing Et	40	1.7	50	0.7	$p p \rightarrow t t \rightarrow H + X \rightarrow t X$	94	94
Electron	12	9.1	20	3.4	SUSY CMS TP Scenario A		
DiElectron	7	1.9	10	1.3	(MLSP = 45, Mspart ~ 300 GeV)	82	77
Single jet	50	0.3	50	0.4	SUSY Neutral Higgs	40 - 96	30 - 95
Dijet	30	0.3	35	0.1	(Range of tan b and M _H values)	2	
Trijet	20	0.1	20	0.2			
Quadjet	15	0.04	15	0.1	Signal officiancy		

QCD Background:

Total calorimeter trigger rate at 15 kHz nominal and limited to 7.5 kHz **CMSIM** results:

LEB Workshop, September1998

0.3

3.4 30 & 10

15 & 9

Jet+Elctrn

7.6

17.8

Cumulative Rate (kHz)

benchmark processes involving top High efficiency remains for the decays and SUSY sparticles.

There is also high rate of B signal in evel-1 sample. Note:

Wesley Smith, U. Wisconsin

The TPG Board Architecture

- LINEARIZER: transform non linear scale from VFE to transverse energy scale
- ADDER: build strip signals
- LVL1 filter: perform the LVL1 filter computations on each strip signal
- TPG: extract the trigger primitives $(E_T^{tot} \text{ and } CSB)$ for each trigger tower
- PIPELINE: store the trigger primitives for DAQ

BCID for benchmark e/γ showers

$\epsilon^{BCID} = \frac{Nb \ of \ events \ with \ a \ peak \ for \ the \ right \ BC \ in \ a \ strip}{Nb \ of \ events}$

• 2 Input Channels with time difference and same Output Timing

Sync Tester Board

Sync Block Diagram

Differences from previous design:

- Merge of the 2 circuits.
- TTC Control Signals decoded on the BC.
- Internal Accumulator.
- FIFO Transparent Mode with programmable depth.
- Latency Register (Tx_BC0 > Rx_BC0 distance).
- BIST.

Calorimeter Trigger Towers

Wesley Smith, U. Wisconsin

January, 1999

Wiscon
⊃
Wesley Smith,

Receiver Card Prototype

160 MHz Prototype Card Under Test:

- VME Interface working
- Adder ASIC's functioning
- Detailed timing under study

8 x 13-bit 160 MHz Adder ASIC

Vitesse 0.6 μ H-GaAs Process: ECL I/O

- 13 bits per operand x 8 operands
- Single thirteen bit output
- Latency: 25 ns @ 160 MHz
- Full Boundary Scan support

Technical analysis by Vitesse

- •~11,000 cells
- 4 Watts
- 308 MHz

Status:

- 5 tested devices delivered
- select nets exceed simulation speed by 10%

Receiver Card:

- J. Lackey

160 MHz Backplane

Backplane Test Setup

Top rear view of crate & backplane with power supplies

Front view of crate & backplane with clock board installed

Wesley Smith, U. Wisconsin

Electron ID & Jet/Summary Cards

Wesley Smith, U. Wisconsin

January, 1999

Global Kalorimeter Trigger Blockdiagramm

Sort-Processor

Alexander Mass, University of Bristol

12.11.98

The Sort-ASIC

- use SORT ASIC on all sort levels
 Configurable: (6 bit rank)
- a) 4 Links; unsorted no location Id
- b) 6 Links; sorted 4 bit location Id
- c) 3 Links; sorted 7 bit location Id
- Pre Sort for 1. level
- Input/Output data ECL @160MHz
- Boundary Scan
- Latency: 50 nsec (2 BC)

Further Options:

- count objcts above energy threshold
- energy sums above threshold (Jets)

Alexander Mass, University of Bristol

GCT Demonstrator Project

- Design of Prototype Sort ASIC (manufactured 1997)
- Object Sort for (32 -> 4)
- 4 Inputs (8 bit rank, 3 bit location Id) @160MHz
- ECL I/O (Boundary Scan)
- Schematic design
- Funtion successfully tested @50MHz

- 160 MHz Sort ASIC Test System
- Sort ASIC Test Module: 4 random pattern generator + Sort Asic
- + (160MHz -> 40MHz) DeMUX + 160MHz clk generator (RAL)
- 64 bit ECL Data Recorder/Source, Readout via custom fieldbus (Bristol)

All hardware available, Test currently in progress

Tasks of the CMS Muon Trigger:

- muon identification
- transverse momentum measurement
- bunch crossing identification

Basic requirements:

- Geometrical coverage: up to |η|=2.4
- Latency: < 3.2 μs
- Trigger dead time: not allowed
- Maximal output rate: < 15 kHz for luminosities < 10³⁴ s⁻¹cm⁻²
- Background rejection: trigger rate due to background should not exceed the rate of prompt muons from heavy quark decays
- Low p_t reach: should be limited only by muon energy loss in the calorimeters
- The highest possible p_t cut: ~50-100 GeV
- of $\Delta \phi imes \Delta \eta$ = 0.35 × 0.35 around a muon is compared with a threshold Isolation: transverse energy E_t deposited in each calorimeter region
 - Output to the Global Trigger: up to 4 highest p_t muons in each event

The CMS muon trigger is based on:

 Dedicated trigger detector (Resistive Plate Chamber)
 Muon chambers (Drift Tubes, Cathode Strip Chambers)

RPCs (barrel & endcap)

- $|\eta| < 2.1$, strips of $\Delta \eta \mathbf{x} \Delta \phi = 0.1 \mathbf{x} 5/16^{\circ}$
- 4 RPC stations compared to templates for different p_τ ranges by Pattern Comparator ASICs
- - 2 \u03c6, 1 z superlayers/stations (no z in station 4)
 - 6 rings (Δη = 0.35) of 12 φ segments
 - Bunch & Track Identifier forms superlayer r vectors by solving linear equations

 - Trigger Server sorts vectors by quality & p_{T} and outputs 2 highest p_{T} segments to Track Finder

CSCs (endcaps)

- 6-layer CSC/station for 3 (upgrade to 4?) stations
- Fast-shaped radial-strip pulses fed to Local Charged Track processor to find coincidence in ≥ 4 out of 6 layers inside predefined roads
- Coincidence made with perpendicular anode wires to identify crossing
- Vector from each station sent to Track Finder

Drift Tube Track Finder

- Accepts DT segments from Trigger Server
- Accepts Segments from CSC Trigger in low
 [η] barrel/endcap overlap region
- Combines track segments into full tracks
- \bullet Assigns $p_{_{T}}$ and quality to each track

CSC Track Finder

- Accepts CSC vectors from each station
- Accepts Segments from DT Trigger in high |η| barrel/endcap overlap region
- Combines track segments into full tracks
- Assigns p_T and quality to each track Global Muon Trigger
 - Separate Sort of 4 highest p_T CSC, DT and 8 highest RPC PACT candidates forms Input
 - Examines "quiet bits" from calorimeter to find isolated muons
 - Removes Ghosts
 - Outputs 4 highest p_T muons to Global Trigger
 - Muons identified with $\Delta \eta \ \textbf{x} \ \Delta \varphi \ \textbf{\sim} \ \textbf{0.1} \ \textbf{x} \ \textbf{2.5}^{\circ}$
 - p_T coded as 5 bits nonlinear; sign; quality

Muon Trigger structure

RPC Pattern Comparator Trigger

<u>Principle:</u> pattern of hit strips is compared to predefined patterns corresponding to various p_t.

RPC Muon Trigger System

RPC Muon Trigger System

S

Trigger Crate

LDEMUX

PAC PAC

PAC PAC

PAC

High Pt

Low Pt

PAC test results :

40 dies (10 packed, 30 unpacked) delivered March 98

All building blocks of every packed PAC tested. The results are following:

- PAC programming (via JTAG - 10 MHz clock): - 8 PAC's - OK; - 1 PAC - 1 pattern bank not accesible; - 1 PAC - intermittent error. - cascade, mask circuit: - 10 PAC's - OK; - encoding circuit: - 10 PAC's - OK; - code selection circuit (demuxes): - 10 PAC's - OK; - pattern selection circuit (muxes): - fast test - logically OK but timing problem found at level of input buffer and dynamic logic: - 3/4 tracks are working from 30 ns clock,

- 4/4 track code are extended to 2 bx's.

RPC Muon Trigger System

CMS Tridas Review, CERN November 9-13, 1998

Ignacy Maciek Kudla, Warsaw University

Muon Chamber Triggers

Drift Tubes (DT) Cathode Strip Chambers (CSC)

Meantimers recognize tracks and form vector / quartet.

Correlator combines them into one vector / station.

Hit strips of 6 layers form a vector.

M.Dallavalle /INFN Bologna

Bunch and Track Identifier

LTRG triggers close to a HTRG are suppressed (LTS mechanism)

Correlates BTIs in the inner and outer Superlayers Refines the track measurement Applies noise filtering using θ -view information

Time distribution of BTI triggers

To Muon Regional Trigger

itecture (1)	 In order to minimize the speed and 	the logic, the best solution is a parallel sorting, based on a 2by2 fast comparator, among groups of	4 TRACOS	Two layers of processing units in ϕ :	one Track Sorter Slave (TSS)	second layer:	one <i>Track Sorter Master</i> (TSM) per chamber	In the 0 view the <i>Trigger Server</i>	Theta (TST) provides the OR of	groups of Dils: eventually used in ϕ as trigger validation	ek 13-Nov-1998 3
The Trigger Server archi		select TRACO 1 5	TRACO 1 10 TRACO 10 TRACO 10 T	TRACO 4	previews TSM 2x25+16 Regi		TRACO 22 10 10 10 25 25 25 25	TRACO 23			A.Montanari, Tridas wee

mance ASIC prototype of TSS	vith programmable devices (XilinX, Altera, QuickLogic) d of using ASIC to fit the speed requirement	 10 ASIC prototypes were ready at the beginning of this year: 10 ASIC prototypes were ready at the beginning of this year: CMOS 0.7 μm (ES2 through EuroPractice) 23 mm² Silicon area 104 I/O pads 104	A.Montanari, Tridas week 12-Nov-1998
Full performa	 Test performed with purevealed the need of underline 		4

U
>
Ð
U
5
<u> </u>
5
5
•
Ð
Ž
<u> </u>
L.
Ō
C
5
<u> </u>
17
Ę

The TS algorithm has been tested in the frame of the simulation of CMS

- The ideal algorithm should find:
- only one track segment in single muon events (reject ghosts produced by nearby TRACOs)
 - two correct segment in two muon events (high efficiency and purity on second segment)

A.Montanari, Tridas week 12-Nov-1998

CMS Review 13 November 1998 Janos Erö/HEPHY-Vienna

CMS Review 13 November 1998 Janos Erö/HEPHY-Vienna

Drift Tube Regional Trigger

Vienna Prototype Track-Finder Test Setup

Trigger Regions in η

D. Acosta, Univ. of Florida

TriDAS Review, Nov. 1998

Ś

Trigger Crates

Each iron disk handles 12 sectors 30° sectors on YE1 for ME1, 60° sectors on YE2 for ME2 and ME3

Per sector:

Туре	Boar	d Slots			
CLCT	9	9			
ALCT	9	18			
MBT	5	5			
MBD	5	5			
MPC	1	1			
Total	29	38			
Fits two 9U crates					

Positions of 24 crates around the iron disks is under discussion.

'98 Prototypes: 48-ch LCT Card

Software configurable as anode or cathode LCT

Comparator Study #2

- Fit track in Layers 1,2,4,5,6, look at comparator bits in Layer 3.
 Simple tracking results are good
- Simple tracking results are good
 - \rightarrow No corrections for gain, xtalk, etc.
 - \rightarrow Energy-weighted means
 - \rightarrow Corrected means by sin(x) gives

~300um resolution

Anode BX Efficiency Summary

Run 183 at H2

old gas, HV=3.9kV, θ=25°, φ=0°, μ⁺(225), 4x4cm trig anode thresholds 15~58fC

Coincidence Level	Relative Timing	BX Efficiency
1	0ns	98.0±1.0%
2	+3ns	99.2±0.3%
3	+8ns	99.2±0.3%
4	+12ns	99.1±0.5%
5	+14ns	98.5±0.6%
6	+19ns	98.0±0.8%

CSC Trigger Layout

Wesley Smith, U. Wisconsin

\mathbf{A}	D
3	M

- 1 CSC stub = 12 φ bits + 6 Ψ bits + 5 η bits + 3 Q bits = 26 bits
- 1 Port Card sends 3 stubs
- 1 Sector Receiver accepts 2 Port Cards = 6 stubs
- 1 Sector Processor accepts 6 + 3 + 3 + 3 = 15 stubs (divided between 2.5 Sector Receivers)
- 15 stubs × 26 bits = 390 bits

Sector Processor Block Diagram

TriDAS Review, Nov. 1998

15

GMT: Present Design

Trigger Review, Nov. 1998

Norbert Neumeister, HEPHY Vienna

Global Muon Trigger

Trigger efficiency [%] for 1 μ events

η <0.8	0 μ	1 μ	>1 μ	
RPC	4.49 ±0.10	95.49 ±0.61	0.02 ±0.01	
DT	6.08 ±0.11	93.70 ±0.60	0.22 ±0.02	
GMT	1.04 ±0.05	98.78 ±0.70	0.18 ±0.02	

Trigger efficiency [%] for 2 μ events

η <0.8	0 μ	1 μ	2 μ	>2 μ	
RPC	0.24 ±0.03	8.98 ±0.22	90.72 ±0.93	0.05 ±0.02	
DT	0.39 ±0.04	12.75 ±0.27	86.40 ±0.90	0.46 ±0.05	
GMT	0.00 ±0.01	2.70 ±0.12	96.87 ±0.98	0.42 ±0.05	

	L = 10 ³³ cm ⁻² s ⁻¹			L = 10 ³⁴ cm ⁻² s ⁻¹		
trigger	threshold	rate	[kHz]	threshold	rate [kHz]	
type	[GeV]	indiv.	cumul.	[GeV]	indiv.	cumul.
ΣE _t	150	1.0	1.0	400	0.5	0.5
E_{t}^{miss}	40	2.1	2.8	80	1.3	1.7
е	12	10.3	12.3	25	6.8	8.3
e e	7	1.5	13.1	12	1.5	9.5
j	50	2.0	13.5	100	2.1	10.7
jj	30	1.6	13.9	60	2.2	11.6
jjj	20	1.0	14.1	30	3.2	13.3
jjjj	15	0.7	14.2	20	3.0	14.3
еj	9, 15	6.0	15.2	12, 50	1.4	14.9
μ	7	7.0	7.0	20	7.8	7.8
μμ	2-4	0.5	7.3	4	1.6	9.2
μ e/γ	2-4, 7	2.4	9.2	4, 8	5.5	14.4
μe _b	2-4, <u>4</u>	<u>5.2</u>	12.8			
μj	2-4, <u>10</u>	<u>4.2</u>	14.4	4, 40	0.3	14.3
$\mu E_t^{ miss}$	2-4, 40	0.2	14.4	4, 60	1.0	15.3
$\mu \Sigma E_t$	2-4, 100	0.7	14.4	4, 250	0.2	15.3

LV2 input 100 kHz / safety factor 3 = LV1 output 15+15 kHz

LV2 input 75 kHz / safety factor 3 = LV1 output 12+12 kHz

μ	7	7.0	7.0
μμ	2-4	0.5	7.3
μ e/γ	2-4, 7	2.4	9.2
μe _b	2-4, <u>4.5</u>	<u>3.3</u>	11.1
μj	2-4, <u>15</u>	<u>2.0</u>	11.9
$\mu E_t^{\ miss}$	2-4, 40	0.2	11.9
$\mu \Sigma E_t$	2-4, 100	0.7	11.9

LV1 output rate is reduced to the required limit by adjusting the trigger thresholds

threshold 2-4 GeV means the minimal possible muon p_t cut ~4 GeV in the barrel, ~2 GeV in the endcap

Final level-1 decision logic

32 inputs with energy, coordinate, quality bits

- 4 muons, 4 isolated e/ γ , 4 non-isolated e/ γ
- 6 jets & total number of jets above threshold
- Total E_{T} , Missing E_{T}
- 128 Output Triggers
 - example:

1 μ > 20 GeV & 1 isolated e/ γ > 10 GeV

Cards:

- Pipeline Synchronizer & Buffer
 - Aligns data from different subsystems
- Global Trigger Logic
 - Threshold & Comparator stages
 - Cuts on E_{T} , p_{T} , quality, η
- Global Trigger Final
 - Combinatorial logic array
 - Prescales

GTL-Algo_Calo.cdd

TIM-Ovw.cdd

Distribution of CLK and L1 to Front–End

L1 delay along the critical path TTCvi \rightarrow FEM:

1) TTCvi (input) \rightarrow TTCrx (output): \simeq 135ns + 5ns/m (10 BX with 20m fibre)

2) TTCrx on FEC: programmable delay, foreseen to be set to zero

3) FEC, opto \rightarrow electrical conversion: < 50ns (< 2 BX)

4) FEC \rightarrow CCUMs: 90 to 120 m optical fibre \rightarrow 450 to 600 ns (18 to 24 BX)

5) Ring of CCUMs: $\simeq 2m$ of electrical cables $\rightarrow \simeq 20ns \ (< 1 \ BX)$

 $6) \quad \text{CCUM: opto} \rightarrow \text{electrical conversion} + \text{distribution via electrical cables}$

to the PLLs in the FE + (CLK+L1) decoding $\rightarrow \simeq 75$ ns (3 BX) (?)

7) PLL on the FEM: programmable (fine and coarse) delay

Impact on the latency

Heavy Ion Luminosity and trigger rates

Initial luminosities for 1 experiment, 125 ns bunch spacing

	dd	0 0	Ca Ca	Nb Nb	Pb Pb
luminosity [cm ⁻² s ⁻¹]	10^{34}	$3.2\cdot10^{31}$	$2.5\cdot 10^{30}$	$9 \cdot 10^{28}$	10^{27}
average collision rate [kHz]	550 000	32 000	5200	400	7.6
1µ trigger rate [kHz]	190	120	53	10	0.5

- 2 experiments \Rightarrow luminosity / 3-4
- 3 experiments \Rightarrow luminosity / 6-9

Pb Pb: experiments	1	2	3
luminosity [cm ⁻² s ⁻¹]	10^{27}	$3.3\cdot10^{26}$	$1.7\cdot 10^{26}$
average collision rate [Hz]	7600	2500	1300
1µ trigger rate [Hz]	500	165	85
2µ trigger rate [Hz]	60	20	10

Heavy Ion Trigger Summary
• The p_t spectra above 1 GeV in AA collisions at \sqrt{S} = 5-7 TeV
are not much different from those in pp collisions at \sqrt{S} = 14 TeV
 Simple scaling by A^{2 · 0.95} works well
 Thus one can use a lot of predictions calculated for the pp case For example one gets Pb-Pb rates at L=10²⁷cm⁻²s⁻¹ multiplying pp rates at L=10³⁴cm⁻²s⁻¹ by 0.0025
• For Pb-Pb at L=10 ²⁷ cm ⁻² s ⁻¹ one can expect single muon trigger rate:
 – 210 Hz from prompt muons (c- and b-quark decays)
– 280 Hz from hadronic punchthrough and decays (mainly π and K)

Strategy for dimuon trigger

Assumptions

- L=10²⁷cm⁻²s⁻¹ (1 experiment running at the time) for Pb-Pb
 - mass storage capacity: ~100 MB/s
- equal rates for muon and calorimeter triggers
 - max. event size (central collisions):

Detector	Occupancy	k Bytes
Pixel barrel	< 0.5 %	300
MSGC 4 layers + 4 disks	~ 10 %	826
ECAL full (1 time slice)	100 %	260
HCAL full	100 %	28
Muon DT+CSC+RPC	< 0.1 %	24
TOTAL		~1.5 MB

Trigger strategy

- Require single muon trigger $(|\eta|<1.5)$ at the first level \Rightarrow 500 Hz
- 60 Hz • Search for a second muon $(|\eta|<1.5)$ at the second level \Rightarrow
 - Little or no reduction needed at higher levels

CMS Trigger Organization

Trigger cost book 9

	CMS Cost Estimate - Version 9		Release Date: March 31, 1998			
No.	Item	Unit Type	# Units	Unit Cost	Total Cost	
6.1.1	CALORIMETER TRIGGER				5225	0
6.1.1.1	Regional trigger	System	1	4050.020	4050	
6.1.1.2	Global Cal. Trigger	System	1	400.000	400	
6.1.1.3	Readout & Control	System	1	255.000	255	
6.1.1.4	Data Communication	System	1	520.000	520	
6.1.2	CSC TRIGGER				1100	0
6.1.2.1	Muon Port Card	Board	63	7.475	471	
6.1.2.2	Sector Receivers	Board	65	4.217	274	
6.1.2.3	Sector Processors	Board	15	7.020	102	
6.1.2.4	Overlap Processors	Board	15	7.020	105	
6.1.2.5	Clock and Control Card	Board	12	5.233	63	
6.1.2.6	Crate Monitor Card	Board	10	1.300	13	
6.1.2.7	Trigger Crate	Crate	10	7.107	71	
6.1.2.7	Institute Manpower	Manyears	0	0.000	0	
6.1.3	DT TRIGGER				780	0
6.1.3.1	Trigger Crate	Crate	4	6.000	24	
6.1.3.2	Sector Processor Card	Board	60	8.000	480	
6.1.3.3	Muon Sorter Card	Board	5	8.000	40	
6.1.3.4	Clock and Control Card	Board	4	4.000	16	
6.1.3.5	Crate Monitor Card	Board	4	2.000	8	
6.1.3.6	Cables	Cables	1	50.000	50	
6.1.3.7	Readout and Control	System	1	32.000	32	
6.1.3.8	Monitoring and Test	System	1	70.000	70	
6.1.3.9	Prototypes and spares	System	1	60.000	60	
6.1.3.10	Institute Manpower	Manyears	0	0.000	0	0
C 1 4	DDC TDICCED				2605	0
6.1.4			0.2.5	0.475	3693	0
6.1.4.1	Link Board	Board	936	0.475	445	
6.1.4.2	Data Communication	System	156	/55.160	/55	
6.1.4.3	Trigger Board (EndCon)	Board	240	3.830	597 804	
6.1.4.4	Final Souton Doord	Board	240	5.530	804 52	
6146	Pandout board	Board	306	0.700	33	
6.1.4.0	Readout Concentrator Board	Board	33	1,000	33	
6148	Clock Control Board	Board	33	4 000	132	
6149	Trigger Crate	Crate	33	8 600	284	
6.1.4.10	Readout and Control	System	1	15.300	15	
6.1.4.11	ASICs Development	Service	1	200.000	200	
6.1.4.12	Prototypes and spares	System	1	100.000	100	
6.1.4.13	Institute Manpower	Manyears	0	0.000	0	0
6.1.5	GLOBAL TRIGGER				1340	0
6.1.5.1	Global Trigger Crate	Crate	1	27.046	27	
6.1.5.2	PipelineSyncBuffer	Board	5	8.290	41	
6.1.5.3	Global Trigger Logic	Board	5	12.168	61	
6.1.5.4	Global Trigger Final	Board	1	5.199	5	
6.1.5.5	Cables	Cables	1	4.070	4	
6.1.5.6	Global Muon Trigger	System	1	158.272	158	
6.1.5.7	Readout and Control	System	1	30.000	30	
6.1.5.8	Prototypes	System	1	32.700	33	
6.1.5.9	Monitoring & Test	System	1	80.000	80	
6.1.5.10	Trigger Throttle System	System	6000	0.150	900	
6.1.5.11	Institute Manpower	Manyears	0	0.000	0	0

M&S for Crates, Boards & Cables:

WBS	<u>ltem</u>	<u>Unit Cost</u>	Number	Total
3.1.2.4	Power Supplies	3,600	22	79,200
3.1.2.5	Crates	600	22	13,200
3.1.2.6	Backplane	5,910	22	130,020
3.1.2.7	Clock & Control Card	2,960	22	65,120
3.1.2.8	Receiver Card	8,870	176	1,561,120
3.1.2.9	Electron ID Card	3,690	176	649,440
3.1.2.10	Jet Summary Card	4,670	22	102,740
3.1.2.11	Cables	\$1/ft	7,300	7,300

Detail for Boards:

Card	<u>Size</u>	Board	Assmbl.	Parts	Total
Backplane	crate	1,000	300	4,610	5,910
Clock & Control	9Ux280mm	600	400	1,960	2,960
Receiver	9Ux400mm	800	650	7,420	8,870
Electron ID	9Ux280mm	400	300	2,990	3,960
Jet Summary	9Ux280mm	600	500	3,570	4,670

Detail for ASICS (WBS 3.1.2.2):

ASIC	NRE	Cst/Prt	<u>#/R</u>	<u>C #/El</u>	C #/JS	<u>SC Tot.#</u>
Adder (GaAs)	50,000	179	3	0	2	520
Phase (GaAs)	50,000	360	8	0	0	1,280
Sort (GaAs)	80,000	300	0	1	2	200
Electron ID(GaAs)	80,000	300	0	2	0	320
Bndry. Scan(GaAs)	50,000	150	1	1	1	340

(costs per part are included in board parts costs above)

S

Ex: CSC Trigger Schedule

2001 2002 2003 2004 20 it Apr Oct Apr Oct Apr Oct 1 21 21 21 21 21 21 12 112 112 112 12 Final Design Jul 22 Aug 20 12 Finish Production Aug 20 13 Finish Installation Aug 20 14 Finish Installation Aug 20	
2001 2002 2003 2004 it Apr Oct Apr Oct Apr 1 Oct Apr Oct Apr Oct Apr 21 12 12 12 12 12 12 Final Design Jul 22 Jul 22 Aug 20 Begin Installation Aug 20 Aug 20 Aug 20	or 30 Sel
2001 2002 2003 200 it Apr Oct Apr Oct 21 21 21 22 23 21 22 12 12 Final Design Jul 22 duction Jan 22 Finish Production N Finish Installation Aug Finish Installation Aug	♦ ♦ ts
2001 2002 2003 21 Apr Oct Apr 21 2 3 22 3 3 23 3 3 24 3 3 25 3 3 26 3 3 27 3 3 28 3 3 12 3 3 12 3 3 13 3 3 14 3 3 12 3 3 13 3 3 14 3 3 15 3 3 16 3 3 17 3 3 18 3 3 17 3 3 18 3 3 17 3 3 18 3 3 17 3 3 18 3 3 17 3 3 18 3 3 17 3 3 18 3 3 17 3 3 18 3 3	sts • Tes
2001 2002 200 it Apr Oct Apr 1 Oct Apr Oct 1 Image: State of the state o	m Te
2001 2002 2001 2002 21 2002 21 21 12 21 12 31 12 31 13 31 14 31 15 31 16 31 17 31 18 31 113 31 12 31 13 31 14 31 15 31 16 31 17 31 18 31 113 31 113 31 114 31 115 31 116 31 117 31 118 31 118 31 113 31 114 31 115 31 116 31 117 31 118 31 118 31 118 31 118 31 118 31	ystel er Sy
2001 2001	jer S rigg
21 21 21 21 21 21 21 21 21 21 21 21 21 2	Trig(ish T
2001 21 21 21 21 21 21 21 21 21 21 21 20 01	Fin
	ă
B Se Tes	
Apr Apr Apr Apr Apr Apr	
199 199 199 100 100 130 130 130 130 130 130	
n h Ma otype	
Be Cc A 1998 Brotc Cc A B	
Gin F Co tot O	
997 ial D sh Pl Be Be	
Proto	
96 Gin I Fin I Fin I	

Trigger Milestone List

Level 1 (1998-2000)

• Nov. 1998 Complete Initial Trigger Design:

- Algorithms finalized
- Functional blocks determined
- Numbers of ASICs, boards, cards and crates specified
- Interfaces specified
- Trigger geometry determined
- Nov. 1999 Complete Phase 1 Prototype Design:
 - Designs of boards, cards
 - ASICs for prototype tests done
- Nov. 2000 Phase 1 Prototype Tests Finished:
 - All tests necessary to begin design of production electronics are complete
- Nov. 2000 Technical Design Report

Level 2 (1998-2000)

• Nov. 1998:

- Complete Initial Muon Trigger Design
- Complete Initial Calorimeter Trigger Design
- Complete Initial Global Trigger Design

• Nov. 1999:

- Complete Prototype Muon Trigger Design
- Complete Prototype Calorimeter Trigger Design
- Complete Prototype Global Trigger Design
- Nov. 2000:
 - Prototype Muon Trigger Tests Finished
 - Prototype Calorimeter Trigger Tests Finished
 - Prototype Global Trigger Tests Finished

Trigger Milestone Progress

1998 L1 Milestone:

• Nov. 1998 Complete Initial Trigger Design:

- Algorithms finalized
- Functional blocks determined
- Numbers of ASICs, boards, cards and crates specified
- Interfaces specified
- Trigger geometry determined
- Status: Complete

1998 L2 Milestones:

• Nov. 1998:

- Complete Initial Muon Trigger Design
 - http://cmsdoc.cern.ch/ftp/afscms/TRIDAS/mutrig/html/
- Complete Initial Calorimeter Trigger Design
 - http://cmsdoc.cern.ch/ftp/afscms/TRIDAS/caltrig/html/ CalTrig.html
- Complete Initial Global Trigger Design
 - http://sungraz.cern.ch/CMS/trigger/globalTrigger/ Welcome.html

• Status: Complete

	$\overline{\mathbf{x}}$	
\mathbf{S}		\mathcal{Y}
\geq		
\bigcirc		

Trigger Project Management

CMS Annual Reviews

- April: TriDAS Status
- Progress, draft R&D plans & expenses for next year
 - November: TriDAS Internal Review
- R&D Plans/Progress, Cost & Schedule, Milestones
- Finalize R&D plans & expenses for next year
- Internal CMS Review w/CMS referees
- Internal Electronics Reviews by LHC Electronics **Board CMS Reps.**
 - J. Elias (FNAL) substituting for W. Smith (Wisc.) G. Hall (Imperial), G. Stefanini (CERN),
- Reports to CMS Management Board (last trigger review in Fall '98)

× 1	
	1
	VH7
	XUL
$\left(\right)$	

Conclusions - Trigger

Algorithms satisfy physics requirements

Hardware design to implement algorithms Active simulation program producing results

- Full conceptual design with considerable engineering
- Extensive prototyping & test program
 - "Proof of principle" of critical items
 - Number of successes already

Project Management

- Experienced team in place with all tasks assigned
- Extensive system of reviews and monitoring in place

Detailed documentation on WWW:

http://cmsdoc.cern.ch/ftp/afscms/TRIDAS/html/ level1.html